




be optimized including penalty parameter C and kernel 
function parameters such as the gamma of the radial 
basis function (RBF) kernel. In designing a SVM, one 
must choose a kernel function, set kernel parameters 
and determine a soft margin constant C (penalty 
parameter). The Grid algorithm is an alternative to 
finding the best C and gamma when using the RBF 
kernel function. However, this method is time 
consuming and does not perform well [6]. Fast messy 
genetic algorithms (fmGA) were developed by 
Goldberg et al [7]. Unlike the well-known simple 
genetic algorithm (sGA), which uses fixed length strings 
to represent possible solutions, fmGA applies messy 
chromosomes to form strings of various lengths. Its 
ability to identify efficiently optimal solutions for large-
scale permutation problems gives fmGA the potential to 
generate SVM parameters C and gamma simultaneously. 
Considering the characteristics and merits of each, this 
paper combines the two to propose the Evolutionary 
Support Vector Machine Inference Model (ESIM).  

The ESIM used here was developed by Cheng and 
Wu [8]. In the ESIM, the SVM is employed primarily to 
address learning and curve fitting, while fmGA 
addresses optimization. This model was developed to 
achieve the fittest C and gamma parameters with 
minimal prediction error. The structure of ESIM is 
shown in Figure 1. 

 
 
Figure 1. ESIM structure 
 

3 Post-Earthquake Bridge Safety 
Assessment using Failure Probabilities 
Inference Model 

The primary purpose of this study was to develop an 
earthquake seismic assessment of bridge diagnostic 
prediction model. 

  
Figure 2. Bridge Failure Probabilities Inference 
Model 
 

3.1 Historical cases collection 
This paper adopted 24 RC bridges in Taiwan (as 

shown in Table 1). 
Table 1. 24 RC bridge cases 

No. Length
(m) 

Design 
year 

Design 
accelerate(g) 

. Structure 
type 

1 50 1992 0.139 . I beam 
2 60 1992 0.139 . T beam 
. . . . . . 

24 150 1990 0.187 . I beam 
 

3.2 Material deterioration  
The seismic performance of bridges can be 

evaluated using the capacity spectrum method suggested 
by ATC-40. This paper presents a model of 
deterioration due to carbonation taking into 
consideration uncertainty factors to estimate the 
initiation and the rate of corrosion and to analyze the 
structural capacity and serviceability of bridge. Then, it 
goes on to propose a method for evaluating the failure 
and severe cracking probability during earthquakes and 
the deterioration risk of members in specified years 
from construction (Figure 3). 
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Figure 3.  Steel corrosion level 

 

3.3 Pushover analysis 
This paper considers material corrosion level (0%, 

5%, 10%, 20%, 35%; five degree corrosion) and bridge 
assessment analysis are applied to carry out the detailed 
assessment to obtain the yielding acceleration (Ay) and 
Damage acceleration (Ac). In the figure 4, bridges PGA 
with 5 corrosion levels are draw. 
 

 
Figure 4. Bridge PGA with different corrosion 
level 

 

3.4 Pushover analysis training database 
After pushover analysis, 24 bridges detailed 

assessment are collected.  This study analysed 5 degree 
corrosion levels (0%, 5%, 10%, 20%, 35%) for every 
bridge. Therefore, 120 training data are established in 
the Table 2. 

 
 
 

Table 1. 120 pushover cases 

no.
Corrosion 

(%) 
Ay(g) Ac(g) Ay(g) Ac(g) 

X dimension Y dimension 
1 0  0.117  0.51  0.141  0.537 
2 5  0.113  0.5  0.133  0.468 
3 10  0.098  0.407  0.126  0.422 
4 20  0.035  0.296  0.027  0.257 
5 35  0.032  0.15  0.021  0.122 
. .  .  .  .  . 

119 20  0.113  0.17  1.86  2.33 
120 35  0.11  0.15  1.56  1.91 

 

3.5 AI seismic assessment prediction model 
At present, the traditional structural analysis can be 

divided into three types, including: 1.brief investigation; 
2. preliminary assessment; and 3. detailed assessment. 
The brief investigation table thus developed is mainly 
for relevant management personnel to identify buildings 
with seismic capacity-related problems. Professionals 
will then perform preliminary assessment of such 
problematic buildings. Regarding buildings of seismic 
capacity concerns after the brief investigation, civil 
engineers are hired to complete the preliminary 
assessment table to assess the buildings. Such 
investigation and assessment will result in large sum of 
precious data relating to the seismic capacity of 
buildings. Finally, according to the collected bridge data, 
professional and complex assessment methods, such as 
the pushover method, are applied to carry out the 
detailed assessment to obtain the highly accurate 
yielding acceleration (Ay) and complete damage 
acceleration (Ac). However, there are more than forty 
thousand bridges in Taiwan. When applying the simple 
assessment method to carry out visual investigation, the 
results will be not accurate despite the fast speed of 
investigation. In the case of applying the detailed 
assessment, although the results are relatively accurate, 
it takes much more time and costs. In addition, detailed 
assessment can only be done by experienced 
professionals. To conduct detailed structural analysis of 
each bridge with limited funds and professional labor is 
impossible. If simple assessment factors and the 
mapping relation between Ay and Ac for detailed 
assessment of similar bridges can be identified to infer 
the Ay and Ac values of other bridges, it will save a 
great deal of manpower when acquiring Ay and Ac 
values within the tolerable error range. Therefore, this 
study aimed to first use the bridge detailed assessment 
results of the "highway seismic capacity of bridge 
assessment and reinforcement project feasibility study" 
by the Directorate General of Highways, Ministry of 
Transportation and Communications, Taiwan. The 
artificial intelligence inference model was applied to 

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100

Corrosion level(%)

Time(Year)

 

0 10 20 30
Corrosion Level (%)

0

0.1

0.2

0.3

0.4

P
G

A
 (g

)

PGA vs Corrosion Level
Ay X
Ac X
Ac Y
Ay Y
Design PGA

IT APPLICATIONS



find the mapping relation between inputs (brief 
investigation seismic capacity influence factor) and 
outputs (Ay and Ac) via cases (seismic capacity of 
bridge assessment results) learning. At present, artificial 
intelligence inference models mainly utilize learning 
models such as the artificial neural network, and support 
vector machine (SVM). However, such models have 
parameter setting and initialization problems. For 
considerations of the searching speed and inference 
accuracy, this study developed an “artificial intelligence 
mechanical learning inference model” by using fast and 
messy GA (fmGA) integrated with SVM. The model 
searched for the most appropriate model parameters by 
fmGA, and applied SVM to find the relationship 
between inputs (brief investigation seismic capacity 
influence factors) and outputs (detailed assessment of 
Ay and Ac), and further developed an optimal inference 
model. The advantage of such inference model was that 
it could improve the prediction accuracy by case 
database updating and increasing number of cases. To 
understand the accuracy of the model after training, this 
study employed the root mean square error (RMSE) in 
calculation equation to measure the model learning 
accuracy. The 10-folds testing results illustrate that the 
RMSE was 0.09 and 0.13 (as shown in the Table3). 

Table 3. AI prediction results 
Fold no. Ay(g) RMSE Ac(g) RMSE 

1 0.085  0.17 
2 0.144  0.194 
3 0.058  0.065 
4 0.066  0.059 
5 0.071  0.071 
6 0.143  0.189 
7 0.09  0.084 
8 0.071  0.11 
9 0.054  0.144 
10 0.117  0.214 

Avg. 0.09  0.13 

3.6 Earthquake simulation  
User can assign the epicenter, location, and depth of 

earthquake. For example, 921 Chi-Chi earthquakes can 
be simulated in the system.  

3.7 Earthquake event 
According to Central Weather Bureau earthquake 

alert information collected by agent system, the model 
can evaluate the PGA of bridge automatically. 

3.8 Earthquake PGA analysis 
Taiwan is divided into several grids in order to 

evaluate the PGA of every zone. Distances, site and 

other parameters are input of seismic attenuation 
equation. The output is accelerating of every zone. 

3.9 Bridge failure probability 
Finally, according to bridge’s location, PGA of 

every bridge can be calculated. If the accelerate is 
higher than Ay or Ac. The bridge failure probability will 
be high (as shown in Figure 5). In the Figure 6, 921 Chi-
chi earthquake event is simulated in the system. High 
failure probability bridges will be listed. Therefore, alert 
message will send to manager’s phone by SMS (Short 
message service) automatically. 

 
Figure 5. Bridge failure probability curve 
 

 
Figure 6. 921 chichi earthquake simulation 
results 
 

4 Conclusion 
This study collected relevant literature on bridge 

inspection, and selected by filtering bridge seismic 
capacity influence factors. The on-site investigation and 
detailed assessment data of 24 bridges were summarized 
to establish the historical case database.  

Taking seismic capacity of bridge prediction as an 
example, this study collected historical cases and 
applied SVM (SVM) and fmGA to creatively build a 
“seismic capacity of bridge prediction model”. After 
integrating with material deterioration, the case training 
learning was started to obtain the mapping relationship 
between bridge seismic capacity influence factors (input 
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variable) and the values of Ay and Ac(output variable) 
to build the seismic capacity of bridge diagnostic model.  

The highly efficient and accurate bridge seismic 
capacity prediction model proposed in this study can 
effectively improve the inability to assess the bridge 
seismic capacity in real time by traditional calculation 
approach, and hence considerably reduce time and costs. 
The prediction results can be a reference for relevant 
management personnel when doing maintenance. 
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