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Abstract 

Establishing proper trust between human workers 

and robots is crucial for ensuring safe and effective 

human-robot interaction in various industries, 

including construction. An accurate trust prediction 

facilitates timely feedback and interventions, helping 

workers calibrate their trust levels. While machine-

learning modeling personalization (i.e., tailoring 

models to individual characteristics) has garnered 

attention in the literature, the conventional approach 

of developing a personalized model for each 

individual is impractical in labor-intensive industries 

like construction. Such an approach compromises 

efficiency and leads to an accuracy-efficiency tradeoff. 

To address this gap, this study aims to investigate the 

tradeoff inherent in model personalization and 

identify a cost-effective solution to enhance trust 

prediction accuracy without compromising efficiency. 

The results suggested that a partial model 

personalization method can effectively balance this 

tradeoff. Moreover, the proposed feature-based 

partial personalization approach enables a cost-

effective trust prediction model development for the 

construction industry, demonstrating its broader 

applicability to other worker-related predictions in 

other settings. This study provides insights into the 

strategies to improve trust prediction accuracy while 

maintaining the efficiency of model development by 

considering the distinctiveness of the future 

construction industry. 
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1 Introduction 

As robots become more prevalent in the construction 

industry to improve automation in construction, how 

workers build their trust in robots during the interaction 

has drawn increasing interest [1]. Trust has been 

identified as an essential element in any successful 

relationship, and its importance should be further 

highlighted in such dynamic and hazard-rich workplaces 

as construction sites to ensure occupational safety [2–6]. 

Because robots’ perfect performance cannot be 

guaranteed to date in construction, an appropriate level 

of trust (neither excessive nor inadequate) represents a 

prerequisite to a secure and effective worker-robot 

interaction. Trust has been discerned as a dynamic 

concept where workers continuously update their trust 

levels based on human-related (e.g., gender), robot-

related (e.g., transparency), and workplace-related 

factors (e.g., time pressure) [4,7]. To understand varying 

human trust and acknowledge the implicit nature of trust, 

there has been a growing interest in using real-time 

psychophysiological responses rather than self-report 

subjective measures [8].  

The literature has identified the latent safety issue in 

the construction domain accompanied by workers’ 

inappropriate trust levels in robots [9,10]. For example, 

in the study investigating workers’ situational awareness 

of robots, Chang and his colleagues found that 

scheduling pressure in construction projects provoked 

workers’ overtrust in a faulty robot, leading to their 

ignorance of the robot as a dynamic hazard [2]. To 

address the trust dynamics and the challenges of 

appropriate trust-building on the job site, a recent review 

study suggested developing trust prediction models 

trained by psychophysiological responses to better 

monitor and understand workers’ real-time trust in robots 

[4]. Such predictive models are envisioned to facilitate 

early feedback and interventions to reduce accidents and 

enhance the safety of worker-robot interactions. 

Given the pivotal role of prediction accuracy, 

researchers have deployed various techniques across 

domains, e.g., data augmentation (i.e., increase the 

diversity of a training dataset) [11], ensemble methods 

(i.e., combining the predictions of multiple individual 

models) [12], and personalization (i.e., tailor a model to 
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individual characteristics) [13]. Personalization, aiming 

to tailor the predictive model to the specific preferences, 

characteristics, or behavior of an individual user, has 

been prevailingly deployed in sensor-based human 

activity recognition [13]. Considering worker variability 

in construction, personalizing a trust prediction model for 

individuals holds the potential to enhance accuracy. 

However, discussions in the literature also highlight 

several efficiency and privacy-related concerns 

associated with model personalization [14,15]. These 

tradeoffs might potentially impede the acceptance and 

deployment of personalized models. There is a paucity of 

research regarding the accuracy-efficiency tradeoff 

associated with model personalization, especially within 

labor-intensive sectors like construction. Given the 

criticality of trust in worker-robot interaction, this study 

aims to (1) explore the trust prediction model 

personalization in the future construction industry and (2) 

provide insights into cost-effective personalization 

strategies for worker-robot trust.  

2 Background 

2.1 The Review on Human-robot Trust 

Prediction 

As robots become seamlessly integrated with workplaces 

across industries, the understanding and prediction of 

human trust have created considerable value for ensuring 

the efficiency and safety of human-robot interaction.  In 

the existing literature, the fusion of machine learning 

(ML) with psychophysiological measurements has 

emerged as a powerful tool for trust prediction [16–19]. 

For example, Ayoub and his colleagues designed a 

simulation task where participants needed to drive an 

autonomous vehicle in a simulator while collecting their 

heart rate, eye-tracking, and galvanic skin response (GSR) 

during the experiment [16]. Multiple ML models (e.g., 

Decision Tree and Naïve Bayesian) were trained with the 

collected data to predict their trust levels in the vehicle. 

In the study investigating users’ trust in an AI assistant, 

the authors developed a predictive model using an 

electroencephalography (EEG) sensor [18] The proposed 

models in the literature have attained over 70% accuracy 

of trust prediction in a static setting where the 

participants did not necessarily exhibit physical 

movements. However, when dealing with dynamic and 

physically demanding work environments, the inherent 

challenge arises characterized by inevitable worker 

movements. These movements may inadvertently 

introduce motion artifacts and signal noises to 

psychophysiological data in such dynamic and physically 

demanding work environments, thereby impacting 

prediction accuracy. To tackle this challenge, recent 

research has implemented trust prediction strategies by (i) 

leveraging deep learning (DL) techniques, (ii) 

incorporating diverse types of psychophysiological 

responses as training datasets, and (iii) employing DL 

auto-encoders to automatically extract important features 

and remove noises from the raw data [20]. The results 

showed an accuracy level comparable to what the 

existing literature attains in static environments. Model 

personalization may hold significant potential in tailoring 

models to individuals' specific demands to further 

enhance the current prediction performance [21]. 

2.2 Model Personalization 

Model personalization refers to customizing models to 

individual preferences, characteristics, or behaviors [22]. 

However, the conventional model takes a generalized 

approach to train a one-size-fits-all model for all 

individuals. The personalization approach primarily aims 

to improve the model's performance by considering each 

user's unique features and patterns, thereby providing 

more accurate predictions. While model personalization 

has been advocated as an effective strategy for enhancing 

accuracy, previous studies have underscored latent 

privacy and efficiency issues associated with this 

approach [14,16]. For instance, in the study examining 

the relationship between personalization and privacy, the 

findings indicated that personalized model creation 

would trigger users’ privacy concerns [15]. Moreover, 

there is an intuitive inference that the development of 

personalized models requires a significant investment of 

time and computational resources [17]. Notably, the 

construction industry presents a unique challenge 

because of the substantial workforce and frequent 

changes. This characteristic of the construction industry 

might lead to the inefficiency of personalizing models for 

individual workers. To address the accuracy-efficiency 

tradeoff in model personalization, researchers have 

proposed “partial model personalization” as a potential 

solution [14]. Partial personalization uses specific 

features (e.g., layers and parameters) for individuals to 

develop a tailored model for a particular group [23,24]. 

In the construction context, workers can be categorized 

into groups based on their specific features, 

accommodating the variability among workers, and 

alleviating the demands of training personalized models. 

Therefore, the partial model personalization facilitates 

achieving a balanced tradeoff between accuracy and 

efficiency in construction. In summary, this research 

strives to investigate an effective model personalization 

strategy for optimizing trust prediction in future 

construction. 
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3 Methodology 

3.1 Experimental Design and Procedure 

This study developed a human-robot collaborative 

bricklaying experiment in which workers must complete 

the bricklaying tasks with a bricklaying co-bot (i.e., 

MULE) and different types of drones. While MULE was 

designed to automatically lift and drop heavy concrete 

blocks for workers, human interventions were still 

needed (i.e., applying mortar and moving MULE to 

correct positions). Moreover, drones assisted with (i) 

monitoring the environment for safety, (ii) delivering 

new materials to workers in an elevated platform for 

efficiency, and (iii) inspecting workers’ behaviors to 

examine work progress. 

This study designed two modules to manipulate 

workers’ trust levels in drones: (i) Baseline and (ii) Error 

modules. The Baseline module refers to the scenario 

where all types of drones exhibit error-free performance. 

On the contrary, the Error module includes various 

drone-related system failures and errors (e.g., workers 

were struck by drones) to assess how the workers’ trust 

in drones might change.  Noteworthy, workers might 

decrease their trust in the Baseline module due to 

personal preferences even though the drones performed 

flawlessly. Similarly, workers might increase their trust 

in the Error module because they did not identify or 

perceive the drone failures as not risky [8]. 

Participants were presented with an introduction to 

the experiment and the functionalities of the bricklaying 

co-bot and drones. Training was provided to familiarize 

participants with the designated bricklaying task. 

Participants were equipped with a HTC VIVE headset, 

two controllers, three motion trackers, and 

psychophysiological wearable sensors (e.g., a Functional 

Near-Infrared Spectroscopy (fNIRS) and Empatica E4 

wristband) and were asked to finish the Baseline and 

Error modules. Furthermore, A widely used 5-point 

Likert-scale trust questionnaire [25] was administered to 

collect their self-report trust levels in drones before and 

after each module, denoted by ti (initial trust before the 

Baseline module), tb (trust after completing the Baseline 

module), and tt (trust after completing the Error module). 

All the procedures were approved by the Purdue 

Institutional Review Board (IRB). Figure 1 illustrates the 

experimental design and procedure of this study. 

3.2 Participants 

Eighty-nine participants (60 males and 29 females) 

were recruited to participate in this experiment. All the 

participants were from the departments of Civil 

Engineering and Construction Engineering and 

Management majors at Purdue University, representing 

the next generation of the workforce. The age range of 

participants was between 19 and 36 years (M= 22.54, 

STD= 3.32), with 64% of them having more than one 

year of experience in the construction industry.  

3.3 Apparatus 

The selected VR device was the HTC Vive Pro Eye 

Figure 1. The experimental design and procedure of the bricklaying task. 
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with a refresh rate of 90 Hz and a field of view of 110o 

(manufactured by HTC Corporation, Taoyuan, Taiwan). 

The experiment was run on an Alienware PC with an 

AMD Ryzen 9 5950X 16-Core processor and an NVIDIA 

GeForce RTX 3090 graphics card. To capture 

participants’ psychophysiological responses, (i) 

Empatica E4 wristband (manufactured by Empatica, 

Boston, United States) was to collect electrodermal 

activity (EDA) with a sampling frequency of 64 Hz and 

heart rate (HR) with a sampling frequency of 1 Hz and 

(ii) fNIRS (Brite 23, Artinis, Netherlands) was used to 

collect brain activation and cognitive processing with a 

sampling frequency of 10 Hz. 

3.4 Data Collection and Pre-Processing 

Various types of objective data were collected from 

participants during the experiment and used to train a 

trust prediction model. The data included (i) fNIRS, (ii) 

EDA, (iii) HR, and (iv) head motion captured by the 

headset. Due to the heterogeneous data sources, pre-

processing approaches were used to ensure consistent 

sampling frequencies and compliance with model 

training requirements. Specifically, raw fNIRS signals 

were processed by Homer3 packages to output the 

hemodynamic response function (HRF). Then, the HRF 

data was divided into segments by considering a 10-

second time window due to sequential dependencies and 

hemodynamic delayed activation [26,27]. Each 10s 

segment was converted into a 2D image because this 

transformation offers an enhanced representation of the 

high spatial resolution in fNIRS data. Furthermore, this 

study conducted max-min normalization, re-sampling, 

and 10s time-window segmentation for the EDA, HR, 

and head motion data. Figure 2 presents a schematic 

overview of the pre-processing in this study. 

Participants were requested to subjectively report 

their trust levels in drones three times (i.e., ti-Mean: 3.576; 

tb-Mean: 4.126; te-Mean: 3.236). While the data indicated the 

trust increased during the Baseline module and decreased 

during the Error module, this labeling method would not 

consider the variance among participants (e.g., some 

participants decreased their trust in Baseline module). As 

highlighted above, the drone system failures did not 

necessarily lower human trust, and its perfection did not 

guarantee increased trust. To address this issue, this study 

deployed customized labeling for each individual (i.e., 

the module in which each participant increased their trust 

was labeled as “increase” and the same logic for the 

“decrease”), as shown in Figure 1.  

3.5 Model Development 

The model development comprises two phases 

(Figure 2): (i) feature extraction and (ii) trust prediction. 

Compared to the traditional approach of manual feature 

extraction, this study considered automated extraction by 

applying the autoencoder (AE) technique. This technique 

has been proven to effectively reduce the dimension of 

the data with high representativeness of the extracted 

features. Due to the dissimilarity between the image (i.e., 

fNIRS) and time series (i.e., EDA, HR, and head motion) 

data, two types of AEs were implemented in this study. 

Specifically, convolution neural network (CNN)-based 

AE was developed for the fNIRS data, while the essential 

features of time-series data were extracted by long short-

term memory (LSTM)-based AEs. All extracted features 

were then aggregated as the final trust prediction model 

input, which is a CNN model, to predict whether workers 

increase or decrease participants’ trust during the 

interaction with robots in the future construction 

environment. Due to the page limit here, the details of the 

model structures and parameters were discussed in [20], 

and the personalization results and discussions are 

covered in this paper.  

3.6 Partial Model Personalization 

Multiple trust prediction models were developed for 

different groups of participants to investigate the 

performance of partial model personalization. Unlike full 

personalization, where an individual model is trained 

with one participant's data, this study employed a 

randomized grouping approach to achieve partial model 

personalization. The randomization process was repeated 

ten times, which refers to 10-fold cross-validation, to 

mitigate the potential bias introduced by the one-time 

randomized grouping. Each repetition involved the 

random distribution of participants into groups of 1 

(generalization model), 2, 4, 8, and 16. Subsequently, 

Figure 2. A schematic overview of the data preprocessing approaches and model development.  
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models were independently trained for each group within 

each repetition. The results were then averaged across the 

ten replications to provide a more robust and unbiased 

assessment of the model's performance. Lastly, the 

accuracy and efficiency values were normalized between 

0 and 1 to examine the balance within the accuracy-

efficiency tradeoff. 

4 Results 

Table 1 shows the average accuracy, training time, 

and efficiency of models across different levels of 

personalization. The accuracy of training and testing data 

from the generalized trust prediction model (i.e., only 

training one generalized model with no personalization) 

indicated 79.3% and 71.8%, respectively. As can be seen 

in Table 1, the testing accuracy increased as participants 

were divided into more groups (#1: 71.8%; #2: 71.3%; 

#4: 72.7%; #8: 77.1%; #16: 77.5%). However, higher 

level of personalization led to an increase in training time 

((#1: 183.57s; #2: 181.67s; #4: 185.89s; #8: 192.26s; #16: 

216.40s) and a decrease in efficiency (#1: 5.44e-3; #2: 

5.50e-3; #4: 5.38e-3; #8: 5.20e-3; #16: 4.62e-3). These 

results demonstrate a trade-off between accuracy and 

efficiency within model personalization. 

Table 1 Overview of the changes in accuracy and 

efficiency in partial model personalization. 

# of 

groups 

Testing 

accuracy 

Training time Efficiency 

(1/time) 

1 71.8% 183.57s 5.44e-3 

2 71.3% 181.67s 5.50e-3 

4 72.7% 185.89s 5.38e-3 

8 77.1% 192.26s 5.20e-3 

16 77.5% 216.40s 4.62e-3 

Figure 3 provides a visual representation of changes 

in the accuracy and efficiency variations based on a 

normalized scale. The two lines intersect approximately 

when the participants were divided into seven groups. 

These findings suggest an intermediate level of model 

personalization to better balance the model’s accuracy 

and efficiency.  

5 Discussion 

An accurate understanding and prediction of workers' 

trust are paramount for ensuring the safety of human-

robot interaction in such dynamic and hazardous 

workplaces as construction environments [28]. Although 

an acceptable prediction accuracy has been achieved by 

combining varied sources of workers’ objective data and 

employing the AE technique, the various individual 

characteristics of workers present an opportunity for 

further enhancement, particularly through the integration 

of model personalization. The results of this study align 

with the construction literature, suggesting the 

effectiveness of model personalization to improve 

accuracy. For example, in the analysis focusing on 

cognitive load classification using fNIRS responses, Zhu 

and his colleagues found that the fully personalized 

models outperformed the generalized model [21]. 

However, the previous literature has not extensively 

addressed the efficiency issue, which is presumed to be 

very critical in the construction industry. This suggests 

an avenue for research in this paper to explore the 

efficiency implications of model personalization in the 

construction context. 

The findings showed a decline in efficiency 

accompanied by a higher degree of personalization, 

which poses challenges in a labor-intensive industry 

where tasks require the presence of many workers on 

jobsites. Even though model personalization enhances 

trust prediction accuracy, full model personalization is 

impractical due to the complexity and time-consuming 

nature of training a personalized model for each worker, 

coupled with the dynamic crew-based nature of the 

industry. In recent research that aimed to develop DL 

models to recognize construction workers’ postures in 

manual construction tasks, Zhao and Obonyo argued that 

the full model personalization is infeasible and proposed 

an improved model (i.e., integrating one CNN layer with 

two LSTM layers) with high generalizability to 

accommodate the variation among workers [29]. 

However, their proposed model was limited to the 

posture-related data of four participants, highlighting the 

need for an alternative approach to tackle the accuracy-

efficiency tradeoff.  

According to the results of this study, the balance 

between accuracy and efficiency was achieved when 

training seven partially personalized models to accurately 

predict workers’ trust without compromising efficiency. 

That is, grouping workers into a limited number of 

groups and training a model for each group are suggested 

to achieve a better balance of efficiency and accuracy. 

While employing a randomized grouping method to 

categorize workers, this study proposes using feature-

Figure 3. A graphical representation of the trade-off 

between model accuracy and efficiency. 
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based model personalization as an optimal grouping 

strategy to enhance cost-effectiveness. Specifically, this 

feature-based approach necessitates an initial grouping 

based on workers’ unique characteristics affecting trust-

building. For example, prior studies have suggested the 

effects of human factors on trust, such as gender [30,31], 

personality [32,33], experience [34,35], and self-

confidence [36] which can be considered as features for 

grouping. Understanding how worker-related 

characteristics will impact their trust in robots is a 

prerequisite to implementing this approach. This 

proposed featured-based model personalization could 

enhance the generalizability, scalability, and inclusivity 

of the proposed model because new workers can be 

classified into one of the existing groups without 

allocating extra resources to train another model [37]. 

More importantly, this approach extends its applicability 

beyond trust prediction to other worker-related 

classifications and predictions in construction. 

Ultimately, human-centered construction can be 

established in the foreseeable future [38].  

While this study offers considerable value to the body 

of knowledge, there are some limitations worth 

mentioning. First, the recruited participants in this 

experiment represent the next generation of the 

construction workforce, whereas it is worthwhile to 

replicate the study with the current workforce and 

incorporate a larger group of participants with varied 

backgrounds. Second, the literature has mentioned the 

privacy concern associated with the full level of model 

personalization. While this issue is assumed to be 

mitigated by deploying the proposed feature-based 

personalization approach, future research is 

recommended to explore the accuracy-privacy trade-off 

within model personalization.  

6 Conclusion 

While existing literature underscores the benefit of 

model personalization in enhancing accuracy, its inherent 

inefficiency poses challenges, particularly within the 

construction context. Therefore, this study addresses this 

challenge by identifying the nuanced balance within the 

accuracy-efficiency tradeoff of model personalization 

and proposing a cost-effective (i.e., achieving high 

accuracy without consuming excessive time by regarding 

time as cost) solution to predict workers’ trust. The 

proposed feature-based partial personalization approach 

addresses the unique labor-intensive and crew-based 

nature of the construction sector. This approach suggests 

classifying workers into groups based on a specific 

influential trust feature and training partial personalized 

models for each group. The proposed approach ensures 

an accurate prediction of models while maintaining the 

efficiency of the training process.  

This research contributes to the body of knowledge 

by (i) introducing the concept of partial model 

personalization to the construction industry, recognizing 

the inefficiency of full personalization, (ii) navigating the 

balance within the accuracy-efficiency tradeoff, and (iii) 

proposing a cost-effective feature-based personalization 

strategy for conducting trust-related and other worker-

related predictions in the construction domain. This 

research calls for further research initiatives to refine and 

expand the application of cost-effective model 

personalization strategies to foster safer and more 

efficient human-robot collaborations in construction 

environments. 
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