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Figure 1. Overview of GPR-former. We take inspiration from the complex patterns in which moisture propagates
and design a 2D coordinate-based spatial context grouping strategy to more effectively detect the presence of
moisture damage on building rooftops. Compared to our previous method, GPR-former demonstrates superior
performance in key metrics such as Average Recall as well as having better calibrated outputs.

Abstract -

Moisture damage in roofing systems poses a significant
challenge to building operation and maintenance, with far-
reaching implications for energy efficiency, structural in-
tegrity, health, safety, and sustainability. This study intro-
duces GPR-former, a novel transformer-based architecture
designed to leverage spatial context in ground-penetrating
radar (GPR) data, enhancing the accuracy of moisture de-
tection. Unlike our previous approach that analyzes isolated
B-scans, GPR-former incorporates spatial groupings of A-
scans with coordinate-based positional encoding, enabling
the model to detect complex, nonlinear moisture patterns.
Comprehensive experiments across diverse roofing materi-
als demonstrate that GPR-former outperforms our previous
method by up to 6% across performance metrics and achieves
improved calibrated results. These findings highlight the po-

tential of GPR-former as an improved, transformative tool
for sustainable building maintenance, contributing to em-
bodied carbon reduction and extending roof lifecycle man-
agement.
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1 Introduction

Moisture damage in roofing systems is a critical issue
that impacts energy efficiency, structural safety, and repair
costs. It also undermines sustainability efforts by increas-
ing the embodied carbon footprint of buildings through
both premature and overdue replacements. Early and ac-
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curate detection of moisture damage is essential to mitigate
these impacts, support lifecycle management, and enable
circular economy initiatives in building renovation and
maintenance.

Using GPR to detect moisture in roofing materials
presents unique challenges:

* Signal Obfuscation: GPR signals are inherently af-
fected by environmental noise, material heterogene-
ity, and structural interference, making it difficult to
identify moisture-related patterns with high confi-
dence.

* Complex Moisture Patterns: Moisture often prop-
agates nonlinearly, driven by factors like capillary
action and material saturation, complicating inter-
pretation when relying on isolated scans.

Recent advancements in deep learning for GPR [1, 2, 3],
particularly the use of transformers and attention mecha-
nisms for B-scan analysis [4, 5, 6], have demonstrated the
potential of neural networks in GPR data interpretation.
Moreover, progress in the development of mobile robotic
systems for GPR data acquisition and processing [4, 7]
motivates the development and integration of these tech-
nologies. However, methods like our previous approach
[4] typically operate within localized linear windows, lim-
iting their ability to leverage spatial relationships critical
for identifying moisture patterns across adjacent scans.
This gap underscores the need for models that integrate
spatial context and enable holistic analysis of GPR data.

To address these challenges, we propose GPR-former,
a transformer-based architecture that introduces the fol-
lowing key contributions:

* Spatial Context Grouping: A novel grouping mech-
anism that aggregates A-scans based on spatial prox-
imity, providing a richer contextual understanding of
moisture propagation.

* Coordinate-Based Positional Encoding: A mech-
anism to encode spatial coordinates directly into the
model, allowing GPR-former to effectively map rela-
tionships between grouped scans.

* Comprehensive Evaluation: Extensive experi-
ments across diverse roofing materials validate the
efficacy of the proposed approach.

2 Related Work
2.1 GPR-Based Moisture Detection

Ground-penetrating radar has been widely applied in
various domains for moisture detection. For example, [8]
employs a drone-mounted GPR sensor to map soil mois-
ture across agricultural fields, demonstrating the versatility

of GPR in remote sensing applications. Similarly, [9] in-
tegrates GPR with thermal imaging to detect moisture in
building walls, highlighting the potential of GPR-based
moisture detection specifically in the domain of building
diagnostics and maintenance.

In the context of roofing systems, our previous work
[4, 10] establishes a foundation for GPR-based moisture
analysis. [10] explores self-supervised learning to extract
semantically meaningful features from GPR A-scans, en-
abling downstream tasks like moisture detection with min-
imal reliance on labeled data. Our investigation indicates
the possibility of accurately identifying and isolating GPR
scans taken over moisture saturated surfaces, but fails
to produce a scalable and robust classifier. Building on
this, Roofus [4] applies supervised learning as well as the
transformer architecture to classify moisture in real-world
rooftop environments using a large-scale labeled dataset
of GPR B-scans. Although effective, Roofus focuses on
localized analysis within sample B-scans, failing to ac-
count for broader spatial relationships that may be critical
for detecting moisture propagation across B-scans.

2.2 Transformers in Coordinate-Based Applications

Transformers [11] have gained prominence in tasks re-
quiring spatial reasoning, with positional encoding en-
abling the modeling of spatial relationships in structured
data. In medical imaging, for instance, [12] employs
coordinate-based embeddings to enhance transformer-
based models for spatially aware tasks. Similarly, Co-
ordFormer [13] introduces a Coordinate-Aware Attention
module to encode spatial-temporal coordinates, preserv-
ing dependencies critical for analyzing video and image
datasets. Li et al. [14] investigates the efficacy of ex-
plicit positional encoding by concatenating 2D positional
coordinates to the end of each token’s embedding dimen-
sion among other strategies. Despite these advancements,
the application of transformers to specifically GPR data re-
mains underexplored, leaving untapped potential for lever-
aging spatial relationships in GPR-based analysis.

2.3 Limitations of Existing Approaches

Existing GPR-based methods, including Roofus [4], pri-
marily analyze localized B-scans and overlook the spa-
tial propagation of moisture across adjacent scans. This
limitation often results in the model struggling when en-
countering strongly reflective objects like horizontal rebar.
Similarly, while transformers with positional encoding
have been effectively applied to coordinate-based tasks,
their use in GPR data analysis lacks exploration. Address-
ing these gaps requires a model capable of capturing the
unique spatial relationships inherent in GPR datasets to
identify complex moisture diffusion patterns in real-world
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rooftop environments.

3 Model Overview
3.1 Task Definition

The primary goal is to classify Ground Penetrating
Radar (GPR) A-scans into binary categories indicating
the presence or absence of moisture. Formally, given a
collection of A-scans grouped by spatial proximity, de-
noted as {S1,S2,...,5,}, where each scan S; € RS>
represents a feature vector derived from radar signals, the
task is to output a binary prediction P; € {0, 1} for each
scan S;. Here, P; = 1 signifies the presence of moisture,
while P; = 0 indicates its absence.

Binary classification is particularly suited for the ap-
plication domain, where client-facing diagnostic reports
prioritize actionable outcomes. While additional insights
such as moisture depth or severity could enrich the analy-
sis, this study focuses on binary classification as a practical
first step. The detection of moisture ingress typically ne-
cessitates remediation regardless of severity, aligning with
the goal of actionable and interpretable results.

Unlike previous approaches that process A-scans or B-
scans in isolation, GPR-former leverages spatial context
by analyzing grouped A-scans across multiple B-scans.
This strategy enhances sensitivity to obfuscated or diffuse
moisture signals, which are often missed by single-scan
models like Roofus.

3.2 Spatial Context Grouping

Intuition. Moisture in roofing materials seldom man-
ifests as isolated points; instead, it propagates radially or
irregularly due to dynamics like capillary action and ab-
sorption as illustrated in Figures 1 and 2. These patterns
often form clusters or saturate adjacent regions. To cap-
ture such propagation behaviors, GPR-former organizes
A-scans into spatially coherent groups using x, y coordi-
nates obtained from LiDAR data, enabling the model to
recognize subtle or diffuse moisture patterns that elude
traditional methods.

Group Sampling Procedure. A straightforward K-D
Tree-based algorithm is used to group A-scans according
to spatial proximity. We use the K-D Tree for its simplicity
and performance. The procedure is outlined as follows:

1. Construct a K-D Tree using the x, y coordinates of all
A-scans from a rooftop dataset.

2. Arbitrarily select an A-scan as the seed for a group
and identify its w — 1 nearest neighbors.

3. Form a group of w A-scans and remove them from
the K-D Tree.

4. Repeat steps 2-3 until the K-D Tree is empty. Discard
any group with fewer than w A-scans.

5. Ensure that all groups are formed strictly from A-
scans belonging to the same rooftop to prevent erro-
neous mixtures of scans from different sites.

Algorithm 1: Generate Groups using K-D Tree

Input: GPR Data D, group size w
Output: Groups G
1 Initialize D copy: Do < D;
2 Initialize empty groups: G « @;
3 while size(Dg) > w do
4 Construct K-D Tree tree < KDTree(Dy);
5 Select the first sample as seed: seed < Dy[0];
6 Query nearest neighbors:
neighbors « query(tree, seed, k = w — 1);
7 Form group: G « G U {seed, neighbors};
8 Remove group from Dy:
Dy <« delete(Dy, {seed, neighbors});
9 end
o return G

—

This procedure ensures spatial coherence by grouping
A-scans strictly from the same rooftop. Groups with fewer
than w A-scans are discarded to maintain consistency. Al-
though this procedure may not be the most computationally
efficient, it is sufficiently effective for handling our large
rooftop datasets in practice.

An important hyperparameter to consider is the group
size w. An w that is too small inhibits the algorithm’s
capability to span the gaps between B-scans, nullifying
the benefits of inter-scan context that we propose. If w
is too large, undesirable artifacts like spatial discontinuity
in group membership may occur. Figure 3 provides an
illustration describing such phenomenons. In our study,
we explore the effects that these situations can have on per-
formance and we investigate the optimal w in our ablation.

3.3 Coordinate-Based Positional Encoding Strategies

Overview. Positional encodings are essential for em-
bedding spatial relationships among grouped A-scans, en-
abling the model to leverage spatial context effectively.
To achieve this, we explore three different strategies for
encoding the positional information into each A-scan rep-
resentation:

* Sinusoidal Absolute Encoding: Employs fixed pe-
riodic functions to encode absolute signal feature po-
sitions.

* Rotary Encoding: Encodes relative positional rela-
tionships within groups by applying rotational trans-
formations to the embeddings.

* Learned Encoding: Learns position embeddings di-
rectly from the data via a linear layer.
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Figure 2. GPR-former aggregates A-scans into groups of size w using a K-D Tree sampling procedure.
These grouped scans are processed by a transformer encoder, which incorporates coordinate-based positional
encodings to capture spatial relationships and contextual dependencies.

Implementation Details. To account for variability in
rooftop layouts and scan alignments, the x, y coordinates
are normalized relative to the group’s mean position before
encoding. This normalization ensures that encodings are
invariant to the absolute coordinate system, allowing the
model to generalize across diverse rooftop environments.

Each encoding method maps the normalized x, y coor-
dinates to feature embeddings, with half of the embed-
ding dimension allocated to each axis for the Sinusoidal
Absolute Encoding and Rotary Encoding. The specific
formulations are detailed below:

Sinusoidal Absolute Encoding. We borrow the encod-
ing scheme used in the implementation of the Masked
Autoencoder [15], where half of the feature embeddings
are dedicated to the x position and the remainder to the y.
This particular approach encodes x and y positions using
sine and cosine functions of varying frequencies, defined
as:

PE,[i+ 1] = cos(x - B[{]),

PE,[i+ 1] = cos(y - B[i]),
(H

PE[i] = sin(x - B[i]),
PEy[i] = sin(y - Bi]),

where B[i] = W, d is half the embedding dimen-

sion, and 7 indexes the frequencies.

Rotary Encoding. We utilize a similar approach as
the Sinusoidal encoder with the Rotary encoder, where
the encoding transforms feature embeddings to encode
relative positions using rotational transformations on x
and y embeddings:

Xrot = X O c0s(8) + Rotgy(x) © sin(6),

Yoo = ¥ © cos(6) + Rotso(y) Osin(8).
where 6 is derived from scaled positional values, and
Rotgg () rotates the second half of the embedding vector by
90 degrees. This method emphasizes spatial relationships
by directly modifying feature representations in embed-
ding space.
Learned Encoding. This method learns position em-
beddings directly through a linear layer:

PE=W-c+b, 3)

where ¢ € R? represents the input coordinates, and W €
R*2 b e R? are trainable parameters. This approach
adapts the encoding to dataset-specific requirements but
risks overfitting in low-data scenarios.

Practical Considerations. Unlike static encodings in
image-based transformers, the dynamic nature of grouped
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Figure 3. Comparison between the effects that dif-
ferent groups sizes can have on group semantics
and composition. An ideal group size (a) has suf-
ficiently large groups to just enough cover pertinent
regions like puddles. A group size that is too small
(b) has difficulty spanning the gap between B-scans,
making it no different than previous methods like
Roofus [4]. Groups that are too large (c) may in-
troduce unwanted artifacts such as discontinuity and
noise.

A-scans in GPR data necessitates real-time encoding com-
putation. However, we find that the real-time computation
adds minimal overhead in practice across various large-
scale rooftop datasets.

While Sinusoidal Absolute Encoding efficiently cap-
tures global structure, Rotary Encoding and Learned En-
coding emphasize local spatial patterns and task-specific
adaptability, respectively. These differences highlight
trade-offs in flexibility, interpretability, and computational
requirements for each encoding scheme.

3.4 Transformer Architecture

In GPR-former, we adopt a vanilla transformer architec-
ture similar to the design introduced by [11]. This trans-
former is central to our approach as it models the contex-
tual and spatial dependencies among grouped A-scan fea-
tures. Each transformer layer block is comprised of multi-
head self-attention, a feed-forward network, residual con-
nections, and layer normalization. After the transformer
encoder, the resulting feature vector is passed through a

final linear layer followed by a sigmoid activation to yield
a binary classification probability.

Figure 2 illustrates the summarized approach of GPR-
former.

4 Experiments

Implementation. GPR-former employs a transformer
encoder architecture with a binary classification head as
shown in Figure 2. Training is conducted using Focal Loss
to address the inherent dataset imbalance (it is typical
to expect moisture signals to be less frequent than dry
signals), with a learning rate of 1 x 107> on a cosine
annealing schedule. Weighted binary cross-entropy was
also tested but yielded suboptimal results compared to
Focal Loss, likely due to the latter’s ability to emphasize
difficult samples more effectively. We use the AdamW
optimizer and train on an Nvidia RTX 8000 GPU with a
batch size of 64.

Three versions of GPR-former are developed: GPR-
former-B (base), GPR-former-L. (large), and GPR-
former-H (huge). These versions differ in the number
of attention heads, layers, and representation dimensions,
with GPR-former-B containing a total of 44.6M param-
eters, GPR-former-L. containing 84.7M parameters, and
lastly GPR-former-H containing 118.9M parameters. For
reference, the architecture used for Roofus contains 302M
parameters, making GPR-former noticeably light-weight
in comparison. The exact details of each configuration is
described in Figure 1. The architectures share a common
classification layer, ensuring consistency across the com-
parison. Hyperparameters were optimized through grid
search, with specific focus on dropout, learning rate, and
batch size. All GPR-former models in our main evalua-
tion use Sinusoidal positional encoding and a group size
w = 1024. We provide the justification in our ablation
analysis in Section 4.2.

Dataset. The dataset is sourced from the same build-
ing complex used in the Roofus investigation [4], a 46.5K
m? retail complex with diverse roofing materials, includ-
ing modified bituminous membranes, EPDM rubber, and
TPO. It contains hundreds of thousands of A-scans span-
ning a wide range of roofing conditions and damage lev-
els. Labels were manually annotated and cross-validated
against reference moisture maps provided by a third-party
partner. These reference maps were generated using es-
tablished rooftop moisture detection techniques, including
infrared thermography, electrical capacitance testing, and
nuclear moisture gauges.

The dataset is divided into distinct sections, labeled
Section 1 through Section 10, with Section 7 excluded due
to scanning errors. Section 6 is reserved exclusively for
testing, while the remaining sections are used for training
and validation with an 85/15 split. This division ensures
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Models Hyperparameters # Parameters
#Heads # Layers Representation Dim.

Roofus 16 24 1024 302M

GPR-former-B 4 8 768 44.60M

GPR-former-L 8 10 1024 84.7M

GPR-former-H 16 10 1280 118.9M

Table 1. Design differences between the different
sizes of GPR-former, with the tested version of
Roofus included for comparison. The different
sized models vary in the number of attention heads
and layers as well as their representation dimensions.

that the model is evaluated on unseen data, reflecting real-
world deployment scenarios.

Prior to input into the models, the GPR B-scans are pre-
processed using a linear gain down the time domain. The
data is then standardized by the mean and standard devia-
tion values calculated from the training set. Additionally,
we apply a random horizontal or vertical flip of the x, y
coordinates with a separate probability of 0.5 for each flip
during training.

Baseline. To benchmark the performance of GPR-
former, we compare it with our previously developed Roo-
fus model. Roofus also employs a transformer-based ar-
chitecture but operates on GPR B-scans, treating A-scans
within a window as sequential data without incorporating
spatial context beyond individual B-scans. Roofus was
retrained on the current dataset using the same training
regimen as GPR-former, with adjustments where neces-
sary to accommodate its architectural differences.

Evaluation Metrics. Given the critical need to identify
all potentially damaged roofing areas, recall is selected
as the key evaluation metric. While precision is valuable,
prioritizing recall ensures minimal false negatives, which
is essential for identifying areas that might require repair.
In roofing diagnostics, conservative predictions often lead
to better outcomes, as even marginally damaged areas are
typically repaired along with severely damaged sections.

To capture this priority, we use metrics such as Average
Recall (AR) and F2-score, with F2-score weighted more
heavily toward recall. The Area Under the Receiver Oper-
ating Characteristic (AUROC) is also included to provide
both consistency with our previous investigation with Roo-
fus as well as further insights into the trade-off between
true positive and false positive rates. F2-scores are cal-
culated using the optimal threshold identified during the
final validation step.

4.1 Main Results

Quantitative. Table 2 presents the performance of
GPR-former variants compared to Roofus. The results
show that the largest model, GPR-former-H, using w =
1024 and the Sinusoidal positional encoding, achieves the

Models Quantitative Qualitative

AR T F2-ScoreT  AUROC T NLLloss |
Roofus 0.4563 0.7158 0.8240 0.4940
GPR-former-B 0.4563 0.7267 0.8386 0.4465
GPR-former-L 0.4730 0.7174 0.8296 0.4443
GPR-former-H 0.4834 0.7277 0.8436 0.4376

Table 2. Comparison of GPR-former variations

and Roofus across evaluation metrics on the test
set. GPR-former-H appears to be better fit to take ad-

vantage of the additional spatial information through
the increased number of encoder layers and attention
heads.

highest recall, F2-score, and AUROC, demonstrating the
benefits of incorporating spatial context into the model.
The slight underperformance of GPR-former-L. compared
to GPR-former-B in F2-Score and AUROC is an unex-
pected result, potentially due to overfitting or architectural
inefficiencies. Further analysis of this phenomenon is left
for future work.

Ground Truth

Figure 4. Qualitative comparisons against the
ground truth labels of the un-thresholded mois-
ture predictions generated by GPR-former and
Roofus [4]. The example highlighted region clearly
illustrates the improvement in the calibration of
GPR-former is over its predecessor.

Qualitative. Despite being hidden from client-facing
reports, the un-thresholded predictions can provide ad-
ditional insights into how well-calibrated the models are
and the uncertainty present in them. Figure 4 illustrates the
raw model outputs prior to thresholding for GPR-former
and Roofus. GPR-former exhibits a wider distribution
of prediction scores, indicating higher confidence in its
classifications. To quantify uncertainty, we compute the
negative log-likelihood loss as shown in Table 2, reveal-
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ing that GPR-former produces more calibrated predictions
compared to Roofus.
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4.2 Ablation

Group size w. As discussed prior, the group size w de-
termines the spatial context provided to the model. Larger
groups introduce additional spatial information but risk in-
corporating irrelevant or noisy data, while smaller groups
may lack sufficient context. To strike a balance, we tested
group sizes of w = 512,1024,1536,2048. Results in-
dicate optimal performance at w = 1024, beyond which
performance declines, likely due to grouping artifacts or
interruptions in data continuity. Overlapping groups or ad-
vanced sampling methods may address these limitations
in future iterations.

Positional Encoding. As previously mentioned, the
three encoding schemes were evaluated: sinusoidal abso-
lute positional encoding, a rotary positional encoder, and
a learned positional encoder. Contrary to expectations,

the sinusoidal encoder outperformed the rotary encoder,
possibly due to the relative encoder’s complexity relative
to the dataset size. The poor performance of the learned
encoder underscores the importance of carefully designed
encoding schemes in spatial transformers, especially in
low-data scenarios.

5 Discussions

Limitations. This study shares limitations with prior
work [4], including the need for an expanded dataset with
additional roofing material types and environmental con-
ditions to generalize the model’s applicability. Artifacts in
the sampling procedure, such as large gaps between group
members, can lead to discontinuities in spatial context.
Furthermore, the current approach is unable to quantify
the severity of damage or localize the damage beneath the
surface, which somewhat limits the practical utility of the
predictions.

Conclusions. The experiments validate the effective-
ness of incorporating spatial context in transformer-based
architectures for GPR data. GPR-former outperforms our
previous model Roofus across key metrics, demonstrating
the advantages of spatially aware processing.

Future Work. Directions for future research include
developing advanced methods for constructing groups
(e.g., overlapping groups or clustering-based sampling)
and increasing the dataset size through scanning and la-
beling more rooftops to enhance diversity and saturate the
capabilities of relative positional encoding. Investigat-
ing the applicability of self-supervised learning may also
address the difficulties in large-scale data collection and
annotation. Exploring the prediction of moisture depth or
damage severity could further improve the practical value
of the system in real-world diagnostics.
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