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Abstract - 

In the construction industry, fall accidents are the 

leading cause of construction-related fatalities; in 

particular, ironworkers have the highest risk of fatal 

accidents. Detecting near-miss accidents for 

ironworkers provides crucial information for 

interrupting and preventing the precursors of fall 

accidents while simultaneously addressing the 

problem of sparse accident data for ironworkers’ fall-

risk assessments. However, current methods for 

detecting near-miss accidents are based upon workers’ 

self-reporting, which introduces variability to the 

collected data. This paper aims to present a method 

that uses Inertial Measurement Unit (IMU) sensor 

data to automatically detect near-miss accidents 

during ironworkers’ walking motion. Then, using a 

Primal Laplacian Support Vector Machine, a 

developed semi-supervised algorithm trains a system 

to predict near-miss incidents using this data. The 

accuracy of this semi-supervised algorithm was 

measured with different metrics to assess the impact 

of the automated near-miss incident detection in 

construction worksites.  The experimental validation 

of the algorithm indicates that near-miss incidents 

may be estimated and classified with considerable 

accuracy—above 98 percent. Then the computational 

burden of the proposed algorithm was compared with 

a One-Class Support Vector Machine (OC-SVM). 

Based upon the proposed detection approach, high-

risk actions in the construction site can be detected 

efficiently, and steps towards reducing or eliminating 

them may be taken. 

Keywords: Sensing and Communication, worker 

safety, near-misss, Inertial Measurement Unit sensor. 

1 Introduction 
The construction industry is still dangerous, 

accounting for about 21% of fatal injuries in the United 

States[1]. Among these fatal injuries, falls to a lower 

level have been ranked as the foremost fatal accident type 

in the construction industry, representing 33% of all fatal 

accidents [2]. In order to reduce the number of fatal fall 

accidents, the Occupational Safety and Health 

Administration began regulating the use of accident-

prevention measures (e.g. personal fall arrest systems); 

however, the administration cannot address certain types 

of accidents that occur due to dangerous circumstances 

[3]. Among construction trades, ironworkers have been 

exposed to the highest lifetime fatal accident risks [4]. 

However, estimating the fall risk of an ironworker is still 

very challenging due to the sparse amount of detailed 

information on actual fall accidents. Thus, there is 

insufficient knowledge to give forewarning to potential 

subjects of fall accidents.  

For this reason, the identification of near-miss 

accidents has been brought forward as a consideration 

that could help prevent future accidents in the 

construction industry [5], [6]. According to Phimister [7], 

a near-miss accident is defined as an event that did not 

cause any harm but that had the potential to become an 

accident under slightly different conditions. The logic 

runs that behind one major accident there are numerous 

near-miss accidents and a few minor accidents [8]. Thus, 

data about the number of near-miss accidents could be 

used as a harbinger of an upcoming major accident in 

general cases.   

In this context, this research proposes a method for 

detecting the near-miss accidents of ironworkers that 

uses wearable inertial measurement unit (IMU) sensors 
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width steel beams. The dimensions of this frame were 12 

feet 1 inch by 6 feet 6 inches (see Figure 2-b). 

Videotaping the data collection period aided with the 

assignation of appropriate labels for deciding whether the 

ironworker was in a safe condition or was experiencing a 

near-miss incident. 

The type of IMU sensor used to collect the 

ironworkers’ motion data was a SHIMMER 9DoF with 

three axes each for the accelerometer, gyroscope and 

magnetometer (See Figure 2-a). IMU sensors recorded 

motion data at a frequency of 51.2 Hz and transferred the 

data to a laptop computer via Bluetooth. Concurrently, a 

video recorder filmed the experiment to create reference 

data labels to assist in training the classifier. To keep 

track of the beginning and end of the data collection 

process and to synchronize collected motion data with 

video recording, an impact was given to the sensor at both 

the start and end of data collection. Figure 2 illustrates 

the experiment equipment and layout. 

 

Figure 2: Laboratory experiment layout and 

equipment 

From raw data received from IMU sensor, we 

observed a frequency of 51.2 Hz. However recorded 

video of the experiment didn’t have this frequency since 

objective labelling cannot reach the same sampling speed 

of IMU sensor. In order to match the frequency of the 

data received from the IMU sensors and the labels 

produced with the monitoring video recordings, we 

reconstructed both raw data and video labels by a 

sampling rate of 32 Hz with 50% data overlap. Within 

each sample window, data was sampled using the 

features for both the accelerometer- and the gyroscope-

measured data points present in that window. The 

accelerometer and gyroscope each have x, y and z axis, 

hence there were six values for each sampling technique 

per each data point. In each sampling window, we 

measured mean, standard deviation and peak values per 

x, y and z axis, for both the accelerometer and gyroscope. 

This makes up 18 features. Another 20 features are 

extracted by using correlation, spectral entropy, and 

spectral centroid functions. Considering all of these 

features, 38 features were extracted. 

Considering that workers’ near-miss incidents will 

create irregular patterns in IMU sensor data, the detection 

of near-miss incidents can be formulated by training a 

classifier function, which differentiates signal patterns 

that do not conform to expected signal patterns—in this 

case, those signals that are departures from workers’ 

stable postures during a movement. A near-miss is a 

motion in which the subject loses balance slightly. 

Finding near-miss incidents therefore depends on 

subjective labels assigned by reviewing recorded video 

from the data collection period. However, subjective 

labelling is not feasible in all circumstances and is 

computationally expensive. Additionally, due to the rare 

and dynamic nature of near-miss incidents, it is difficult 

to record labelled data that includes all sorts of conditions 

leading to a near-miss incident. Therefore, we favoured a 

semi-supervised classifier function that can benefit from 

both labelled and unlabelled data.  In order to evaluate 

the performance of the classifier function, data was 

divided into 60% training data and 40% test data. 

Accuracy in predicting near-miss incidents against the 

total number of data points and the computational time 

elapsed to achieve this accuracy were measures to assess 

the performance of the classifier. 

4 Identification of near-miss incidents 
Recently, many algorithms have been proposed to 

enhance the quality of a semi-supervised classifier 

function [16], [17]. The premise of semi-supervised 

learning is that a marginal distribution of a decision 

boundary can be estimated based upon labelled data, and 

that each point of a cluster can be distinguished from data 

points belonging to other clusters by a curve that 

separates a dense area of a cluster from a non-dense 

boundary area. The boundary between different classes is 

not as dense as the area in each class. This characteristic 

of the semi-supervised learning algorithms is called the 

Cluster Assumption. Another assumption in this 

algorithm is the Manifold Assumption, which states that 

the boundary lies on or near low-dimensional manifold 

and that the classifier function moves smoothly along this 

boundary. The Manifold Assumption produces low-

dimensional space using key class features, and therefore 

is effective in the applications where data has noise. 

In this paper we focus on a Primal Laplacian Support 

Vector Machine (LapSVM) approach. The original 

Laplacian Support Vector Machine (LapSVM) was 

proposed by Belkin et al [18]. The original algorithm of 

LapSVM had a dual formation, which was defined by a 

number of dual variables equal to l, the number of 

labelled points. In LapSVM, if the number of labelled 

data points is 𝑙 and the number of unlabeled data points 

is n (where usually 𝑛 ≫ 𝑙), then the relationship between 

data points is found by a linear system of n equations and 

variables. Belkin et al. [15] also proposed the Manifold 

Regularization method, which is based on the geometry 

The 31st International Symposium on Automation and Robotics in Construction and Mining (ISARC 2014)





sampler size of data, a Radial Basis Function (RBF) 

kernel showed a better decision boundary when 

compared to Linear or Polynomial kernels (See Figure 3). 

RBF in nature usually acts as a low-band pass filter, it 

acts by smoothing decision boundaries formed by hyper 

plane defined by support vector machine. This smoothing 

is at the cost of some loss estimated by loss function, 

meaning we would allow some outliers in the decision 

boundary for sake of keeping hyper planes as smooth as 

they can be. Whether we can use it for different fall-

related studies depends on many factors. We can try 

different kernels and based on “out of sample” results 

from cross validation we can choose the best kernel. 

Another factor would be computational complexity. 

Linear kernels usually compute much faster than radial 

or poly kernels. Data received from each test subject was 

processed using an RBF Kernel to train the classifier 

function while the distance between data points were 

measured by Euclidian distance. In our previous research 

[13] we used an OC-SVM in which the classifier was 

trained only on the positive class; however, in this 

research, the training and test sets were used without pre-

processing in the sense of normalization. In both studies, 

the data set was divided to 60% training set and 40% test 

set. We used the PCG method to solve the LapSVM 

optimization problem rather than Newton’s method to 

prevent unnecessary iterations [18]. We can see that for 

both test subjects, Primal LapSVM using PCG 

optimization produced a classifier in a shorter amount of 

time compared to the dual approach used in the OC-SVM. 

Also, the experiments showed that Primal LapSVM using 

the PCG method achieved the same accuracy as before, 

if not better. While the error rate for both test subjects 

was satisfactory, the algorithm also resulted in a faster 

training process (See Table 1 and 2). A more in-depth 

look at the accuracy of the Primal LapSVM is presented 

in table 3. Comparison between Primal LapSVM and 

OC-SVM is based on previous research [17] and was 

performed only on subject 1. For this comparison we 

measured Precision and Recall.  

Since we aimed to detect near-miss incidents—which 

are rare—we need a metric that would compare the 

number of detected incidents against the total number of 

incidents in the data set. The Negative Predictive Value 

compared the total number of true near-miss incidents in 

the data set to the total number of data points classified 

as near-misss by the classifying function. (As this value 

gets closer to 100%, fewer near-miss incidents are 

wrongly classified as stable by the classifier function.) 

The error rate was counted as the count of incidents 

where the prediction of the classifier function didn’t 

agree with real-world data.  

 

  

 

Table 1 Comparing Primal LapSVM and OC-SVM 

 Primal 

LapSVM 

OC-SVM 

Time Elapsed for 

training (sec) 

Subject 1 

5.99 9.42 

Time Elapsed for 

training (sec) 

Subject 2 

5.61 8.79 

 

 

Table 2 Negative Predictive Value for Primal LapSVM 

and OC-SVM 

 Primal 

LapSVM 

OC-SVM 

Negative Predictive 

Value Subject 1 

93.4 91.2 

Negative Predictive 

Value Subject 2 

93.8 92.7 

 

Table 3 Performance of Primal LapSVM on Two Test 

Subjects 

 Subject 1 Subject 2 

Precision 100% 100% 

Recall 99% 99% 

Negative Predictive Value 93.4% 93.8% 

Error Rate 0.5% 0.1% 

Training Duration (Sec) 5.99 5.61 

6 Conclusion and Future Work 
In this research, we improved previous methods of 

automatic detection of near-miss incidents [17] by both 

enhancing the level of accuracy of the trained classifier 

and decreasing the computational complexity involved in 

the training. Using a Primal LapSVM, the solving 

optimization problem for the classifier function was 

reduced from cost of 𝑂(𝑛3)  to  𝑂(𝑘𝑛2) . Significant 

improvements in memory consumption and the time 

spent on generating an approximate classifier raises hope 

for applying greedy techniques for incremental classifier 

building in future. This study focused on near-miss 

accidents during walking motion as an advocate for 
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measuring the success of the proposed algorithm. Study 

showed very promising near-miss accidents detection. 

When used with different movements, a two level 

classification is required. The first level of classification 

aims at detecting each action. Second level of 

classification will detect near-miss accidents specifically 

trained for that motion, which is left for the future work. 

However, this new model proposed in this research does 

provide the construction industry with an opportunity to 

improve safety and identify fall accidents before they 

actually happen. 
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