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Abstract –  

Non-compliant rebar placement in reinforced 

concrete structures directly impacts the strength and 

durability of the overall structure. Current inspection 

methods heavily rely on manual techniques, 

introducing subjectivity and potential errors. This 

paper proposes a method for automatic quality 

inspection of rebar spacing using vision-based deep 

learning combined with RGBD camera. The method 

consists of three modules: (1) The image 

preprocessing module applies point cloud plane 

fitting techniques to eliminate the interference of the 

background rebar layer and rotate the image of the 

current rebar layer; (2) The recognition and 

localization module employs YOLOV8 keypoint 

detection algorithm to obtain pixel coordinates of 

rebar crosspoints, which are then transformed into 

spatial coordinates in the camera coordinate system; 

(3) The automatic inspection module proposes an 

automatic spacing measurement method based on the 

pixel coordinates of rebar crosspoints, enabling the 

inspection of all rebar spacings in the image and 

evaluating their compliance. Experimental results 

demonstrate the robustness of the pixel segmentation 

method, showcasing its applicability for compliance 

inspection with an average error of 2.65mm. The 

study concludes by suggesting potential directions for 

future research.  
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1 Introduction 

Rebar is a vital structural element in reinforced 

concrete structures, providing support and ensuring 

proper load distribution. The correct placement between 

rebars is vital for the overall quality, strength, and 

durability of the structure [1]. Building codes in many 

countries, such as China, specify allowable deviation for 

rebar placement, typically ±20mm for bidirectional rebar 

mesh [2], as shown in Figure 1. Currently, quality 

inspection for rebar placement is mainly focused on the 

concealed engineering acceptance stage before concrete 

casting. However, inadequate quality control during 

construction process can lead to potential issues such as 

rework, construction delays, and even catastrophic 

consequences [3]. Considering the sequential layering 

construction process involved in Multi-layered 

bidirectional rebar, monitoring rebar spacing should also 

adopt a layer-by-layer approach. Therefore, 

strengthening rebar quality inspection during the 

construction process is crucial to minimize errors and 

enhance structural safety. 

 

Figure 1. Illustration of the allowable deviation 

for rebar spacing 

Traditionally, rebar placement inspection relies on 

manual methods involving experienced inspectors, 

which are cumbersome, time-consuming, and error-

prone [4]. Recent advancements in computer vision 

technology have provided opportunities for automating 

dimensional quality inspection of reinforced concrete 

components. Current research has mainly focused on 

prefabricated components (e.g., precast panels and beams) 

[5][6][7],[8], with some exploring its application to rebar 

inspection [9][10],[11]. However, the reliance on 3D 

computer vision and point cloud models presents 

challenges such as complexity and limited automation. 

Therefore, there is an urgent need for a rapid, accurate 
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method to automatically inspect the dimensional quality 

of rebar. 

The image-based measurement method enables real-

time measurements [12], critical for monitoring rebar 

spacing layer by layer in the construction process. 

Existing algorithms struggle with interference from 

background rebar layers when inspecting the current 

layer. Kardovskyi et al. [13] employed Mask Region-

Based Convolutional Neural Network (Mask R-CNN) 

for single-layer rebar instance segmentation but did not 

extend it to double-layer bidirectional rebar. An et al. [14] 

proposed a method using images and a laser rangefinder 

but faced challenges in layer attribution for bidirectional 

rebar. Jin et al. [15] introduced a neural network-based 

method but required consistent camera distance and 

angle for effective depth filtering, posing limitations in 

practical applications. 

To address the aforementioned problems, this paper 

proposes a novel method for automatic quality inspection 

of rebar spacing using vision-based deep learning 

combined with RGBD camera. The key innovations are 

as follows: (1) Introducing a method to filter the 

background rebar layer using point cloud plane fitting, 

addressing interference in the current layer. (2) 

Presenting an automatic spacing measurement method 

based on the pixel coordinates of the rebar crosspoint for 

inspecting all rebar spacing in the image. (3) Proposing 

an intelligent end-to-end method for rebar spacing 

inspection. The feasibility and reliability of the proposed 

method are validated in physical double-layer 

bidirectional rebar structures.  

2 Theoretical method  

This paper presents a method for automatic quality 

inspection of rebar spacing using keypoint detection 

algorithm combined with RGBD camera. As shown in 

Figure 2, the automatic rebar spacing inspection consists 

of three modules: the image preprocessing, recognition 

and localization, and automatic inspection module. A 

detailed explanation is as follows.  

2.1 Image preprocessing module 

Obtaining the rebar pixels is crucial for spacing 

inspection. However, because of the feature similarity 

existing in double-layer bidirectional rebar, the back-

ground rebar layer could greatly influence the inspection 

of rebar spacing in the top layer. To extract the pixels 

belonging to the top layer, this paper employed a point 

cloud plane fitting technique based on depth information. 

Firstly, the RGB and depth images, captured by using the 

RGBD camera, are transformed into point clouds by 

incorporating the camera intrinsics, and then the 

passthrough filter is applied to denoise the point clouds, 

retaining the region of interest containing the rebar points. 

Subsequently, the denoised point clouds undergo 

RANSAC plane fitting algorithm, wherein various planes 

are segmented to obtain multiple point cloud planes along 

with their respective plane equations Ax + By + Cz + D 

= 0. Optimal plane parameters are determined through 

the minimization of aggregate vertical distances from 

each rebar layer's data points to the plane. To identify the 

point cloud plane containing the foremost rebar layer, 

considering that the coordinate reference system of the 

point cloud has its origin at the camera's position, the 

distance from the origin (0,0,0) to each point cloud plane 

is calculated, as shown in Equation (1). The plane with 

the shortest distance is identified as the point cloud plane 

of the current rebar layer. 

𝑑𝑖𝑠 =
|𝐷|

√𝐴2 + 𝐵2 + 𝐶2
 (1) 

To achieve automatic spacing inspection in Section 

2.3, it is essential to ensure that the rebar in the image is 

approximately parallel to the x and y axes. For images 

that do not meet this requirement, this paper employs a 

rotation-based processing approach, which involves 

rotating the point cloud plane of the current rebar layer 

with the rotation center at the coordinate origin (0,0,0). 

This paper determines the rotation angle by taking the 

minimum angle between each rebar and the xz plane in 

the current layer. Utilizing the RANSAC algorithm, the  

 

Figure 2. Flowchart of proposed formwork 
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spatial line fitting is applied to the point cloud plane of 

the current rebar layer, resulting in multiple rebar lines 

and their corresponding equations. Subsequently, the 

angle 𝜃𝑖  between each rebar line and the xz plane is 

calculated, as shown in Equation (2). By comparing these 

angles, the minimum value 𝜃min  is identified as the 

rotation angle. Correspondingly, the direction vector 

𝐴
→

min of the rebar line associated with 𝜃min is obtained. 

sin 𝜃𝑖 = |cos 𝜙𝑖| = |
𝐴
→

𝑖 ⋅ 𝑢
→

|𝐴
→

𝑖| ⋅ |𝑢
→
|
| (2) 

where 𝜙𝑖 is the angle between the direction vector of the 

rebar and the normal vector 𝑢
→
= (0,1,0) of the xz plane, 

𝐴
→

𝑖 is the directional vector of the rebar line defined by 

𝑦 = 𝐴
→

𝑖𝑥 + 𝐵𝑖

→

, 𝐵𝑖

→

 is the 3D intercept of the rebar line. 

𝐴
→

minxz is the projection of 𝐴
→

min on the xz plane. The 

rotation direction of the point cloud is determined by the 

z-axis component of the cross product 𝐴
→

min × 𝐴
→

minxz. If it 

is greater than zero, the rotation direction is 

counterclockwise; otherwise, the rotation direction is 

clockwise. Finally, the rotated point cloud plane is 

mapped into an image of the current rebar layer. After 

processing, the recognition of rebar crosspoints on this 

image effectively avoids interference from other rebar 

layers.  

2.2 Recognition and localization module 

2.2.1 Introduction to the YOLOV8 framework 

YOLOv8 from Ultralytics [16], the latest iteration of 

the YOLO-based object detection algorithm [17] series, 

boasts advanced capabilities encompassing object 

detection, instance segmentation, keypoint detection, 

tracking, and classification. By replacing the detection 

head of YOLOv8 with a pose detection head, it can be 

repurposed for keypoint detection. In contrast to existing 

keypoint detection algorithms, YOLOv8-pose eliminates 

the need for post-processing steps inherent in bottom-up 

algorithms to group detected keypoints into a target 

object, and also circumvents the top-down approach of 

first employing object detection algorithms to find 

bounding boxes and then conducting keypoint detection 

within each box. YOLOv8-pose introduces an end-to-end 

training method that associates all keypoints of the 

detected objects with bounding boxes. This model 

simultaneously learns the tasks of object detection and 

keypoint detection, employing a joint loss function to 

account for the correlation between the two tasks and 

shared features. 

The YOLOv8-pose model comprises the following 

key components: input, backbone network, neck network, 

and detection head, as shown in Figure 3. After under-

going the preprocessing outlined in Section 2.1, the 

images are scaled and subjected to data augmentation 

techniques such as mosaic and mixup before being input 

into the network. In the backbone, the C2f module based 

on cross stage partial (CSP) [18] and the SPPF module 

based on spatial pyramid pooling (SPP) [19] are used to 

extract image features to eliminate redundant operations 

and expedite feature fusion. The neck network combines 

the Feature Pyramid Network (FPN) [20] and the Path 

Aggregation Network (PAN) [21] structure, facilitating 

bidirectional fusion of low-level and high-level features, 

thereby improving the model detection performance 

across different scales. YOLOv8-pose uses a decoupled 

detection head to calculate the loss of localization and 

classification for bounding boxes and keypoints through 

four parallel branches of convolution. 

 

Figure 3. The network architecture of YOLOv8-pose 

2.2.2 Keypoint spatial localization 

The pixel coordinates of rebar crosspoints in the 

image can be predicted through the above keypoint 

detection algorithm. By integrating depth information 

and camera intrinsic parameters, these pixel coordinates 

can be transformed into spatial coordinates in the camera 

coordinate system.  
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Depth information can be obtained from the depth 

image. Camera intrinsic parameters are the inherent 

properties of a camera, including focal lengths (fx and fy), 

principal point coordinates (cx, cy), etc. The camera 

intrinsic matrix K is shown in Equation (3). 

𝐾 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

]  (3) 

For any given point, the transformation relationship 

between the camera coordinate system and the pixel 

coordinate system is described by Equation (4). 

𝑍𝑐 [
𝑢
𝑣
1
] = [

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [

𝑋𝑐

𝑌𝑐
𝑍𝑐

] = 𝐾 [

𝑋𝑐

𝑌𝑐
𝑍𝑐

] (4) 

where (u, v) is the coordinate in the pixel coordinate 

system, and (Xc, Yc, Zc) is the coordinate in the camera 

coordinate system.  

2.3 Automatic inspection module 

Through the aforementioned steps, the 3D spatial 

coordinates (Xc, Yc, Zc) and pixel coordinates (u, v) of all 

rebar crosspoints in the image have been obtained. This 

paper proposes a method for automatic spacing 

measurement based on the pixel coordinates of rebar 

crosspoints, aiming to obtain the rebar spacing values.  

This paper transforms the problem of measuring the 

rebar spacing into measuring the distance between two 

rebar crosspoints. Only the distance between adjacent 

crosspoints accurately reflects the spacing of adjacent 

rebars, as shown in Figure 4. Therefore, this paper 

defines the adjacent points for a given point as the four 

points closest to it in the up, down, left, and right 

directions. In terms of code implementation, two points 

are considered adjacent if they satisfy the following 

conditions: (1) one of the pixel coordinates of the two 

points is considered extremely close, which is equal to or 

less than a small threshold; (2) the other pixel coordinate 

is the minimum among all points satisfying the first 

condition. It is noted that a point is only connected to 

adjacent points on its right and above, excluding those on 

its left and below. This design ensures that there is no re- 

 

Figure 4. Schematic diagram of adjacent point spacing 

petition in distance measurements while traversing all 

points. 

By measuring the distances between all adjacent rebar 

crosspoints, all rebar spacing in the image can be 

obtained. Finally, based on the allowable deviation, 

assess whether these comply with the specified standards. 

3 Experiment setup 

The proposed method was tested on a double-layer 

bidirectional rebar cage with 8mm diameter rebar, as 

shown in Figure 5. The rebar cage, fabricated by spot 

welding at crosspoints, had dimensions of 2m × 0.2m × 

0.9m. The designed rebar spacing was 100mm×10 and 

200mm×5. In the experiment, data collection was 

performed using the Intel D435i camera device with the 

resolution of 848×480. The camera intrinsic parameters 

were specified as follows: fx = 606.946, fy = 607.077, and 

the principal point coordinates (cx, cy) = (418.495, 

250.889). The shooting distance from the camera lens to 

the rebar plane was approximately 300mm. Both RGB 

images and aligned depth images were acquired for 

analysis. Then the RGB images were depth-filtered and 

rotated to obtain images containing only the current layer 

of rebar pixels. However, due to the challenging task of 

accurately capturing the depth information of small-

diameter rebar with the camera, there were discontinuous 

areas in the segmentation effect, as shown in Figure 6. To 

expand the display of rebar pixels in the current layer, 

considering the linear nature of double-layer 

bidirectional rebar, this paper employed a row-column 

pixel display method. Specifically, if the number of rebar 

pixels in a row or column exceeded a certain threshold, 

all pixels in that row or column were displayed. The 

improved segmentation result is shown in Figure 6. But 

it is important to note that this method is primarily 

designed to address the poor performance of the Intel 

D435i camera in segmenting small-diameter rebar. 

This study utilized a total of 124 images as the dataset, 

all of which were captured under indoor laboratory 

conditions. Considering the small size and simplicity of 

the dataset, it was advisable to increase the proportion of 

the validation set. The dataset was split into a training set 

(65%) and a validation set (35%) to ensure accurate and  

 

Figure 5. The double-layer bidirectional rebar cage 
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Figure 6. Schematic of the row-column pixel 

display method 

robust prediction of model performance. 81 images were 

randomly selected for the training set, while the 

remaining 43 images constituted the validation set. 

Annotations were conducted on preprocessed RGB 

images, manually marked using the LabelMe tool to 

generate JSON files containing information such as 

image dimensions, object category names, coordinates of 

the four vertices of the bounding box, and coordinates of 

keypoints. Since the measurement of spacing is critically 

dependent on the accurate localization of pixels at rebar 

crosspoints, manual annotations points should ideally be 

positioned at the central point of intersection areas 

between two rebars to the greatest extent possible. 

Finally, the label files were converted from the JSON 

format to the TXT format suitable for YOLO training.  

The YOLOv8-pose network was trained on Python 

3.9 and PyTorch 2.0 environment. The training was 

conducted on the Windows 10 operating system with 

hardware specifications including an Intel(R) Core (TM) 

i5-10400F CPU @ 2.90GHz and NVIDIA GeForce RTX 

3060 GPU. The network training utilized the SGD 

optimizer with the following settings: learning rate of 

0.01, 100 training epochs, and batch size of 8. 

Furthermore, the images fed into the network were 

randomly cropped and resized to the uniform size of 

640×640 pixels. Data augmentation techniques were 

employed to enhance the training process.  

4 Experimental results and discussion 

4.1 Experimental result analysis 

First, the effects of image depth filtering and rotation 

were analyzed. Figure 7 shows the rebar segmentation 

effects with different camera distances and rebar 

diameters. To explore the impact of different distances 

on segmentation effects, the row-column pixel display 

method was not applied in this case. From Figure 7, it can 

be observed that at longer distances, both the 8mm and 

12mm diameter rebar exhibit pixel fracture or 

discontinuity. However, for thicker diameter rebar, the 

distance threshold at which this phenomenon occurs is 

larger and less frequent. The results indicate that, with 

increasing distance, the segmentation effect of a 

individual rebar gradually diminishes; At the same 

distance, thicker diameter rebar exhibit better segmenta- 

tion effect compared to their thinner counterparts. This 

may be attributed to the difficulty of the camera depth 

sensor in accurately capturing long-distant and smaller-

diameter rebar. Additionally, some background pixel 

points were retained after segmentation, possibly due to 

the interference of depth information by factors such as 

ambient noise and lighting variations.  

 

Figure 7. Segmentation effects for different distances and diameters  
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Figure 8. Segmentation effects for different rotation angles 

Figure 8 shows the segmentation effects of the rebar 

at various angles of rotation in the camera plane, with the 

camera positioned 300mm away from the rebar plane. 

Here, the row-column pixel display method were 

employed for the 8mm rebar to better show the effects of 

plane rotation. It can be observed from Figure 8 that, for 

different rotation angles and diameters of rebars, the 

rebars were roughly parallel to the x and y axes after 

processing, which achieved considerable effects. How-

ever, pixel segmentation based on depth information 

exhibits some background point clouds at the rebar 

boundary. This may lead to errors in the process of fitting 

the rebar lines, consequently affecting the accurate 

calculation of the rotation angle. Therefore, having a 

clear rebar boundary is crucial for obtaining precise 

rotation angle.  

Subsequently, the rebar crosspoint recognition and 

localization as well as the automatic spacing inspection 

methods were validated. After the images were processed 

by depth filtering and rotation, the trained YOLOv8-pose 

model was utilized for the prediction of rebar crosspoints, 

and their pixel coordinates were converted to 3D spatial 

coordinates relative to the camera coordinate system. 

Finally, the automatic spacing inspection module was 

utilized for rebar spacing inspection, with specific results 

shown in Figure 9. The errors between the rebar spacing 

inspection results and the manual measurement results 

are shown in Table 1, with an average error of 2.65 mm. 

Experimental results demonstrate the proposed method 

had high accuracy for rebar spacing inspection. By 

integrating these three modules, an end-to-end inspection 

process from image to result was achieved. 

 

Figure 9. The method for inspecting rebar spacing 

Table 1 Predicted rebar spacing and real results, and 

their errors in the image above  

 1 2 3 4 

Prediction (mm) 92.5 105.3 93.4 109.4 

Real result (mm) 95 102 92 106 

Error (mm) 2.5 3.3 1.4 3.4 

4.2 Limitations 

Rebar pixels segmentation based on depth 

information performs poorly in capturing small-diameter 

rebar. This is attributed to the challenge of accurately 

capturing depth information for small-diameter rebar 

through sensors. Additionally, factors such as ambient 

noise and lighting variations also introduce interference 

in the depth image, resulting in a few background pixels 
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being retained and making it difficult to clearly define the 

rebar pixel boundary.  

In rebar spacing inspection, the limitation in the 

camera field of view result in each capture covering only 

a local region of the rebar layer. The challenge lies in 

effectively integrating and processing these local images.  

5 Conclusion 

In this paper, a method for automatic detection of 

rebar spacing quality is proposed, which uses a keypoint 

detection algorithm combined with RGBD camera. This 

method comprises three consecutive modules: (1) an 

image preprocessing module that addresses the challenge 

of recognizing double-layer bidirectional rebar in the 

image by filtering the background rebar layer; (2) a 

module for the recognition and localization of rebar 

crosspoints, obtaining their spatial coordinates; (3) an 

automatic inspection module enabling rebar spacing 

measurement in the image. The integration of these 

modules allows for an end-to-end inspection from image 

to result. Experiment testing on rebar cages in the 

laboratory demonstrates the efficacy of the image 

preprocessing module in segmenting and rotating the 

current rebar layer. Importantly, this module exhibits 

robustness without constraints related to camera distance 

and rotation angle. Furthermore, the average error of 

rebar spacing inspection is 2.65mm, which can be used 

for compliance inspection. 

In future research, the proposed method will be 

validated in more complex scenarios, including 

construction sites and prefabrication plants. Additionally, 

advanced camera equipment and onboard platform will 

be utilized for autonomous image capture and inspection. 

For acceptance inspection, we will further refine its 

methodologies.  
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