










where ε is chosen to be sufficiently small such that

ε ≤ 2r0λmin(Π)

‖CD‖ωp + β‖C‖‖z(t)‖
. (16)

Proof: Consider the Lyapunov function

V =
1

2
sT (t)s(t).

By taking its derivative along the solutions of (5), we ob-
tain

V̇ (t) = sT (t)
(
C∆A(t)z(t)−Πs(t)

− µs(t)

‖s(t)‖+ ε
+ CDω(t)

)
≤ −λmin(Π)‖s(t)‖2 + β‖C‖‖z(t)‖‖s(t)‖

− µ‖s(t)‖2

‖s(t)‖+ ε
+ ‖CD‖‖s(t)‖ωp.

From (16), we obtain

µ ≥ β‖C‖‖z(t)‖+ ‖CD‖ωp.

Thus,

V̇ (t) ≤ −λmin(Π)‖s(t)‖2 +
(
β‖C‖‖z(t)‖

+ ‖CD‖ωp
) ‖s(t)‖ε
‖s(t)‖+ ε

.

Consequently, by using inequalities ab
a+b ≤ b, ∀a, b >

0, we obtain the following inequality

V̇ (t) ≤ −2λmin(Π)V (t) +
(
β‖C‖‖z(t)‖+‖CD‖ωp

)
ε.

Thus, from Definition 1 and Lemma 1, we get

V (t) ≤ r0 + k1 exp(−γt), ∀t ≥ 0,

where

r0 =

(
β‖C‖‖z(t)‖+ ‖CD‖ωp

)
ε

2λmin(Π)
,

and γ = 2λmin(Π). The proof is completed.

4 Results and Discussion
In this study, numerical values of the offshore container

crane system parameters are listed as mc = 6 × 103

kg, mp = 20 × 103 kg, h = 10 m, Kcy = 600
N/m.s−1, Kcl = 200 N/m.s−1, Kcθ = 100 N.m/rad.s−1

and g = 9.81 m.s−1. The nominal state vector is cho-
sen as x0 = [10 m, 8 m, 0, 0, 0, 0, 0]T , which provides
u0 = [0,−196.14]T kN. For the sake of illustration, the
following parameters are provided as lD = 10 m , lU = 4
m, vR = 3 m/s, vy = 0.63 m/s, yF = 10 m. The val-
ues of the constants in ω(t) are listed as as Fcy = 5 kN,
Fcl = 2 kN, τcθ = 2 kN.m, ρw = 1.225 kg/m3, vw = 15
m/s, cd = 1.05, Ap = 12 m2, and Lc = 1.2 m. The
heaving acceleration and the rolling angular displacement

Figure 2: Trajectory tracking responses of the (a) cart position;
(b) rope length; and (c) swing angle.

of the vessel to accommodate ocean waves in an allow-
able range are assumed to be respectively ζ̈(t) = 0.4 sin t
m/s2 and α(t) = π

36 cos t rad [19]. The details of matrices
A, ∆A(t), B, D, K and L are then listed as follows:

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 3.270 −0.01 0 0.0021
0 0 0 0 −0.001 0
0 0 −5.314 0.0125 0 −0.0034

 ,

∆A =

[
03×3 03×3

Ψ 03×3

]
,

Ψ =

3.33α̇2 0 Ψ13

0 α̇2 0.98 sinα
0 0 Ψ33

 ,
Ψ13 = 6α̇2 − α̈+ (0.98 + 0.1ζ̈) cosα,

Ψ33 = −8.75α̇2 + 5.42α̈− (5.31 + 0.54ζ̈) cosα,

B =

[
0 0 0 0 1.667 0 −2.083
0 0 0 0 0 0.5 0

]T
,

D =

[
03×3
D2

]
,

D2 =

−1.667 0 2.083
0 −0.5 0

2.083 0 −2.604

 ,



0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

Time (s)
(a)

C
ar

t v
el

oc
ity

 (m
/s

)

 

 
Actual

Desired

0 5 10 15 20
-4

-3

-2

-1

0

1

2

3

Time (s)
(b)

H
oi

st
 v

el
oc

ity
 (m

/s
)

 

 
Actual

Desired

0 5 10 15 20
-10

-5

0

5

10

Time (s)
(c)

A
ng

ul
ar

 v
el

oc
ity

 ( o
/s

)

 

 
Actual

Desired

Figure 3: Trajectory tracking responses of the (a) cart velocity;
(b) hoist velocity; and (c) swing angular velocity.

K =

[
0 0 −1.962 0.006 0 −0.0013
0 0 0 0 0.002 0

]
,

L =

[
1 0
0 1

]
.

The transformation matrix is obtained as

T =


0 0 1 0 0 0

−0.625 0 0 0.610 0 0.488
0 −1 0 0 0 0

0.781 0 0 0.488 0 0.390
0 0 0 −0.625 0 0.781
0 0 0 0 −1 0

 .

Using the quadratic minimisation, the state weight-
ing matrix Q is chosen as Q = TRT−1, R =
diag(10, 10, 5, 1, 1, 1) which provides the following ma-
trix C:

C =

[
1.798 −0.949 0 −4.809 1 0

0 0 3.162 0 0 1

]
.

The upper bounds of the system disturbance ωp and un-
certainty β are a priori selected as 0.5 and 5.8 respec-
tively. From Theorem 2, by choosing the exponential de-
cay rate γ = 30, radius r0 = 0.004 for the sliding surface
trajectories s(t) and ε = 0.0025, we obtain µ = 48.

The displacements and velocities of the cart position
and rope length are assigned to track the trajectories as
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Figure 4: Switching functions.
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Figure 5: Input forces.

defined in Section 3. Aside from that, it can be shown that
if the swing angle tracks the roll angle of the vessel during
the operation process, the payload will be held on the ver-
tical plane in the frame {O0x0y0z0}. Therefore, the de-
sired payload swing trajectory is chosen as θd(t) = α(t).
Figure 2 depicts the trajectory tracking responses of cart
position, rope length and swing angle and Figure 3 de-
picts the trajectory tracking responses of the correspond-
ing velocities. Continuous small oscillations are occurred
in the cart position and its corresponding velocity due to
the persistent rolling vibration-induced motion of the ves-
sel. This continuous small oscillation is apparent in the
cart velocity response of Figure 3(a) during the container
placement stage (Stage 2). However, the rope length re-
sponse is less affected by the presence of heaving motion
of the vessel owing to robustness of the control system.

Figure 4 shows the plot of switching functions and Fig-
ure 5 shows the control forces of the system. The effect of
persistent rolling vibration-induced motion of the vessel
can also be seen in the responses of both s1(t) and u1(t).
Based on the quadratic minimisation approach, s1(t) con-
sists of the coupled motion of the cart and the swing angle
whereas s2(t) corresponds to the rope length dynamics.
Overall, based on Figure 2(a)-(b) and Figure 3(a)-(b), an
excellent decoupling of the cart position and swing angle
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is exhibited.

5 Conclusion
In this paper, the problem of robust sliding mode con-

trol for offshore container crane systems with bounded
disturbances and uncertainties has been addressed. By
taking the effects of payload mass and length of rope
changes as well as vibrations induced by ocean waves and
gusty winds into account, the mathematical model of off-
shore container crane systems is derived for the first time.
An LQR-based design approach is developed to obtain the
sliding surface to achieve the optimal performance of the
equivalent dynamics. To track the crane’s desired trajec-
tory, robust sliding mode control law is then designed to
drive the state variables of the system towards the sliding
surface in finite time and maintain them on that surface af-
ter subsequent time. Extensive simulation results are pro-
vided to demonstrate good tracking performance of the
proposed controller for offshore crane systems in dealing
with the harsh open-sea conditions.
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