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Abstract - 

Magnetorheological elastomer (MRE) base 

isolator is a new semi-active control device that has 

recently acquired more attention. This paper 

proposes a new model for MRE base isolator to 

portray the nonlinear hysteresis between generated 

force and the displacement. In this model, a 

hyperbolic expression is proposed to compare with 

the classical Bouc-Wen model, which includes 

internal dynamics represented by a nonlinear 

differential equation. For the identification of model 

parameters, a modified artificial fish swarm 

algorithm is adopted using the experimental force-

displacement/velocity data under different testing 

conditions. In this algorithm, a self-adaptive method 

for adjusting the algorithm parameters is introduced 

to improve the result accuracy. Besides, the 

behaviours in the algorithm are simplified to 

descend the algorithmic complexity. Parameter 

identification results are included to demonstrate the 

accuracy of the model and the effectiveness of the 

identification algorithm. 
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1 Introduction 

Base isolation is the most commonly used technique 

for the seismic protection of civil structures [1-3]. When 

the earthquake occurs, the base isolation device will 

deflect external vibrations by isolating destructive 

frequency contents from transmitting into the main 

structure above thus keep the integrity and safety of the 

structure and contents therein. However, present base 

isolation devices are mainly passive and only effective 

in a narrow band of frequency range. Especially, the 

vulnerability for present base isolation practice during 

far-source and near-source earthquakes becomes a great 

concern. Recently, a novel adaptive base isolator based 

on the magnetroheological elastomer (MRE) has been 

put forward and realized [1]. The proposed MRE base 

isolator has the ability to adaptively protect base 

isolated structures in real-time against various types of 

earthquakes and outperforms the traditional seismic 

isolator in terms of effectiveness and functionality for 

the vibration protection [4-5]. 

MRE base isolator is a smart device with distinctive 

nonlinear and hysteretic behaviour, which may hinder 

its application in structural control. Therefore, it is of 

great importance that a traceable model is available 

before any realizable controller can be designed. So far, 

the research on modelling the nonlinear behaviour of 

MRE base isolator is relatively limited. The main model 

for portraying the hysteresis is the Bouc-Wen model [6-

7]. However, due to a large number of parameters and 

the nonlinear equations in the model, the identification 

of mode parameters becomes very complicated and thus 

requires great computational resources. Although this 

problem can be solved by the direct search algorithm, it 

relies on the good choice of initial values to a large 

extent and may lead to the premature convergence. 

Recently, artificial fish swarm algorithm (AFSA), as a 

novel artificial intelligence approach, is developed for 

dealing with the complex problems which are difficult 

to be solved by other methods [8]. And it has been 

successfully utilized in the application of model 

parameter identification. Nevertheless, in virtue of the 

randomness of parameters and the random behaviour in 

basic AFSA, the algorithm has the slow convergence 

rate and is easy to fall into the local optimum, thus the 

solution accuracy is difficult to improve. 

In this paper, a new computational-efficient model 

for MRE base isolator is proposed. This model employs 

a hyperbolic sine function combined with conventional 

viscous damping and spring stiffness to depict the 

hysteretic behaviour. An optimization approach based 

on AFSA is designed to identify the model parameters 

using the experimental data acquired form a practical 

MRE base isolator. In order to improve the result 

accuracy, a self-adaptive mechanism is introduced to 
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update the algorithm parameters. Moreover, the 

behaviours in the algorithm are simplified to reduce the 

computational complexity in the identification process. 

These modifications guarantee the algorithm to have the 

fast convergence rate as well as the high recognition 

accuracy. 

The reminder of the paper is organized as follows. 

The Bouc-Wen model and the proposed model are 

described in Section 2 with the statement of the 

optimization problem. In Section 3, the modified AFSA, 

as applied in identifying the proposed model parameters, 

is developed and its benefits are highlighted. Parameter 

identification results are given in Section 4 together 

with some analysis. Finally, Section 5 draws the 

conclusion 
 

2 System Model and Problem Statement  

The Bouc-Wen model is common-used model for 

describing the hysteresis response of MRE base 

isolators with some constraints. Accordingly, a novel 

model is designed in this part and an optimization 

problem is also presented for solving the model 

parameters. 

 

2.1 Bouc-Wen Model 

This model incorporates a Bouc-Wen component, 

which regenerates hysteresis loops, in parallel with a 

Voigt element, which depicts solid material behaviours 

[7]. The model can be represented by the force equation 

and the associated hysteretic variable, given by: 

 

0 0 0(1 )F k x k z c x                       (1) 

1n n
z Ax x z z x z 


                    (2) 

 

Where k0 denotes the stiffness of the spring; c0 is the 

viscous coefficient indicating the damping capacity of 

the system; α, A, β, γ and n are non-dimensional 

parameters which are responsible for the shape and size 

of the hysteretic loops; z is the hysteretic variable that 

represents a function of the time history of the 

displacement. The Bouc-Wen model is widely used in 

structure engineering and MR behaviour for its 

mathematical ability to represent a large class of 

hysteretic behaviour. However, because of the 

incorporation of internal dynamics in regard to the 

hysteretic variable z, undesirable singularities may 

appear in the process of model identification. 

2.2 Proposed Model 

Compared with relatively complicated Bouc-Wen 

model, a simple model is presented in this work to 

model the nonlinear force-displacement characteristic of 

the MRE base isolator. A component-wise added 

approach is adopted which includes the viscous damper, 

spring stiffness and a hysteretic component. The 

structure of the proposed model is shown in Figure 1. 
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Figure 1.The proposed model 

 

In terms of mathematical expressions, the model 

utilizes a hyperbolic sine function to describe the 

hysteresis and linear functions to describe the viscous 

and stiffness. The model expression is given as: 

 

0 0 0F c x k x z F   
                    

(3) 

sinh( )z x
                              

(4) 

 

Where c0 and k0 are the viscous and stiffness 

coefficients; α is the scale factor of the hysteresis; z 

denotes the hysteretic variable given by the hyperbolic 

sine function; β is the scale factor of the isolator 

displacement defining the hysteretic slope; F0 is the 

isolator force offset. 

 

2.3 Problem Statement 

As the parameters of the proposed model are difficult 

to search by trials, a minimization optimization is 

employed to solve the problem. The critical point of the 

optimization is the choice of the fitness function, which 

has an important influence on the identification results. 

In this work, the fitness function H(X) is defined as 

follows: 

 

2
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Where X= [c0, k0, α, β, F0]; Nv is the total number of the 

experimental data, Fi, xi and  ̇  denote the force, 

displacement and velocity at the ith sampling time, 

respectively. If the fitness value is very close to zero, 
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the identification result X is regarded as the optimal 

solution. As a consequence, the minimum optimization 

problem with constraints can be formulated as: 

 

0 0( )  . . 0,  0
X

Min H X s t c k 
                

(6) 

 

Since the proposed model is nonlinear, the gradient 

information is not able to be formulated by explicit 

expressions. Hence, the traditional gradient-based 

optimization method could not work well. Although this 

problem could be solved by the direct search algorithm, 

however, it relies on good choice of initial values to a 

large extent and may trap into the local optimum. 

Therefore, the global search algorithm is required. In the 

following section, a modified artificial fish swarm 

algorithm is designed to identify the model parameters. 

 

3 Model Parameter Identification 

The process of identification for model parameters is 

generally accomplished by the optimization algorithm. 

A modified artificial fish swarm algorithm (MAFSA) is 

devised in this part to estimate the optimal solution of 

model parameters with fast convergence and high 

accuracy. 
 

3.1 Description of AFSA  

AFSA is a novel population based evolutionary 

computation technique inspired by the natural social 

behaviour of fish school and swarm intelligence [8]. In 

AFSA, the AF individual state can be illustrated as 

X=(x1,x2,…,xn), where xi(i =1,2,…,n) denotes the 

variable to be searched for the optimal value. The food 

consistence at present location can be expressed as 

Y=f(X), where Y is the fitness function. The distance 

between the individuals is defined as      ‖     ‖. 

The visual range of AF is denoted as visual, step is the 

maximum step length and δ is crowd factor. The 

essence of AFSA is to search the optimal result through 

the iterative algorithm. In each iteration, the AF updates 

its state to achieve the optimum according to the 

different behaviours. The following part describes the 

main behaviours in AFSA. 

 

3.1.1 Searching Behaviour 

Suppose that Xi denotes the present state of the AF. 

In its sensing range, a new state Xj is randomly chosen. 

If Yi>Yj, move a step in this direction; or else, choose a 

state randomly again and decide whether it meets the 

moving condition. If it still cannot meet the condition 

after several times (try_number), it goes a step 

randomly. 

 

3.1.2 Swarming Behaviour 

The AF with the state Xi, searches for the number nf 

of its fellows in the present visual neighborhood 

(dij<visual) and estimates the fellows’ central location 

Xc. Here, Yc represents the food concentration at the 

location of Xc. When nf ≥ 1, the AF estimates the central 

location of its fellows. If          , forward a step to 

the fellows’ center because the food concentration at the 

central location is high and the environmental condition 

is not too crowded. On the contrary, the AF performs 

the searching behaviour. 

 

3.1.3 Following Behaviour 

The AF with the state Xi, searches for the number nf 

of its fellows in the present visual neighborhood 

(dij<visual) and find the location Xmax of its fellow with 

highest food concentration. Ymax is denoted as the value 

of food concentration at the location Xmax. If         

   , forward a step to the location Xmax because the food 

concentration at the location Xmax is high and the 

environmental condition is not too crowded. On the 

contrary, the AF performs the searching behaviour. 

 

3.1.4 Behaviour Selection 

The AF’s behaviour is determined by its hungry 

degree, which is signified by energy. Here, the mean 

energy φ is defined as: 

 

1

1 m

i

i

Y
m




 
                                   

(7) 

 

If the food concentration at the location Xi is smaller 

than φ, the AF executes the following behaviour to 

attain the food in the area with the high food 

concentration. If the food concentration at the location 

Xi is larger than φ, the AF will perform the swarming 

behaviour to avoid the dangerous animals. If the AF 

does not perform the following or swarming behaviour, 

it will select the searching behaviour. 

 

3.1.5 Bulletin 

A bulletin board is set up to record the optimal 

individual’s state and the food concentration at the 

present location. Update the bulletin with the better state 

of the AF and the final value of the board is regarded as 

the optimal solution of the problem. 
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3.2 Modified AFSA  

As a random searching algorithm, the AFSA has the 

benefits of less initial requirements, good global 

convergence, strong robustness, easy realization. 

However it still has some disadvantages in the practical 

operation. First of all, since some parameters such as 

visual and step are usually set to constants, the 

algorithm has the slow convergence rate in the later 

stage of optimization, which makes it easy to fall into 

the local optimum. Then, the randomness of visual and 

step as well as the existence of random behaviour have a 

strong effect on the accuracy of optimization. 

Furthermore, the increase of AF number requires a large 

storage space, which also leads to an increase of the 

calculation amount. Therefore, some modifications are 

implemented to tackle the above problems. 

 

3.2.1 Modification of Parameter Update 

In basic AFSA, visual and step are two important 

parameters with respect to the algorithm performance. 

When visual is set to a large value, the AF has strong 

global searching as well as fast convergence rate. On the 

contrary, the AF has strong local searching ability. 

Similarly, the larger the value of step is, the faster the 

algorithm convergence will be, even though the 

numerical oscillation may appear sometimes. In contrast, 

the smaller step is, the slower the algorithm 

convergence will be, but the solution has the higher 

accuracy. 

Based on the above analysis, in order to improve the 

global searching ability and the convergence rate of the 

AFSA, the larger visual and step are selected to make 

the AF search in a larger scope in the initial phase of the 

optimization. With the process of iteration, visual and 

step decline gradually so that the AF can carry out the 

local search in the adjacent domain of the optimal 

solution, which is aimed to increase the algorithm 

accuracy. In this paper, an inertia weight ω based on the 

exponential function is designed to dynamically update 

visual and step. The update equations are given as: 

 

min

min

exp[ 20 ( ) ]p

maxiter T

visual visual visual

step step step







   


  
                  

(8)

 
 

Where iter is the current iteration number; Tmax is the 

maximal iteration number; p is an integer to control the 

change rate of parameters with the range [1, 30]; 

visualmin and stepmin denote the minimal visual range and 

step length, respectively. Generally, both visual and step 

are the piecewise functions, which keep the maximal 

values in the early stage, descend gradually in the 

intermediate stage and retain the minimal values in the 

later stage. Figure 2 shows the inertia weight curves for 

different values of p. 
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Figure 2. The weight value 

 

3.2.2 Modification of AF’s Behaviour 

In the conventional searching behaviour, the AF 

randomly selects a state and forwards a step to this state 

if it is superior to the present state. This operation would 

slower the search speed of the AFSA when the 

dimension of the AF is relatively higher. Furthermore, 

in the swarming and following behaviours, distances 

between the AF and others in its visual range are 

calculated to estimate the central location and optimal 

location, respectively. However, with the increase of the 

number of the AF, the calculation amount of the 

algorithm will become increasingly large, which may 

result in the long running time. 

Aiming at the above drawbacks, some modifications 

for the AF behaviours have been conducted to improve 

the algorithm performance. In order to enhance the 

algorithm search speed, the AF directly moves to the 

optimal location in its visual range if it meets the 

condition of the searching behaviour. Besides, in order 

to reduce the computational complexity, the central and 

optimal locations in AF’s visual range are replaced by 

the responding ones in the whole swarm, respectively. 

This modification avoids the calculation for the 

distances between AF and others in its visual range and 

greatly shortens the running time. 
 

3.3 Steps of Modified AFSA  

In this part, the MAFSA is utilized to identify the 

parameters of the MRE base isolator model. The 

detailed process of parameter identification consists of 

the following steps: 

Step1. Initialize the optimization problem and 
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algorithm parameters: the problem is defined as 

Minimize H(X) subject to        , where X =[k0, 

c0, α, β, F0], Xl and Xu denote the lower and upper 

bounds of the variable X. the algorithm parameters 

include the number of the AF N, visualmin, stepmin, p, δ, 

try_number and Tmax. 

Step 2. Initialize the AF swarm: the initial locations 

of all the AF are generated randomly within the 

available range. Then set the initial iteration number iter 

= 0. 

Step 3. Evaluate the fitness value: calculate and 

compare the food concentration of initial AF, then 

record and conserve the biggest one on the bulletin 

board.  

Step 4. Update the values of visual and step 

according to equation (8). 

Step 5. Behaviour operation: the AF performs the 

searching behaviour, swarming behaviour or following 

behaviour according to its hungry degree. 

Step 6. Check the AF self-state and information on 

the bulletin board: if the fitness value is superior to that 

on the board, update the board. Or else, it remains 

unchanged. 

Step 7. Check the termination criterion. If the 

iteration number is equal to the maximum iterations or 

the solution for the optimization problem is equal to the 

target value, perform Step 8. Or else, iter= iter+1 and go 

to Step 4. 

Step 8. Terminate the algorithm: output the optimal 

solution and responding the fitness value of the AF (that 

is the optimal model parameters and food concentration 

on the board). 

In conclusion, the process of the MAFSA is 

illustrated in Figure 3. 

 

4 Identification Results and Analysis 

In order to validate the effective of the new model 

and the availability of the proposed MAFSA, MRE base 

isolator parameter identification processes will be 

carried out and compared in the context of model 

accuracy and algorithm performance. 

 

4.1 Experiment Setup 

Several groups of experimental data are acquired 

from a MRE base isolator and fed into the MAFSA to 

identify the parameters of the proposed new model. The 

isolator is excited by a sinusoidal displacement in 

several test cases with different excitation displacements 

and magnetization currents supplied to the MRE base 

isolator. The driving frequency is set as 1Hz, the current 

ranges from 0A to 3A whilst the displacement is varied 

from 2mm to 8mm, respectively. The excitation 

displacement has 3 settings and the current contains 4 

entries. Therefore, a total of 3x4=12 experimental data 

sets are made up, which can be summarized in Table 1. 

The parameters of MAFSA are set as follows: N=50, 

try_number=50, δ=0.6, Tmax=300, visualmin=0.002, 

stepmin=0.0003 and p=5. Moreover, the identification is 

conducted using both the Bouc-Wen model and the 

proposed model while the algorithms adopted contain 

MAFSA and other conventional ones. 
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Figure 3. The process of MAFSA 
 

Table 1. Experimental conditions 

Frequency (Hz) 1 1 1 1 1 1 

Current(A) 0 0 0 1 1 1 

Displacement (mm) 2 4 8 2 4 8 

Frequency (Hz) 1 1 1 1 1 1 

Current (A) 2 2 2 3 3 3 

Displacement (mm) 2 4 8 2 4 8 

 

4.2 Identification results 

To validate the effectiveness of the new model to 

predict the performance of the MRE base isolator, a 

group of data (1Hz, 0A current and 2 mm amplitude) 
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are used for parameter identification. The optimal 

results are given in Table 2. Figures 4 and 5 show the 

tracking process in a sampling cycle and relative errors 

between the experimental and predicted forces, 

respectively. It can be seen that the relative error is 

within ±6%, which is acceptable in the modelling study. 

Figures 6 and 7 demonstrate the force-displacement 

responses and the nonlinear relationship between force 

and velocity. It is clearly shown that the estimated 

forces resemble the practical testing ones very well, 

especially in the regions where the strain stiffening is 

evident. 

In order to further verify the ability of the model for 

depicting the hysteretic behaviours of the MRE base 

isolator, more groups of comparisons between the 

practical testing and predicted data corresponding to 

different loading conditions are conducted. Figures 8 

and 9 reveal that the estimated data is well fitted to the 

experimental data under the conditions of 3A, 1 Hz 

frequency for 2mm, 4mm and 8mm amplitudes 

respectively. It is clearly seen that experimentally 

measured responses are reasonably modelled. The 

measured force-displacement pairs shown in Figure 10 

are acquired by loading the isolator with a 1Hz sinusoid 

and a 4mm amplitude at three current levels, 0A, 1A, 

2A and 3A, respectively. The four group comparisons 

validate the capacity of the model to portray the 

increasing nonlinearity of the hysteretic loops with the 

increasing currents. In particular, in each hysteresis loop, 

the estimated data resembles the unique behaviour of 

straining hardening perfectly. 

 

Table 2. Parameter values of the proposed model 

Parameter c0 k0 α β F0 

Value 0.354 3.572 4.579 0.302 0.001 
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Figure 4. Force vs. time 
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Figure 5. Relative error vs. time 
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Figure 6. Force-displacement response 
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Figure 7. Force-velocity response 

 

To evaluate the accuracy of the proposed model, a 

root-mean-square (RMS) is adopted as the assessment 

criteria given by: 
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Figure 8. Force-displacement response under 

different loading amplitudes 
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Figure 9. Force-velocity response under different 

loading amplitudes 
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Figure 10. Force-displacement response under 

different loading currents 

 

In the meantime, the conventional Bouc-Wen model is 

also used to compare with the proposed one for model 

error analysis. Figure 11 shows the comparison result. It 

is evidently seen that because of the higher degree of 

nonlinearity in the Bouc-Wen model, a bigger RMS 

error is shown from the predicted force from the model. 

For another thing, the errors in the proposed model are 

generally less than that of the Bouc-Wen model. 
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Figure 11. RMS error for both Bouc-Wen model 

and proposed model 

 

4.3 Identification Algorithm Analysis  

The efficiency of the identification process is 

generally associated with the model complexity and the 

parameter values of the optimization algorithm. Here, 

the model is determined and the influence of visual and 

step on the optimization process has been illustrated in 

3.2. So in this part, the AF population N, as one of most 

important parameters, is studied for its effect on the 

algorithm perforce. Figure 12 describes the convergence 

of the MAFSA with different population number over 

300 iterations under the loading condition of 1A current, 

1Hz sinusoid and 4mm amplitude, and the optimal 

fitness value and calculation time are listed in Table 2. 

It is obvious that with the increase of the AF number, 

the MAFSA has the higher identification accuracy as 

well as more calculation time. However, when the 

population number exceeds 50, the fitness value varies 

very slightly. Thus, the selection of 50 as the AF 

population is reasonable.  

So as to demonstrate the superiority of the MAFSA, 

two conventional optimization algorithms are adopted 

for performance comparison: (a) AFSA with fixed 

visual and step; (b) Particle Swarm Optimization (PSO) 

[9]; (c) MAFSA. For the purpose of fair assessment, all 

the parameter values in AFSA are similar to that of 

MAFSA, except visual and step. Figure 13 shows the 

comparison result. It is shown that although the AFSA 

has the fastest convergence among three algorithms, it 

results in the premature convergence. Compared with 

the PSO, MAFSA arrives at its optimum more quickly 

and has higher identification accuracy. 
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Figure 12. Convergence of MAFSA with 

different AF population number 

 

Table 3. Parameter values of the proposed model 

AF number Fitness value Calculation time (s) 

30 9.754 156.457 

40 6.551 192.214 

50 3.842 239.571 

60 3.426 275.786 

70 3.360 323.143 
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Figure 13. Algorithm performance comparison 

 

5 Conclusion 

This paper has presented a new model for MRE base 

isolators and an efficient optimization algorithm based 

on AFSA for model parameter identification. The new 

model adopts the hyperbolic sine function to describe 

the hysteretic relationship between the isolator force and 

displacement, and requires as smallest as five 

parameters in contrast with eight parameters of the 

Bouc-Wen model. An efficient optimization algorithm 

based on AFSA is also designed for the model 

parameter identification. In order to improve the 

convergence rate and reduce the calculation amount of 

the identification process, a self-adaptive parameter 

update approach is introduced and some behaviours in 

basic AFAS are also simplified. Experimental data from 

a practical MRE base isolator are utilized for modelling 

verification. The results obtained by the new model 

have shown highly satisfactory coincidence with the 

experimental data, and also the effectiveness of the 

proposed identification algorithm. 
 

References 

[1] Li Y., Li J., Tian T. and Li W. A highly adjustable 

magnetorheological elastomer base isolator for 

real-time adaptive control. Smart Material 

Structures, 22(9): 095020, 2013. 

[2] Kelly J. M. Base isolation: linear theory and 

design. Earthquake Spectra, 6(2): 223-244, 1990. 

[3] Li J., Li Y., Li W. and Samali B. Development of 

adaptive seismic isolators for ultimate seismic 

protection of civil structures. In Proceedings of 

SPIE 8692, Sensors and Smart Structures 

Technologies for Civil, Mechanical, and 

Aerospace Systems, 86920H, San Diego, USA, 

2013. 

[4] Li Y., Li J., Li W. and Samali B. Development and 

characterization of a magnetorheological elastomer 

based adaptive seismic isolator. Smart Material 

Structures, 22(3): 035005, 2013. 

[5] Popp K., Zhang X., Li W. and Kosasih P. MRE 

properties under shear and squeeze modes and 

applications. Journal of Physics: Conference 

Series, 149(1): 012095, 2009. 

[6] Kwok N. M., Ha Q. P., Nguyen M. T., Li J. and 

Samali B. Bouc-Wen model parameter 

identification for a MR fluid damper using 

computationally efficient GA. ISA Transactions, 

46(2): 167-179, 2007. 

[7] Yang J., Du H., Li W., Li Y., Li J., Sun S. and 

Deng H. Experimental study and modeling of a 

novel magnetorheological elastomer isolator. 

Smart Material Structures, 22(11): 117001, 2013. 

[8] Huang Z. and Chen Y. An improved artificial fish 

swarm algorithm based on hybrid behaviour 

selection. International Journal of Control and 

Automation, 6(5): 103-116, 2013. 

[9] Zhang H., Li X., Li H. and Huang F. Particle 

swarm optimization-based schemes for resource-

constrained project scheduling. Automation in 

Construction, 14(3): 393-404, 2005. 

AUTOMATION AND CONTROL




