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Abstract -

Traditional roof inspection methods rely heavily on man-

ual labour, which poses challenges in efficiency and safety.

In this paper, we propose an overall approach and 4 spe-

cific methods for slate detection in orthophotos of building

roof panels, using edge detection by Canny detector (Method

1), SAM (Segment Anything Model) (Method 2), SAM with

bounding box prompt (Method 3), and edge detection on

original SAM masks (Method 4). The methods are devel-

oped using a dataset composed of 4 sample roof segments

and 3 complete orthophotos from real roof panels. Method

4 reaches the best results (overall results for all slates: mIoU

= 0.67, Recall = 0.81) with Method 1 also performing well

(mIoU = 0.57, Recall = 0.74). Such performance demon-

strates the potential of the proposed approach and these

methods to provide a robust foundation for slate detection

and subsequently classification tasks.
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1 Introduction

Roof systems are a critical building fabric element serv-

ing to protect interior spaces and inhabitants against the

elements (in particular rain). Slated roof systems are com-

mon type of roofs in both historic and modern buildings,

requiring monitoring and timely maintenance to prevent

damages, including structural damages. This is being

made increasing challenging by climate change. As global

weather patterns become increasingly erratic, slated roofs

are subject to more frequent and severe fluctuations in

temperature, moisture, and wind intensity. These environ-

mental stressors can exacerbate the natural vulnerabilities

of slates, a metamorphic rock that, while durable, has spe-

cific material properties—such as its anisotropic nature

and inherent brittleness—that make it susceptible to dam-

age under variable climate conditions [1, 2]. Besides, the

nails used to secure slates can rust and fail. As a result,

slated roofs often experience a range of deterioration is-

sues, including broken, displaces, or detached (missing)

slates.

The repair and maintenance of slated roof necessitate a

targeted approach due to the localised nature of damage.

Given that damage typically affects individual slates rather

than large sections of the roof, restoration efforts often

focus on a slate-by-slate basis. This time-saving and cost-

effective approach is essential, not only to maintain the

structural integrity and aesthetic quality of roofs but also to

extend the lifespan of overall roofing systems. Therefore,

a meticulous analysis of each individual slate is warranted

to assess the type (if any) and extent of deterioration.

Current research on roof defect detection methods has

advanced from manual inspection towards automation.

For flat roofs, visual inspection by skilled experienced pro-

fessional, with auxiliary means by sensors such as electric

and ehermohygrometric methods, is the dominant method

for non-destructive testing [3]. But, to capture data from

buildings without the need for human access provision,

Unmanned Aerial Vehicle (UAV)-based close-range sens-

ing is increasingly used [4]. With the development of

Artificial Intelligence (AI), deep learning models such as

U-Net and HRNet are being developed to detect and cate-

gorise flat roof defects from aerial images, such as hollows,

swellings, etc. These defects show continuous and large-

area features [5]. In studies targeting at generic roof types,

Mostafa et al. [6] apply Convolutional Neural Networks

(CNNs) to classify roof damage types, achieving high ac-

curacy in prioritising repairs.

However, during the evaluation and repair process of

pitched roofs, workers must locate, assess, and restore in-

dividual slates at elevated heights, posing safety risks and

inefficiencies. This further underscores the importance of

precisely identifying the position and defect status of each

slate to enable targeted physical intervention. As a result,

pitched roofs, especially traditional pitched roofs, present

unique challenges for automated and remote inspection:

1. Different from flat roofs, defects (mostly structural dam-

ages) of slated roofs are linked to single slate units. There-

fore, defect detection should ideally start with slate map-

ping. 2. The complexity of slate arrangement and the

variability in appearance, alongside variations in lighting

and occlusions in roof images, further complicates auto-

mated analysis. 3. Defect categories of flat roofs differ
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from those of pitched roofs, making existing defect de-

tection model inapplicable. Addressing these challenges

necessitates an advanced methodology capable of detect-

ing individual slates and evaluating their condition in a

robust and scalable manner.

Using UAV-based photogrammetric reconstruction,

Digital Twin -based data processing, and Artificial Intel-

ligence have been shown to be useful to automated slated

roof monitoring Li et al. [7], from orthophoto generation

for each roof panel [8] to roof sub-component segmenta-

tion [9]. These processes realise the gradual deconstruc-

tion of roof in a more measurable and analysable way. To

further detect slate defects, one approach can be to first de-

tect each individual slate in the roof orthophotos, and then

classify each detected slate according to its condition, sup-

porting high-precision diagnostics that can automate and

streamline the repair process. This study proposes and

compares a few methods of detecting individual slates,

such as using traditional image processing in edge detec-

tion, the innovative Segment Anything Model (SAM).

2 Related work

2.1 Object detection using construction images

Image processing has emerged as a cornerstone of con-

struction informatics, facilitating automated analyses for

tasks like defect detection, progress monitoring, and ma-

terial classification. Among them, object detection is the

most common application. Simple yet effective techniques

such as thresholding (e.g., Otsu’s method) and filtering, are

commonly applied in crack detection [10]. Canny edge-

detector and watershed transformation are used in building

component (column) detection [11]

With the advent of deep learning, modern models are

built for object detection, like convolutional neural net-

works (CNNs), transformer-based vision architectures or

more advanced zero-shpt SAM. For example, CNN refine

input data for edge detection, making it easier for the net-

work to learn spatial features. Such integrations enable

applications like real-time construction site monitoring,

where drones capture data that is processed for safety anal-

ysis [12], equipment detection [13]. While SAM-related

research enables provide more accurate and comprehen-

sive results [14]. Image processing in construction not

only enhances operational efficiency but also addresses

challenges like labour shortages and the need for faster

project delivery, making it indispensable for modern con-

struction workflows.

Based on object detection, segmentation helps further

clarify the boundary of each object. To realise precise

segmentation, edge detection-based methods and direct

segmentation methods can be considered.

2.2 Edge detection -based methods

Traditional edge detection -based methods focus on ex-

plicitly identifying intensity discontinuities in images, of-

ten marking the boundaries of objects. These methods

typically involve gradient-based techniques, such as:

1. Canny Edge Detection combines Gaussian smooth-

ing, gradient calculation, non-maximum suppression,

and hysteresis thresholding to produce clean and pre-

cise edges [15].

2. Sobel and Prewitt Operators compute gradients in

horizontal and vertical directions to highlight regions

with high intensity variation, making them ideal for

detecting straight lines or simple contours [16, 17].

3. Laplacian of Gaussian (LoG) identifies edges by de-

tecting zero-crossings in the second derivative of the

image, providing robust results for blob-like struc-

tures [18].

Recent advancements in deep learning have signifi-

cantly enhanced traditional edge detection methods, shift-

ing from purely gradient-based approaches to data-driven,

learning-based frameworks. Modern edge detection meth-

ods leverage convolutional neural networks (CNNs) and

other architectures to achieve robust and adaptive per-

formance in diverse scenarios. For instance, models

like Holistically-Nested Edge Detection (HED) use deep

CNNs to learn hierarchical edge features, allowing for

precise edge maps with context-aware refinement [19].

Transformer-based approaches, such as DETR (DEtection

TRansformer), implicitly model edge-like information by

attending to boundary regions during object localisation

and segmentation tasks [20].

2.3 Segment Anything Model (SAM)

Segment Anything Model (SAM) is a groundbreaking

zero-shot learning model designed for universal image seg-

mentation. It is trained using segmentation dataset with

over 1 billion masks on 11M images. Unlike task-specific

models, SAM employs a flexible prompting mechanism,

enabling it to generalise across diverse image types and

tasks without fine-tuning. It accepts various prompts such

as points, bounding boxes, and even textual descriptions,

making it adaptable to many domains. For example, SAM

can segment complex natural scene images with minimal

human intervention, showcasing its versatility [21].

Traditional edge detection methods offer efficient,

lightweight solutions for extracting structural details, es-

pecially in scenarios where computational resources are

limited, while deep learning approaches excel in captur-

ing complex patterns and contextual information through

data-driven feature learning. SAM adds a high-level se-

mantic understanding to segmentation tasks, enabling pre-

cise object delineation across diverse and challenging vi-
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Figure 1. Approach overview

sual contexts.

3 Approach overview

Roof panels, and consequently roof panel orthophotos

come in various sizes. Since the performance slate detec-

tion algorithms is dependent on the size of the slates in

the processed image, it is necessary to process each roof

panel orthophoto in patches representing roofs at similar

scale. As a result, the overall pipeline for slate detection in

roof panel orthophotos includes the following three steps

(fig. 1):

1. Patch extraction: the image is split into an overlap-

ping set of patches;

2. Patch processing: slates are detected in each patch;

and

3. Patch detection merging: all detections are merged

in the original image.

Sections 4 to 6 detail those three steps.

4 Patch extraction

Small fixed-size patches (200×200 pixels) are extracted

from the complete slate images using a sliding window

approach. Square patches are the best option for inputting

in SAM model to prevent distortion. The step size is 25%

of the window size (i.e. 50 pixels), creating overlapping

patches. This ensures that each slate will appear fully in

at least one patch. The mask of the slated area in the

orthophoto is also a known input from the orthophoto

generation theory [8].

5 Slate detection

Four slate detection methods are investigated in this

study (see fig. 2). They are developed according to the

following logic: Method 1 is developed based on tradi-

tional image processing using edge detection. Thanks to

the well-developed AI model by meta, SAM, Method 2 is

developed by using SAM as is. However, as will be shown,

Method 2 shows lower performance than Method 1. As

a result, Methods 3 and 4 are investigated. Method 3 uses

the bounding boxes obtained using Method 1 as prompt to

SAM. Method 4 employs the same detection strategy of

Edge 

detection

Method 1

Original SAM

Method 2

Original SAM

Method 4

Edge detection

Edge detection

Method 3

Prompt + 

Original SAM

Bounding box Segmentation mask

Figure 2. Method development of slate detection

Method 1 but applied to the SAM segmentation map. The

4 methods are described in more detail in the following

sub-sections.

5.1 Method 1: Edge detection by Canny detector

The process of the application of Method 1 to each

patch is as follows:

1. Noise removal: Gaussian blur is applied to the patch

(or the overall image) to reduce noise.

2. Edge detection: The Canny edge detector is applied

to the patch, followed by oriented horizontal edge

detection using Sobel.

3. Slate row detection: Probabilistic Hough Transform-

based line detection is applied to the edge map to

identify horizontal slate rows in the image. Only

lines where the absolute difference between the y-

coordinates of the two endpoints is less than 10 are

retained. The most common distance between neigh-

bouring lines — which should correspond to the roof

panel exposure, also called margin — is calculated,

and any line whose distances to neighbouring lines

are smaller than the exposure is discarded. Similarly,

lines are added between pairs of lines whose distance

is twice (or three times) the exposure. The final set of

lines is used to split the image into strips, with each

strip expected to contain one slate row.

4. Slate detection: For each slate row, the average verti-

cal grayscale value is computed across the strip, and

valleys in this resulting 1D signal are assumed to

correspond to the locations of vertical boundaries

between slates in the strip, and the strip is seg-

mented correspondingly into boxes defining initial

slate boundaries, The slates boxes detected across all

strips are gathered in the patch.

5. Slate detection filtering: Boxes that contain more

than 90% black pixels (i.e. background pixels in the

orthophoto that are not part of the roof panel) are

discarded as noise.

6. Slate detection adjustment: Because slates may not

be laid in a strict horizontal direction, each slate box is

slightly resized by locally adjusting their top and bot-

tom edges to better match the local minimum average

grayscale along the edges. The resizing is restricted
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Figure 3. Method 4 pipeline, left to right: grayscale
image - SAM segmentation mask - line extraction
based on Hough Transform - strip extraction - strip
valley calculation - box visualisation - box shifting.

within a distance set to 30% of the slate exposure.

5.2 Method 2: Original SAM

In Method 2, the original SAM is used without any

other input to generate the probability map of segments,

followed by a segmentation mask by setting the threshold

as the median value of the entire probability map. Bound-

ing boxes are then generated by extracting the largest con-

nected components after removing noise (small objects,

pixel count < 25) and smoothing edges. Due to the tran-

sition area from slate to slate gap, segments by SAM tend

to be smaller than the actual slates. Therefore, a two pixel

extension is added to the four boundary sides to make the

boxes closer to reality and touch each other. Theoretically,

this approach may be able to better generalise than Method

1, since SAM offers strong generalisation capabilities and

high-level semantic understanding.

5.3 Method 3: SAM with bounding box from edge
detection as prompt

In Method 3, the original SAM is used with the bound-

ing box information from Method 1 used as prompt, with

the aim of increasing the probability of a slate segment

inside the box while retaining the theoretical capability of

SAM to detect slates that may not have a rectangle appear-

ance. The detection box refinement steps of Method 1 are

then applied the same way.

5.4 Method 4: Edge detection by original SAM mask

Because we noticed that the segmentation masks pro-

duced by SAM have clear slate boundaries, possibly

clearer than in the original grayscale image, in Method 4

SAM is applied to the grayscale image, outputting a proba-

bility map indicating pixel-level segmentation confidence.

By setting the threshold as the median probability value, a

segmentation mask is generated to which the Canny edge

detector of Method 1 is applied. The detection box re-

finement steps of Method 1 are then applied the same

way.

6 Patch slate detection results merging

All slate detections from all patches are gathered in

the overall roof panel orthophoto. The resulting set of

detections contains redundant detections from overlapping

detections as well as boxes with abnormal sizes (noise).

To merge and filter those results, the following steps are

applied:

1. Boundary boxes: Boxes located on the boundary of

overlapping patches are discarded.

2. Small boxes: Boxes whose height or width is < 0.5×

ěĮĦĥĩīĨě are discarded, but only if > 90% of the

area of the orthophoto covered by the box is already

covered by another box.

3. Redundant boxes: Non-Maximum Suppression

(NMS) is used to discard redundant (overlapping)

boxes. When boxes are overlapping, NMS keeps

the most significant one based on a predefined

Intersection-over-Union (IoU) threshold (0.3). How-

ever, like above, a box is discarded only if > 90%

of the area of the orthophoto that it covers is already

covered by another box.

7 Experimental results

7.1 Dataset

The dataset used in the study is a set of orthophotos

obtained from real slated roof panels using the method

in [7]. The orthophotos are of roof panels with different

shapes and deterioration conditions (see fig. 7) . Panel

A and B are expected to be easier due to their smaller

size, while Panel C is much larger and has the highest

deterioration level. The three panels collectively contain

5,386 slates. Ground Truth (GT) labelling for each slate

is done manually with axis-aligned bounding box (even

though some slates are not rectangular). The results are

presented for sample images first and then for the overall

roof panels.

7.2 Performance evaluation metrics

Recall and Intersection over Union (IoU) are widely

used metrics for evaluating object detection and segmen-

tation tasks. Recall helps evaluate how well a model iden-

tifies all objects in an image, while IoU provides a robust

measure of spatial overlap between predicted and ground

truth (GT) regions[22]. Slate detection performance is

thus evaluated here using both Recall and IoU. Note that

each predicted box is matched to the GT box with highest

IoU, and classified according to the IoU value as sum-

marised below:

• TP (True Positive), if ąĥđ >= 0.5.

• FP (False Positive), if 0.1 <= ąĥđ < 0.5. It is further

classified into:
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(a) Segment 1. (b) Segment 2.

(c) Segment 3.

Figure 4. Three segments extracted from the three
roof panels.

Method mIoU Recall
1 0.86 0.97
2 0.62 0.65
3 0.76 0.89
4 0.86 0.97

Table 1. Performance (mIoU and Recall) of the four
slate detection methods applied to the three sample
orthophoto segments.

– FP - Over segmented, if GT box size > Predic-

tion box size.

– FP - Under segmented, if GT box size < Pre-

diction box size.

• FN (False Negative), if ąĥđ < 0.1.

Overall performance is evaluated using:

• mIoU, the mean IoU values;

• Recall, the proportion of slates correctly detected.

7.3 Detection results on sample roof segment

Results using the 4 different methods were first obtained

for three roof segments extracted from the three panels,

shown in fig. 4. The results for the three segments are

summarised in table 1, and results can be visualised for

one segment in fig. 5.

Note that the slates located at the boundaries of the

segments are typically incomplete, and should thus be

discarded from the performance analysis. The three seg-

ments collectively contain 202 non-boundary slates, and

114 discarded boundary slates, and the results in table 1

are obtained by considering only the non-boundary slates.

The first observation is that Method 1 clearly outper-

forms Method 2. Method 2 performs poorly because

some its segmentation map sometimes includes small

connections between the detecting areas of neighbouring

slates leading to the detection of one large (that is subse-

quently filtered out) instead of two slates.

(a) Method 1.

(b) Method 2.

(c) Method 3.

(d) Method 4.

Figure 5. Slate detection results obtained by the four
methods on Segment 2 (White: Boundary; Green:
TP; Blue: FP - Over Segmented; Yellow: FP - Under
segmented; Red: FN).
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(a) Segment 1 by Method 1. (b) Segment 3 by Method 1.

(c) Segment 1 by Method 4. (d) Segment 3 by Method 4.

Figure 6. Visualisation of results obtained with
Method 4 for Segments 1 and 3.

The results of Method 3 demonstrate an obvious im-

provement compared to Method 2. The bounding box

prompt helps increase the probability of segments inside

each prompt bounding box, making Method 3 distinguish

individual slates more robustly than Method 2.

Method 4 performs even better, to a similar level to

Method 1. However, because of the mechanism behind

the two methods (Canny detector and SAM segmentation

mask), they differ in their sensitivity to edges, resulting in

both methods seemingly failing in different locations.

fig. 6 show the results obtained with Method 4 on the

remaining two segments.

7.4 Detection results on complete slate images

The results obtained for the three orthophoto segments

in section 7.3 clearly show the superiority of Method 1

and Method 4. Therefore the performance on the complete

orthophotos is now evaluated for only those two methods.

The results are summarised in table 2 and those obtained

with Method 4 can be visually explored in fig. 7. Note

that the analysis distinguishes the performance with and

without boundary slates, that are the slates whose GT

box intersects the slate mask, i.e. intersect the orthophoto

background of black pixels. The reason for this distinction

is that boundary slates typically present a greater range of

shape (e.g. truncated) and appearance (e.g. presence of

leadwork pixels), which may challenge the detectors.

Overall, Method 4 performs best, with ģąĥđ = 0.67

and ĎěęėĢĢ = 0.81. The better seems because the SAM

segmentation map demonstrates clearer slate boundaries

than the Canny edge detector. Such advantage is more

obvious in the complete orthophotos that include a broader

range of complex shape and conditions (e.g. boundary

slates, holes, etc.).

However, Method 4 still makes a number of errors. For

example, there are a lot of noisy bounding boxes generated

in areas containing biological growth (see the upper and

right part of Panel C). The uneven brightness in the bottom

Method Panel Non-boundary All slates
mIoU Recall mIoU Recall

1
A 0.72 0.89 0.68 0.85
B 0.57 0.78 0.54 0.73
C 0.57 0.75 0.56 0.73

Overall 0.58 0.77 0.57 0.74

4
A 0.78 0.93 0.76 0.91
B 0.63 0.83 0.59 0.78
C 0.69 0.83 0.67 0.81

Overall 0.69 0.84 0.67 0.81

Table 2. Comparison between different segmenta-
tion methods in raw slate images.

part of Panel A also affects the vertical slate edge detec-

tion, leaving some non-boundary slates undetected. The

unclear slate boundary in the top part of Panel B results in

more slates detected in FP (Under segmentation) status.

The comparison of the results for all slates and non-

boundary slates shows a drop of 2 percentage points in the

performance for all slates. As noted above, a drop was

expected due to the fact that boundary slates tend to have

a greater range of shapes and appearance. However, the

drop appears to be only minor.

8 Discussion

The results of Method 1 and Method 4 already demon-

strate promising results, with mIoU=0.67 and recall=0.81

for Method 4 and mIoU=0.57 and recall=0.74 for Method

1, which can form the basis for defect assessment of in-

dividual slates, e.g. through classification. However, the

orthophoto quality noticeably influences the accuracy, es-

pecially in Panel B where the slates at the bottom of the

panel are not as clear. This motivates further work to

improve data collection and orthophoto generation. Be-

sides, FPs are noticed to be common in areas where there

is the presence of biological growth. Therefore, methods

should be explored to better discriminate slate boundaries

from biological growth in the image input to the Hough

Transform-based line detection (from Canny edge detector

or SAM segmentation map).

We note that the proposed slate segmentation approach

is designed for typical traditional slated roofs (laid in in

horizontal rows) and does not require any roof-specific pa-

rameters. The approach is thus applicable to most slated

buildings. However, slated roofs may at times have differ-

ent patterns, with slates cut and laid in other ways (e.g. fish

scale patterns). For those roofs, Method 1 and Method

4 would not be applicable, but Method 3 could prove

suitable.

Finally, while SAM is shown to be able to highlight edge

features, some alternative deep learning model for image

segmentation (and slate detection) could be explored.
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(a) Panel A.

(b) Panel B.

(c) Panel C.

Figure 7. Visualisation of complete slate image results obtained by Method 4.

9 Conclusion

This study proposed an overall approach and 4 spe-

cific methods for slate detection in orthophotos of building

roof panels, comparing: edge detection by Canny detec-

tor (Method 1), SAM (Method 2), SAM with bounding

box prompt from Method 1 (Method 3), and edge de-

tection on the original SAM mask (Method 4). All four

methods were first evaluated on three cropped orthophoto

segments, and Method 1 and Method 4 stood out with

similar and high mIoU (0.86) and Recall (0.97). The two

methods were then further evaluated on complete roof

panel orthophotos, on which Method 4 showed superior

performance. The results highlight the encouraging lev-

els of performance of Method 1 and Method 4, but also

their difficulty in areas containing significant biological

growth and their sensitivity to roofs acquired in poorly lit

conditions. Their distinct performance in different areas

also suggest that future research could — alongside evalu-

ating the methods on more extensive datasets — possibly

explore integrating their results.
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