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Abstract -
Leveraging the advanced estimation and control algo-

rithms for power systems have always been associated with
the renewable energy sources, rational power generation,
consumer stimulus, emission reduction, as well as econom-
ically viable objectives. The model predictive control (MPC)
strategies, that employ an economic-related cost function for
real-time control, has lately proved a numerically efficient
approach to managing the portfolio of energy usage in vari-
ous residential and industrial projects. They are designated
as economic MPCs, whose main endeavour is to cope with
regularly changing energy prices. Unlike the traditional
MPCs, economic MPCs optimize the process operations in
a time-varying fashion, rather than maintain the process
variables around a few desired steady states. The process
may thus totally operate in the transient state with economic
MPCs. This paper provides a rigorous review on the devel-
oped and progressive economic MPCs, as a contribution to
the field while it is still in its infancy. In the second part of the
paper, we briefly show the potential of applying the quadratic
dissipativity constraint, previously introduced, to the closed-
loop stability problem of an economic MPC problem.
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1 Introduction

There are different methods in optimization and real-
time control, direct or hierarchical, to deal with economic
problems in the process and other industries. The ar-
ticles [21, 31, 10] provides a clear overview of practi-
cal approaches to such economic problems in the pro-
cess industry. The economic MPC has been found ef-

fective among these approaches, in which the real-time
optimization (RTO) layer is not required for computing
targets to the lower layer MPC as usually be the case
in the process industry. Figure 1 depicts the differences
between the typical hierarchical RTO plus MPC struc-
ture and the economic MPC. The objective function of
EMPC consists of the economic objective and the MPC
target tracking objective functions. According to Rawl-
ings et Al. [31], an EMPC “directly and dynamically op-
timizes the economic operating cost of the process, do-
ing so without reference to any steady state”. EMPC
has been successfully implemented for HVAC energy sav-
ing applications, and started flourishing in power systems,
as has been found in recent works, including those from
[17, 18, 15, 27, 1, 26, 30, 33, 5]. For chemical process sys-
tems, the review in [10] has also pointed out that “while
steady-state operation is typically adopted in chemical
process industries, steady-state operation may not neces-
sarily be the economically best operation strategy”. The
review in this paper outlines concisely the main features
of the developed economic MPC that will be useful for
interested researchers and industrial practitioners.

Rawlings et Al. have first described the so-called un-
reachable set-point in MPC implementations in their pa-
per [32], and shown that the set-point tracking MPC ex-
hibit some advantages over the traditional target-tracking
MPC [24, 23, 22], when the set-points are not reach-
able. It is recommended that, the approach “should also
prove useful in applications where optimization of a sys-
tems economic performance is a more desirable goal than
simple target tracking” [32]. A strictly convex cost func-
tion L(x, u) is considered in this paper. For a traditional
MPC that has a reachable steady-state target, the optimal
(x∗, u∗) is tracked and the value of L(x∗, u∗) is zero.
In a set-point tracking EMPC, the cost function has the
form of L(x − x

SP
, u − u

SP
), where (x

SP
, u

SP
) is usu-

ally different than (x∗, u∗). An apparent difficulty around
the pre-existing MPC theory for unreachable set-points is
that the controller cost function was established as a Lya-
punov function for the closed-loop system, while the cost
function for the unreachable set-point problem may not
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Figure 1. RTO plus MPC vs. Economic MPC [9].

be monotonically decreasing. By creating an auxiliary
stage cost that “measures distance from the unreachable
set-point” [32], and developing adequate terminal con-
straint for the finite-horizon problem, the closed-loop sta-
bility with unreachable set-points has been proved. The
authors have not, however, called it economic MPC.

The authors in [32] have also inferred the relevance of
the infinite-horizon optimal control with unbounded costs
in the economics literature, especially the turnpike theory
[25, 7, 10], to the finite horizon MPC problem dealing
with unreachable set-points. When the state diverges lo-
cally from the optimal steady state towards an improved
economic cost, its trajectory is said turnpike. The authors
in [10] explained that, “this property is referred to as a
turnpike property since the state passes through the opti-
mal steady-state until it finally moves away to achieve fur-
ther economic benefit (like a vehicle getting on and then,
off a turnpike or highway)”.

The economic optimizing MPC phrase has later been
used by the same authors in [6], wherein an innovative
Lyapunov function has been presented. The economic
MPC problem is explicitly defined to address the cases
whereas there exits other points that make the cost func-
tion smaller than that of the steady state. The cost function
is added with the storage function then minus the termi-
nal penalty term to become the so-called rotated cost. The
monotonic decreasing property of a Lyapunov function is
obtained as a result of this addition and substraction. It
is required to verify the strong duality of the steady state
problem in this approach. A nonlinear chemical reaction
model in the example that fulfilled the strong duality of
the steady state has demonstrated the monotonic decreas-
ing of the rotated cost function, but not necessarily of the
economic cost function. An extension of this work has
been presented in [2]. This choice of Lyapunov function
has been deployed in a power system application in [8].

The average performance of economic MPC is proved
not worse than the optimal steady-state operation in [4].

The optimally steady state operation herein means the
stage cost at steady state is the upper bound of the average
stage costs. A dissipation inequality with an adequately
chosen supply function have been used in this work to
extend the sufficient condition for the asymptotic stabil-
ity of the steady state. The authors have chosen the stor-
age and supply functions such that the dissipativity is also
sufficient for the optimal steady-state operation, while the
strict dissipativity assures the closed-loop stability. The
distance from the current stage cost to the steady state one
plays an important role in the supply function, but not in
the Lyapunov function as in [6]. The rotated cost function
is formed in a slightly different manner than those in [6].
Both equality terminal constraint and inequality terminal
constraint with terminal penalty have been addressed in
[31]. As a complement to the results in [4], the sufficiency
of dissipativity for the optimal steady-state operation has
lately been analyzed in [29].

Another approach to guarantee the closed-loop stability
for EMPC is to enforce a stability constraint to the opti-
mization. In this enforcing stability approach, the stage
cost is modified directly. A rather critical view on the
modified cost function is as follows: The stability enforc-
ing problem is described as the one that lies somewhere
between the two extrema, when the original stage cost is
added with an appropriately chosen positive scalar func-
tion α(., .). One extreme represents the original economic
stage cost, when choosing α(., .) ≡ 0, which may leave
the optimal steady state unstable. The standard tracking
problem is viewed as the other extreme, assigning α(x, u)
with the usual tracking objective while canceling the eco-
nomic one. The asymptotic stability of the optimal steady
state is obtained while sacrificing the economic objec-
tives.

Periodic terminal constraint and average constraints
presented in [4] are the two main extensions for applica-
tions having the pre-computed optimal periodic solutions
and for the unsteady closed-loop processes. The average
constraint is determined by having the average of a pre-
defined auxiliary output variable y = h(x, u) belong to a
time-varying convex set. The periodic terminal constraint,
obtained from a dynamic state feedback strategy, is intro-
duced here for achieving a periodic optimal solution de-
scribed in another work [3]. The notion of sub-optimally
operate off steady state is also introduced herein. When
the average constraint is satisfied, it is said that the “con-
trol system optimally operates at steady state on averagely
constrained solutions”. This statement also implies that
the system sub-optimally operates off the steady state.
The Lyapunov function for the periodic EMPC has re-
cently been introduced in [42].

Along the line of enforcing stability, a self-tuning ter-
minal weight version of economic MPC has been devel-
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oped in [29]. This departed from the work in [11] which
“shown that if the terminal weight is large enough, then
the cost of the predicted terminal steady-state will be arbi-
trarily close to the cost of the best reachable steady-state.”
[29]. The main aim of this work is to eliminate the con-
dition on having a sufficiently large terminal weight to
keep up with the control performance, as well as to main-
tain the economic MPC objective. The optimal steady
state cost is assumed zero herein. Under mild assump-
tions, the authors have proved that there exists an upper
bound for the average stage costs of the closed-loop sys-
tem, then determined an updating rule, which allows for a
non-monotonic stage cost such that it minimizes that up-
per bound.

The research in smart grid and energy saving has started
flourishing from economic MPCs, as has been found in
recent works including those from [1, 15, 17, 18, 26, 30].
Unlike the rigorous developments in the previous three
papers, these application-oriented papers simply prolong
the predictive horizon for feasibility or applies an infinite-
horizon approximation, while emphasizing the effective-
ness of the economic MPC approach in power systems
and energy saving problems. The existence of such pro-
longed predictive horizons for recursive feasibility under
mild assumptions has lately been proved in [14]. The au-
thors in [29] called the conditions developed in [14] as
controllability.

Apart from the above, the work in [20] interpreted the
economic problem as the one having cyclic steady state,
which arose from the regularly changing energy price.
The solution is to normalize the system around such cyclic
steady state. A transformed system having a fixed steady
state is obtained as a result of the normalization. The MPC
objective is then constructed with this transformed model.
Similarly to the work in [32], the chosen Lyapunov func-
tion is also the difference between the current stage cost
and the steady state stage cost. The stability proof is
supported by a Lipschitz continuous property, plus an as-
sumption on the weak controllability of the cyclic steady
state. Different strategies for the infinite-horizon EMPCs
have also been proposed in [40, 19, 27, 26, 41, 30]. How-
ever, these are only the preliminary results or EMPC alike
formulations, thus will not be given a review herein.

The chemical process control field has envisaged the
importance of economic MPC. Recent research works in
[16, 9, 43] have shown strong interests and beneficial re-
sults. These works extend the previously developed stabi-
lizing method of Lyapunov-based MPC [28] to EMPC.
The authors have criticized the method in [6] that, “it
is difficult, in general, to characterize, a priori, the set
of initial conditions starting from where feasibility and
closed-loop stability of the proposed MPC scheme [6] are
guaranteed.” Nevertheless, the proposed scheme in this

work consists of two artificially operational stages, which
somehow resembles the idea of stability margins. The dis-
advantage of this proposed approach could possibly be at
the difficulty to define such stability margins while not
jeopardizing the optimality. Moreover, the periodic steady
states and unreachable set-points have not been addressed
formally. We are, therefore, not pursuing a detailed review
for the Lyapunov-based EMPC herein. Interested readers
can find a detailed review in [10] instead.

In the second part of this paper, we will show the po-
tential of applying the quadratic dissipativity constraint,
previously developed in [35, 38, 37, 39], to the eco-
nomic MPC problem that is able to avoid the disadvan-
tages of the above approaches. In this quadratic dissi-
pativity constraint approach, two constraints on the ini-
tial control vector, one as a stability constraint, one as a
recursive-feasibility constraint, for model predictive con-
trol are derived for implementation. Recursive feasibility
and input-to-power-and-sate stability are simultaneously
achieved as a result of imposing these two additional con-
straints into the MPC optimization. The MPC stage cost
is not employed as a Lyapunov function in our approach,
while the quadratic dissipativity constraint allows both
non-monotonic decreasing storage function (of the dissi-
pation inequality) and economic MPC stage cost. Devel-
opments for the dynamically optimal operating point or
rotated steady state with the quadratic dissipativity con-
straint is underway.

This paper is organized as follows. Notation, system
model and economic MPC problem formulation are out-
lined in Section 2. Section 3 is reserved for summariz-
ing the results of the auxiliary stage cost for stability pur-
pose, the proposed Lyapunov function and supply rate for
dissipativity, terminal constraints and terminal cost, and
asymptotic average performance in the works of Rawl-
ings et Al. The potential of quadratic dissipativity con-
straint for economic MPC is briefly discussed in Section
4. Section 5 concludes this paper.

2 Preliminaries

2.1 Notation

Capital and lower case alphabet letters denote matrices
and column vectors, respectively. (.)T denotes the trans-
pose operation. ∥ui∥ is the ℓ2−norm of vector ui. ∥M∥ is
the induced 2-norm of matrix M . In the discrete time do-
main, the time index is denoted by k, k ∈ Z. x+ denotes
x(k + 1) for conciseness. In symmetric block matrices, ∗
is used as an ellipsis for terms that are induced by symme-
try. Bold typefaces are used to denote decision variables.
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2.2 System Model and Economic MPC Problem

The general system model of the form

Σ : x+ = f(x, u), (1)

without any disturbances, and the variable constraints of
u ∈ U ⊂ Rm and x ∈ X ⊂ Rn and the state transi-
tion map f : X × U → X are usually considered in the
developed economic MPCs. f is normally Lipschitz con-
tinuous. The economic stage cost, which is not the tar-
get tracking one, is represented by ℓ(x(k), u(k)). ℓ(., .)
is usually convex and continuous for linear systems. The
optimisation problem is not normally convex for nonlin-
ear systems. Similarly to the target tracking MPC prob-
lem, the optimization problem of economic MPC will be
to minimize

VN (x,u) =
N−1∑
k=0

ℓ(x(k), u(k)) (2)

subject to the model (1), as well as point-wise constraints
of (x(k), u(k)) ∈ Z, k = 0, 1, . . . , N − 1, for some
compact and time-invariant set Z ⊂ X × U, the terminal
constraint x(N) = xs , x(0) = x, where the decision vec-
tor u := [u(0), u(1), . . . , u(N−1)] is the MPC computed
control sequence at each time step. This finite horizon op-
timization problem is solved recursively. Only the first
element of the optimal control sequence u is applied to
control the plant. The state measurement or estimate is
fed back as the new initial state for solving the problem in
the next time step. The admissible set ZN is defined next.
ZN is a set of (x, u) pairs satisfying the constraints

ZN := {(x,u) | ∃x(1), . . . , x(N) : x+ = f(x, u),

(xk, uk) ∈ Z, ∀k = 1, 2, ..., N−1, x(N) = xs, x(0) = x}.

The set of admissible states XN as the projection of ZN

onto X is defined as

XN := {x ∈ X | such that (x,u) ∈ ZN}.

The control sequence u is called feasible with the initial
state x if (x,u) ∈ ZN . The so-called optimal steady state
is defined as the pair (xs, us) fulfilling such feasible con-
dition, i.e.

ℓ(xs, us) := min
x,u

{
ℓ(x, u) | (x,u) ∈ Z, x+ = f(x, u)

}
.

The assumptions involved in this problem will be the con-
tinuity of f and ℓ; the admissible set XN contains xs in its
interior; and the existence of finite state/input gains [31].
Unlike the traditional target tracking MPC, the optimal
steady state stage cost ℓ(xs, us) is not necessarily smaller
than ℓ(x, u) in the economic MPC. In economic MPC, it

is desirable to achieve the following asymptotic average
limit:

lim
T→+∞

sup
∑T

k=1 ℓ(x(k), u(k))

T + 1
≤ ℓ(xs, us).

The formal definition for asymptotic average is given
in Section 3.1. The authors in [31] have proved that:
“There exists at least one admissible control sequence that
steers the state to xs at time N without leaving XN and
the closed-loop system has an asymptotic average perfor-
mance that is at least as good as the best admissible steady
state”. While asymptotic-average economic performance
is guarantee, this problem (2) does not assure the closed-
loop stability. The next section addresses the proposed
solutions to the stability problem of economic MPC. One
may expect that, the optimality will be, to some extends,
compromised due to these stability measures.

3 Augmented Stage Cost, Strict Dissipativ-
ity and Stability

Details in the chosen Lyapunov function and the supply
rate, average performance, strong duality and relaxation
with dissipativity, as well as strict dissipativity and stabil-
ity in the works of Rawlings et Al. [6, 4, 31] are presented
in this section.

In traditional stability-guarantee MPCs, the optimal
cost of VN (x), denoted as V o

N (x), is employed as a Lya-
punov function for the closed-loop system. This optimal
cost is monotonically decreasing along solutions of the
closed-loop system, i.e. V o

N (x+) ≤ V o
N (x). In eco-

nomic MPC, however, that is not necessarily the case,
even when the system is stable. “More fundamentally,
for general nonlinear systems and cost functionals, it is
not even guaranteed that xs is an equilibrium point of the
closed loop system. Since there exists (x, u) such that
ℓ(x, u) < ℓ(xs, us), it may be the case that the optimal
trajectory from xs at time 0 to xs at time N is different
than x(k) = xs for all k = 0, 1, . . . , N” [31].

3.1 Storage function and supply rate

The auxiliary rotated stage cost L(x, u) is used for
achieving the monotonic decreasing instead of the actual
stage cost in (2) of the economic MPC problem. The sup-
ply rate is chosen as

s(x, u) := ℓ(x, u)− ℓ(xs, us). (3)

And the rotated stage cost is of the form

L(x, u) := ℓ(x, u) + VP − V +
P , (4)

with a chosen storage function VP (x, P ), P is the multi-
plier.
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For any vector v(k), the asymptotic average is defined
as follows [4]:

Av[v] = {v̄ ∈ Rnv | ∃κn → +∞ : lim
n→+∞

sub

∑κn
k=1 v(k)

κn + 1
= v̄}.

In [6], it assumed the strong duality of the steady state
problem, known via

min
(x,u)∈Z

ℓ(x, u) + VP − VP+ ≥ ℓ(xs, us),

for achieving stability. And it is proved in [4] that the
dissipativity w.r.t the above chosen storage function and
an extended supply rate is a relaxation of strong duality,
while strong duality is sufficient for dissipativity. Accord-
ing to [31] and [4], the dissipativity is sufficient for the op-
timal operation at steady state, defined as Av[ℓ(x, u)] ⊆[
ℓ(xs, us),+∞

)
, but not for stability. The closed-loop

stability which is concluded by the strict dissipativity is
proved in [4].

3.2 Closed-loop stability

There is a variety of formulations for achieving the
closed-loop stability herein.

3.2.1 Terminal constraint

For the above economic problem (2) with equality ter-
minal constraint, xs is an asymptotically stable equilib-
rium point of the closed-loop system with region of at-
traction XN if it is strictly dissipative with respect to the
supply rate (3). The proof starts with creating an aux-
iliary augmented problem with rotated stage cost, then
shown the feasible sets, XN , coincide with those of origi-
nal problem, and so does the optimising result. By having
the rotated cost-to-go as the Lyapunov function, the sta-
bility is achieved by the strict dissipativity accordingly.

3.2.2 Terminal cost and terminal region

The authors have also proved in [4] that the closed-loop
stability is achievable by using an adequately chosen ter-
minal cost with an inequality terminal constraint (instead
of an equality one). The proof also used an augmented
rotated stage cost, considered the rotated cost-to-go as the
Lyapunov function, and employed the strict dissipativity
property.

3.2.3 Enforcing stability with modified stage cost

The stability is also achievable by directly modifying
the stage cost, which is considered as a tuning activity in
[31]. For

h(x, u) = VP − VP+ + ρ(x)− ℓ(x, u) + ℓ(xs, us),

in which ρ(x) ≤ L(x, u)− L(xs, us), the modified stage
cost of the form ℓm(x, u) := ℓ(x, u) + α(x, u), with
α(x, u) ≥ h(x, u), will help achieve the asymptotically
stable equilibrium point of xs with region of attraction
XN . The chosen value of α(x, u) is given in Theorem 4
in [31]. The last paragraph of Section VI in [4] explains
the modification to the stage cost in economic MPCs as
an intermediary value lies between the original economic
stage cost and the traditional target tracking MPC stage
cost, adequately chosen.

3.2.4 Extensions to unsteady closed-loop processes

Periodic terminal constraint is considered for systems
having pre-computed optimal periodic solutions, while
average constraints are introduced to apply to state and
input averages of unsteady closed-loop processes. The pe-
riodic terminal constraint, obtained from a dynamic state
feedback strategy, is introduced in order for achieving a
periodic optimal solution described in a previous work
[3]. Reasoning for the average constraints is clearly given
in [4]. The authors stated that, “shifting the focus from
convergence to average performance leads naturally to the
consideration of constraints on average values of variables
(typically inputs and states), besides point-wise in time
hard bounds as discussed in the previous sections and cus-
tomary in MPC” [4] .

According to [3], when

Av[ℓ(x, u)] ⊆
[
ℓ(xs, us),+∞

)
,

the system is said optimally operated at steady state. And
if, in addition, one or both of the conditions of

(1). Av[ℓ(x, u)] ⊆
(
ℓ(xs, us),+∞

)
,

or (2). lim
k→∞

inf ||x(k)− xs|| = 0

hold, it is said sub-optimally operated off steady state.
The economic MPC problem with average constraint is

to obtain the following:

Av[ℓ(x, u)] ⊆
(
−∞, ℓ(xs, us)

]
, (5)

(x, u) ∈ Z ∀k ≥ 0, and Av[y] ⊆ Y,

where y = h(x, u) ∈ Y is an auxiliary output. Y, the
chosen average constraint set, is defined as Y ⊂ Rp

and required to contain h(xs, us), be closed and convex.
On the ground of (5), the economic MPC with average
constraint is thus sub-optimally operated off steady state.

In the next section, we show that the previously devel-
oped quadratic dissipativity constraint [35, 38, 37, 39] can
be conveniently apply to the economic MPC problem.
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4 Quadratic Dissipativity Constraint for
Economic MPC

The quadratic dissipativity constraint for economic
MPC is presented in this section. In this proposed sta-
bilisation approach, the storage function and supply rate
of the dissipation inequality are independent to the stage
cost of economic MPC.

Define a parameterised quadratic supply rate for Σ (1),
as follows:

ξ
(
u, x |Q,S,R

)
:= uTRu+ 2xTSu+ xTQx, (6)

where Q,S,R are multiplier matrices with symmetric
Q,R. The input-state pair (u, x) of Σ is said to satisfy
the quadratic dissipativity constraint (QDC) if there ex-
ists a function α of class KL, and k0 ≥ 0, k0 ∈ R, such
that

|ξ(k)| ≤ α(|ξ(1)|, k − 1) ∀k ≥ k0. (7)

For implementation, it is of interest to consider ξ(k) in
its half plane. The following inequalities are used instead:

For ξ(1) > 0, 0 ≤ ξ(k) ≤ β ξ(k−1) ∀k ≥ 1, 0 < β < 1.
(8)

For ξ(1) < 0, 0 ≥ ξ(k) ≥ β ξ(k−1) ∀k ≥ 1, 0 < β < 1.
(9)

The convex quadratic constraint w.r.t. u (10) below is
equivalent to (8) when R ≻ 0:

uTRu+ 2Su+ ψ ≤ 0, (10)

where ψ = xTQx− δ(k−1), δ(k−1) = βξ(k−1), β < 1.

The constraint (10) will be imposed on the economic
MPC optimisation (the original one) as an enforcing sta-
bility constraint. For the closed-loop stabilisability of
Σ, the input u is required to be bounded by the above
quadratic dissipativity constraint (10), in association with
the quadratic dissipativity of the open-loop Σ (1) w.r.t. the
supply rate ξ(., .).
Σ (1) is said to be quadratically dissipative w.r.t the

quadratic supply rate ξ(u, x), if there exists a nonnega-
tive storage function V (x) such that for all x(k) and all
k ∈ Z+, the following dissipation inequality is satisfied
irrespectively of the initial value of the state x(0):

V (x(k+1))− σV (x(k)) ≤ ξ(u, x), 0 < σ < 1. (11)

V (x) = xTPx, P ≻ 0 is considered herein.
Proposition 1: Σ : x+ = Ax + Bu is quadratically

dissipative w.r.t the quadratic supply rate ξ(u, x) if the fol-
lowing LMI is feasible in P,Q, S,R, see, e.g. [12]: P PA PB

∗ σP +Q S
∗ ∗ R

 ≻ 0, P ≻ 0. (12)

The stabilisability condition for unconstrained system
Σ is then stated in below proposition.

Proposition 2: Let ξ(0)>0, and 0<σ<1. Con-
sider Σ without control and state constraints. Sup-
pose that the following optimisation is feasible:

min
P, Q, S, R

xT0Qx0

subject to (12), Q ≺ 0, R ≻ 0;

Then any u(k) feasible to (10), employing the resulting
multiplier matrices Q,S,R, stabilise Σ.

The stabilisability theorem for nonlinear input-affine
system Σ (1) with an extended supply rate has been de-
veloped in [38]. On the ground of this stabilisability con-
dition, the economic MPC in association with the sta-
bility constraint (10), i.e. the MPC optimisation (2) is
added with a new inequality constraint of (10), will as-
sure the stability of the closed-loop system. The fea-
sibility of (10) for constrained problems has been pre-
sented in previous works, see, e.g. [34, 36]. Since the
MPC stage cost is not employed as a Lyapunov func-
tion in our approach, the quadratic dissipativity constraint
allows both non-monotonic decreasing storage function
V (x) and economic MPC stage cost ℓ(x, u).

From the dissipativity perspective, the supply rate is
different to those in [31]. The distance stage cost is not
associated with the supply rate in this QDC approach, but
the classical quadratic function w.r.t input and output. Its
use is justified by the fact that the inclusion of the product
xTu in quadratic supply rates is perceived as less conser-
vative than the small-gain type supply rate, see, e.g. [13].
Nevertheless, the average performance and constraint fea-
sibility will need to be addressed thoroughly in future de-
velopments. Developments for the dynamically optimal
operating point or rotated steady state with the quadratic
dissipativity constraint is underway.

5 Conclusion

A review on the economic MPC (EMPC) was given
in this paper. EMPCs have been found effective in var-
ious energy-efficient applications. The unreachable set-
points and periodic steady states, as well as modified stage
cost for stability purpose and average performance are
the essences of these emerging EMPCs. The potential
of applying the quadratic dissipativity constraint to the
economic MPC has also been shown in the last section.
From this review, we can, indeed, conclude that the eco-
nomic MPC has merely started progressing both theoreti-
cally and practically.
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