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Abstract 
One main challenge in the full automation of 

building code compliance checking is in the extraction 
and transformation of building code requirements 
into computable representations. Semantic rule-
based approach has been taken mainly due to its 
expected better performance than machine learning-
based approach on this particular task. With the 
recent advancement in deep learning AI, particularly 
the launch of ChatGPT by OpenAI, there is a 
potential for this landscape to be shifted given the 
highly regarded capabilities of ChatGPT in 
processing (i.e., understanding and generating) 
natural language texts and computer codes. In this 
paper, the author preliminarily explored the use of 
ChatGPT in converting (i.e., extracting and 
transforming) building code requirements into 
computer codes, and compared it with the results 
from cutting-edge semantic rule-based approach. It 
was found that comparing to the semantic rule-based 
approach, the conversion results from ChatGPT still 
has limitations, but there is a great potential for it to 
help speed up the implementation and scale-up of 
automated building code compliance checking 
systems. 
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1 Introduction 
Automated building code compliance checking has 

been one promising application of artificial intelligence 
(AI) since its inception. Earlier efforts, however, mainly 
hard-coded building code requirements into computable 
representations. While effective in addressing various 
types of building code requirements, the large amount of 
efforts required in such hard-coding tasks coupled with 
the large number and different types/versions of building 
codes adopted at different authorities having jurisdictions 
(AHJs), in fact prohibited automated building code 
compliance checking systems from easy scaling up or 
even implementation in the field in the first place. In the 

last two decades or so, efforts have been made to 
automatically or semi-automatically convert building 
code requirements from natural language texts into 
computable representations. Such efforts are considered 
critical in overcoming this major barrier to full 
automation of code compliance checking systems. Semi-
automated approach requires manual labeling (or 
marking up) of the building code requirements using 
predefined tag set such as Requirement, Applicability, 
Selection, and Exceptions (RASE) [1] which was used in 
the SMARTcodes builder software of International Code 
Council [2]. While the improvement was salient 
comparing to the hard-coding approach, such semi-
automated approach still failed to lead to wide 
implementation or scaling up of automated building code 
compliance checking systems. When it comes to 
investigating full automation of information extraction 
from building codes and their transformation into 
computable representations, two main approaches have 
been taken: machine learning-based and rule-based. In 
spite of the high initial rule development efforts required 
in the rule-based approach, it has been shown to achieve 
better performance than machine learning-based 
approach (e.g., 96.9% precision vs. 93.1% precision; 94.4% 
recall vs. 92.9% recall) [3,4]. Now, with the highly 
promising launch of GPTChat of OpenAI which 
inundated the AI community and our society at large 
recently, can the landscape of automated conversion of 
building codes into computable representations be shifted? 
To answer this question, the author conducted an initial 
but systematic investigation of the capabilities of 
GPTChat on this task, and compared it with the cutting-
edge rule-based approach. 

2 Background 
In the automated processing (i.e., extraction and 

transformation) of building code requirements, for both 
rule-based approach and machine learning approach, 
natural language processing (NLP) techniques are 
employed. This section provides some relevant 
backgrounds in NLP, information extraction, building 
code compliance checking, and GPTChat.  



2.1 Natural language processing 
Natural language processing (NLP) aims to enable 

computers to understand and process natural human 
languages in a human-like manner [5]. It is an important 
field of AI, with multiple NLP-based systems 
benchmarking milestones of AI development such as the 
ELIZA ChatterBot program developed by Joseph 
Weizenbaum at MIT in the 1960s [6] and the IBM 
Watson that outperformed human champions in the 
“Jeopardy!” game in 2011 [7].  

In construction research, NLP has been used to 
analyze and process various types of construction 
documents to: automate the classification of project 
documents [8]; extract key elements of change orders [9]; 
identify poisonous clauses or extract concepts and 
relations from construction contracts [10,11]; review and 
analyze construction specifications [12-15]; extract 
precursors and outcomes from construction injury reports 
[16]; and retrieve similar construction risk cases for 
project risk management [17]. Nora El-Gohary’s group 
pioneered the use of NLP in analyzing and processing 
building codes [3,18-20].  

2.1.1 Information Extraction 

Information extraction is a classic task/application in 
NLP, together with others such as part-of-speech tagging, 
named entity recognition, word sense disambiguation, 
information retrieval, etc. While information retrieval has 
achieved huge success in the commercial sector as 
represented by popular search engines such as Google 
Search and Microsoft Bing Search, information 
extraction is a similar but slightly different task in terms 
of: (1) results being monotonous; and (2) task provided 
with predefined information template. Information 
extraction is typically the first step of converting building 
code requirements to computable representations, with 
machine learning and rule-based as the two main 
approaches used [3,4]. In addition, semantic modeling 
has played important roles in this task, by 
enabling/augmenting extraction algorithms with 
semantic relations and associations, and simplifying 
disambiguation at the word level and phrase level.  

2.1.2 Machine Translation 

Machine translation aims to translate one language 
into another using computers. It is an even more 
important task to help with automated conversion of 
building codes to computable representations, comparing 
to information extraction. Modern machine translation 
algorithms predominately took a machine learning 
approach. Because features are the main ingredient of 
machine learning models, and feature engineering can be 
a labor-intensive task, information extraction is 
sometimes used to help generate features for training 
machine learning models.  

In spite of the maturity of machine translation tools 
and techniques, the direct application of machine 
learning models to conquering the building code 
conversion problem has been under-investigated.  

2.2 Building code compliance checking 
Building code compliance checking is traditionally an 

intelligent manual task that requires deep expertise in the 
architecture, engineering, and construction (AEC) 
domain. The manual compliance checking operation is 
time-consuming, costly, and subjective/error-prone [3,4]. 
Efforts in automating the code compliance checking task 
date back to the 1960s when Fenves et al. [21] encoded 
American Institute of Steel Construction (AISC) 
specifications into decision tables. Since then there have 
been many efforts in automating the compliance 
checking for various building regulations such as those 
summarized in [22,23]. However, these efforts/systems 
still hard-code building code requirements or at most 
provided pre-defined templates to allow some flexibility 
in defining rules to reflect code requirements. A more 
efficient and flexible conversion of building codes into 
computable representations would significantly increase 
the usability of such systems. In view of that, the author 
jumped on a journey to harness the power of NLP and 
other modeling and AI techniques to pursue full 
automation of building code compliance checking 12 
years ago and created semantic NLP-based information 
extraction and transformation algorithms that can 
automatically convert building code requirements into 
logic programs.  

2.3 GPTChat 
“GPT-Chat is a GPT-3 based conversational AI that 

allows users to interact with the language model to 
generate human-like text. GPT-Chat uses OpenAI's GPT-
3 model, which is a state-of-the-art language model that 
has been trained on a massive dataset of text data. It can 
generate text that is highly coherent and contextually 
appropriate, making it well-suited for a wide range of 
natural language processing tasks such as text generation, 
language translation, and question-answering.” [24]. 
This is the definition provided by GPTChat when asked 
“What is GPTChat?”  

Trained using Reinforcement Learning from Human 
Feedback (RLHF) and fine-tuned using Proximal Policy 
Optimization (PPO), GPTChat has been demonstrated 
strong capabilities (close to completely correct and only 
required minor manual adjustments) in generating and 
translating computer codes (especially Python and Java, 
at the time of test) based on natural language human 
instructions [25,26,27]. In the context of building code 
conversion, the following questions naturally emerge: 
How well can GPTChat convert building code 
requirements to computer codes? How will the 



performance compare to the state-of-the-art rule-based 
conversion? 

3 Approach 
This study is explorative in nature. A simple 

comparative evaluation approach is taken by comparing 
the conversion results on representative regulatory 
requirements.  

4 Experiment 
Regulatory requirements from International Building 

Codes in different types and in an increasing level of 
complexity were selected, consistent with the test cases 
developed in the author’s previous studies for automated 
code compliance checking [3,18].  

The tool used to generate logic programs is the most 
recent version of the semantic NLP-based automated 
compliance checking (SNACC) system which was 
initially described in [28,29] and has been constantly 
refined with more training data [30]. Although SNACC 
could batch process regulatory requirements, for better 
clarity in the comparative evaluation, the selected 
regulatory requirements were processed/tested one at a 
time. Then the same regulatory requirement was formed 
as a question/command in form of “Please convert “…” 
into Python code.” where the “…” will be replaced by 
the regulatory requirement (RQ) text with the double 
quotes surrounding it reserved (see an example in Fig. 1). 

Time measurement was performed for both 
conversion processes on each RQ. When using the 
SNACC, time benchmarking function in Java was used 
to tell/record the start and finish times of the conversion 
process, whereas the processing time in GPTChat was 
measured using an online timer. Note that the GPTChat 
also automatically generated code explanations the time 
consumption of which was not included.  

Figure 1. Example question/command in GPTChat. 

5 Experimental Results and Analysis 
The experimental results are listed below. 

RQ1: “Spacing of transverse reinforcement shall not 
exceed 8 inches.” [31] 

Logic rules generated by SNACC: 
compliance_Spacing_of_transverse_reinforcement1(Tra
nsverse_reinforcement):-
spacing(Spacing),transverse_reinforcement(Transverse
_reinforcement),has(Transverse_reinforcement,Spacing
),not greater_than(Spacing,quantity(8,inches)).  

check_Spacing_of_transverse_reinforcement1(X):-
(compliance_Spacing_of_transverse_reinforcement1(X)
->writeln((X,is,compliant,with,section,1904-
3,rule1));writeln((X,is,noncompliant,with,section,1904-

3,spacing,should,be,not,greater_than,8,inches,rule2))). 
Python code generated by GPTChat: Figure 2. 
Time consumption by SNACC: 21.32 s. 
Time consumption by GPTChat: 12.75 s. 

Figure 2. Python code for RQ1 by ChatGPT 

Code explanation generated by GPTChat: “This code 
defines a variable 
‘max_transverse_reinforcement_spacing’ that holds 
the maximum allowed spacing of transverse 
reinforcement in inches, and a function 
‘check_transverse_reinforcement_spacing’ that takes 
an object as an input (could be a class or instance) that 
represent the transverse reinforcement and compares its 
spacing property to the maximum allowed spacing. If the 
spacing is greater than the maximum allowed spacing, 
the function will output a message indicating that the 
spacing exceeds the limit, otherwise it will output a 
message indicating that the spacing meets the limit.” 

RQ2: “Courts shall not be less than 3 feet in width.” 
[32] 

Logic rules generated by SNACC: 
compliance_width_of_courts1(Courts):-

courts(Courts),width(Width),has(Courts,Width),not 
less_than(Width,quantity(3,feet)).  

check_width_of_courts1(X):-
(compliance_width_of_courts1(X)->writeln((X,is,compl
iant,with,section,1904-
3,rule1));writeln((X,is,noncompliant,with,section,1904-
3,width,should,be,not,less_than,3,feet,rule2))). 

Python code generated by GPTChat: Figure 3. 
Time consumption by SNACC: 20.58 s.  
Time consumption by GPTChat: 11.16 s. 

Figure 3. Python code for RQ2 by ChatGPT 

Code explanation generated by GPTChat: “This code 
defines a variable ‘min_court_width’ that holds the 
minimum required court width in feet, and a function 



‘check_court_width’ that takes a court as an input and 
compares its width to the minimum required width. If the 
width of the court is less than the minimum required 
width, the function will output a message indicating that 
the court width does not meet the requirement, otherwise 
it will output a message indicating that the court width 
meets the requirement.” 

RQ3: “The unit shall have a living room of not less 
than 220 square feet of floor area.” [32] 

Logic rules generated by SNACC: 
compliance_unit1(Unit):-

unit(Unit),living_room(Living_room),has(Unit,Living_r
oom),floor_area(Floor_area),has(Living_room,Floor_a
rea),not 
less_than(Floor_area,quantity(220,square_feet)).  

check_unit1(X):-
(compliance_unit1(X)->writeln((X,is,compliant,with,sec
tion,1904-
3,rule1));writeln((X,is,noncompliant,with,section,1904-
3,rule2))). 

Python code generated by GPTChat: Figure 4. 
Time consumption by SNACC: 20.45 s.  
Time consumption by GPTChat: 12.41 s. 

Figure 4. Python code for RQ3 by ChatGPT 

Code explanation generated by GPTChat: “This code 
defines a variable ‘min_living_room_area’ that holds 
the minimum required living room area in square feet, 
and a function ‘check_living_room_area’ that takes a 
unit as an input and compares its living room area to the 
minimum required area. If the living room area of the unit 
is less than the minimum required area, the function will 
output a message indicating that the living room area 
does not meet the requirement, otherwise it will output a 
message indicating that the living room area meets the 
requirement.” 

RQ4: “The thickness of concrete floor slabs 
supported directly on the ground shall not be less than 
31/2 inches.” [31] 

Logic rules generated by SNACC: 
compliance_thickness_of_concrete_floor_slabs_sup

ported1(Concrete_floor_slabs_supported):-
thickness(Thickness),concrete_floor_slabs_supported(C

oncrete_floor_slabs_supported),has(Concrete_floor_sla
bs_supported,Thickness),ground_prep(Ground),on(Con
crete_floor_slabs_supported,Ground),not 
less_than(Thickness,quantity(31/2,inches)).  

check_thickness_of_concrete_floor_slabs_supported
1(X):-
(compliance_thickness_of_concrete_floor_slabs_suppor
ted1(X)->writeln((X,is,compliant,with,section,1904-
3,rule1));writeln((X,is,noncompliant,with,section,1904-
3,thickness,should,be,not,less_than,31/2,inches,rule2))). 

Python code generated by GPTChat: Figure 5. 
Time consumption by SNACC: 19.03 s. 
Time consumption by GPTChat: 17.22 s. 

Figure 5. Python code for RQ4 by ChatGPT 

Code explanation generated by GPTChat: “This code 
defines a variable ‘min_concrete_thickness’ that holds 
the minimum required thickness of concrete floor slab 
supported directly on the ground in inches, and a function 
‘check_concrete_thickness’ that takes an object as an 
input (could be a class or instance) that represent the slab, 
checks if it is supported directly on the ground and 
compares its thickness property to the minimum required 
thickness. If the thickness is less than the minimum 
required thickness, the function will output a message 
indicating that the slab does not meet the requirement, 
otherwise it will output a message indicating that the slab 
meets the requirement.” 

RQ5: “Occupiable spaces, habitable spaces and 
corridors shall have a ceiling height of not less than 7 feet 
6 inches.” [32] 

Logic rule generated by SNACC:  
compliance_Occupiable_spaces1(Occupiable_space

s):-
(occupiable_spaces(Occupiable_spaces);habitable_spa
ces(Occupiable_spaces);corridors(Occupiable_spaces))
,ceiling_height(Ceiling_height),has(Occupiable_spaces
_habitable_spaces_corridors,Ceiling_height),not 
less_than(Ceiling_height,quantity(7,feet)),associated(O
ccupiable_spaces,Habitable_spaces),associated(Occupi
able_spaces,Ceiling_height).  

check_Occupiable_spaces1(X):-
(compliance_Occupiable_spaces1(X)->writeln((X,is,co
mpliant,with,section,1904-
3,rule1));writeln((X,is,noncompliant,with,section,1904-



3,rule2))). 
Python code generated by GPTChat: Figure 6. 
Time consumption by SNACC: 18.04 s. 
Time consumption by GPTChat: 17.99 s. 

Figure 6. Python code for RQ5 by ChatGPT 

Code explanation generated by GPTChat: “This code 
defines a variable ‘min_ceiling_height’ that holds the 
minimum required ceiling height in inches (7 feet 6 
inches converted to inches), and a function 
‘check_ceiling_height’ that takes a space as an input, 
checks if it is of type "occupiable", "habitable", or 
"corridor", and compares its ceiling height to the 
minimum required height. If the ceiling height of the 
space is less than the minimum required height, the 
function will output a message indicating that the space 
does not meet the requirement, otherwise it will output a 
message indicating that the space meets the requirement.” 

RQ6: “Bars shall not be smaller than No. 4 and shall 
have a total area of not less than 0.002 times the gross 
cross-sectional area of the footing.” [31] 

Logic rule generated by SNACC: 
compliance_Bars1(Bars):-

bars(Bars),times_gross_cross_sectional_area(Times_gr
oss_cross_sectional_area),footing(Footing),has(Footin
g,Times_gross_cross_sectional_area),not 
less_than_or_equal(Bars,quantity(1,no_4)). 

compliance_Total_area3(Total_area):-
total_area(Total_area),times_gross_cross_sectional_ar
ea(Times_gross_cross_sectional_area),footing(Footing)
,has(Footing,Times_gross_cross_sectional_area),not 
less_than(Total_area,quantity(0.002,Times_gross_cross
_sectional_area)),associated(Total_area,Times_gross_c
ross_sectional_area). 

check_Bars1(X):-
(compliance_Bars1(X)->writeln((X,is,compliant,with,se
ction,1904-
3,rule1));writeln((X,is,noncompliant,with,section,1904-
3,bars,should,be,not,less_than_or_equal,1,no_4,rule2))). 

check_Total_area3(X):-
(compliance_Total_area3(X)->writeln((X,is,compliant,
with,section,1904-
3,rule3));writeln((X,is,noncompliant,with,section,1904-
3,total_area,should,be,not,less_than,0.002,times_gross_
cross_sectional_area,rule4))). 

Python code generated by GPTChat: Figure 7. 

Time consumption by SNACC: 19.45 s. 
Time consumption by GPTChat: 21.03 s. 

Figure 7. Python code for RQ6 by ChatGPT 

Code explanation generated by GPTChat: “This code 
defines a variable ‘min_bar_size’ that holds the 
minimum required size for bars in the footing, a variable 
‘min_bar_area_ratio’ that holds the minimum required 
ratio of total area of bars to the gross cross-sectional area 
of the footing, and a function 
‘check_footing_reinforcement’ that takes an object as 
an input (could be a class or instance) that represent the 
footing and check each bar in the footing against the 
minimum required size, and the minimum required ratio 
of total area of bars to the gross cross-sectional area of 
the footing. If any bar does not meet these requirements, 
the function will output a message indicating that the 
footing reinforcement does not meet the requirement, 
otherwise it will output a message indicating that the 
footing reinforcement meets the requirements.” 

RQ7: “Any room with a furred ceiling shall be 
required to have the minimum ceiling height in two thirds 
of the area thereof, but in no case shall the height of the 
furred ceiling be less than 7 feet.” [32] 

Logic rules generated by SNACC: 
compliance_a_furred_ceiling1(A_furred_ceiling):-

room(Room),a_furred_ceiling(A_furred_ceiling),has(Ro
om,A_furred_ceiling),minimum_ceiling_height(Minimu
m_ceiling_height),area(Area),height(Height),furred_cei
ling(Furred_ceiling),has(Furred_ceiling,Height),has(F
urred_ceiling,A_furred_ceiling),have_in(Room,quantity
(2/3,Area)),not less_than(Height,quantity(7,feet)).  

check_a_furred_ceiling1(X):-
(compliance_a_furred_ceiling1(X)->writeln((X,is,compl
iant,with,section,1904-
3,rule1));writeln((X,is,noncompliant,with,section,1904-
3,rule2))). 

Python code generated by GPTChat: Figure 8. 
Time consumption by SNACC: 20.54 s. 



Time consumption by GPTChat: 24.45 s. 

Figure 8. Python code for RQ7 by ChatGPT 

Code explanation generated by GPTChat: “This code 
defines a variable ‘min_ceiling_height’ that holds the 
minimum required ceiling height in inches (7 feet 
converted to inches), a variable 
‘min_ceiling_height_ratio’ that holds the minimum 
required ratio of the area of furred ceiling to the room 
area, and a function ‘check_furred_ceiling_height’ that 
takes a room as an input, checks if it has a furred ceiling, 
if yes it compares its ceiling height and furred ceiling area 
to the minimum required” 

RQ8: “In dwellings assigned to Seismic Design 
Category D or E, the height of the wall shall not exceed 
8 feet, the thickness shall not be less than 71/2 inches, 
and the wall shall retain no more than 4 feet of 
unbalanced fill.” [31] 

Logic rules generated by SNACC: 
compliance_Height_of_wall1(Height):-

dwellings(Dwellings),in_prep(Wall,Dwellings),assigned
_to(Dwellings,Seismic_Design_Category_D_or_E),seis
mic_design_category_d_or_e(Seismic_Design_Categor
y_D_or_E),height(Height),wall(Wall),has(Wall,Height),
thickness(Thickness),unbalanced_fill(Unbalanced_fill),
not greater_than(Height,quantity(8,feet)). 

compliance_Thickness_of_wall3(Thickness):-
dwellings(Dwellings),in_prep(Wall,Dwellings),assigned
_to(Dwellings,Seismic_Design_Category_D_or_E),seis
mic_design_category_d_or_e(Seismic_Design_Categor
y_D_or_E),height(Height),wall(Wall),thickness(Thickne
ss),has(Wall,Thickness),unbalanced_fill(Unbalanced_fil
l),not less_than(Thickness,quantity(71/2,inches)). 

compliance_Unbalanced_fill_of_wall5(Unbalanced
_fill):-
dwellings(Dwellings),in_prep(Wall,Dwellings),assigned
_to(Dwellings,Seismic_Design_Category_D_or_E),seis
mic_design_category_d_or_e(Seismic_Design_Categor
y_D_or_E),height(Height),wall(Wall),thickness(Thickne

ss),unbalanced_fill(Unbalanced_fill),has(Wall,Unbalan
ced_fill),not 
greater_than(Unbalanced_fill,quantity(4,feet)). 

check_Height_of_wall1(X):-
(compliance_Height_of_wall1(X)->writeln((X,of,wall,is
,compliant,with,section,1904-
3,rule1));writeln((X,of,wall,is,noncompliant,with,sectio
n,1904-
3,height,should,be,not,greater_than,8,feet,rule2))). 

check_Thickness_of_wall3(X):-
(compliance_Thickness_of_wall3(X)->writeln((X,of,wal
l,is,compliant,with,section,1904-
3,rule3));writeln((X,of,wall,is,noncompliant,with,sectio
n,1904-
3,thickness,should,be,not,less_than,71/2,inches,rule4))). 

check_Unbalanced_fill_of_wall5(X):-
(compliance_Unbalanced_fill_of_wall5(X)->writeln((X,
of,wall,is,compliant,with,section,1904-
3,rule5));writeln((X,of,wall,is,noncompliant,with,sectio
n,1904-
3,unbalanced_fill,should,be,not,greater_than,4,feet,rule
6))). 

Python code generated by GPTChat: Figure 9. 
Time consumption by SNACC: 20.50 s. 
Time consumption by GPTChat: 27.52 s. 

Figure 9. Python code for RQ8 by ChatGPT 

Code explanation generated by GPTChat: “This code 
defines a variable ‘max_wall_height’ that holds the 
maximum allowed height of the wall in feet, a variable 
‘min_wall_thickness’ that holds the minimum required 
thickness of the wall in inches, a variable 
‘max_unbalanced_fill’ that holds the maximum allowed 
unbalanced fill that the wall should retain, and a function 
‘check_wall_requirement’ that takes an object as an 
input (could be a class or instance) that represent the 
dwelling and checks if the dwelling is assigned to seismic 
design category” 



5.1 Analysis 
It was found that with the increase of complexity in 

the regulatory requirement, the processing time of 
SNACC stayed relatively flat whereas the processing 
time of GPTChat stably increased (Figure 10). This can 
be caused by the inherent complexity of GPTChat’s deep 
learning models which is much more complex than the 
rule-based core of SNACC. 

In terms of the quality of the conversion results, both 
SNACC and GPTChat captured the logic in each 
regulatory requirement reasonably well. One interesting 
observation is that the Python codes generated by 
GPTChat did not directly handle units of measures in 
most cases. For example, “8 inches” will be implemented 
as the numeric value 8 with the unit of measure “inches” 
left to the comment section. In one case, it did convert “7” 
feet to “7*12” inches but still only kept the numeric value 
in the code and left the units to the comment section. Yet, 
based on the code explanations automatically generated, 
it appeared GPTChat did clearly understand the meaning 
and the use of units of measures. In addition, the code 
explanations appear to be smooth natural language 
without any error (some has period in the end some has 
not). Another finding was that the GPTChat struggled a 
little bit in dealing with domain-specific concepts such as 
the “No. 4” size bars. The Python code generated directly 
treated “No. 4” size of bars as the numeric value “4”. 
Without domain knowledge in construction, it will be 
difficult to use this Python code in compliance checking 
applications.  

Figure 10. Time Consumption of SNACC and 
ChatGPT 

6 Conclusion 
Automated conversion of building code requirements 

into computable representations is one main barrier to the 
full automation of building code compliance checking, 
and thus in turn one main barrier to the wide 
implementation and scale-up of automated building code 
compliance checking systems. The state of the art in 
building code conversion still favored rule-based 
approach which had better performance than machine 

learning-based approach. The recent development in 
deep learning especially the release of GPTChat has a 
potential to shift that landscape. To investigate if that is 
the case, the author did a preliminary but systematic set 
of tests on eight building code requirements with 
different types and increasing levels of complexity. The 
most recent semantic NLP-based automated compliance 
checking (SNACC) system was comparatively evaluated 
with GPTChat in converting each of the regulatory 
requirement. SNACC converted requirements into logic 
rules, whereas GPTChat converted requirements into 
Python codes. It was found that the processing time curve 
by SNACC was relatively flat with regard to the 
complexity of regulatory requirements whereas the 
processing time by GPTChat stably increased. This could 
be due to the nature of deep learning behind GPTChat 
which is inherently more complex than the rule-based 
algorithm behind SNACC. Furthermore, the Python 
codes generated did not explicitly treated units of 
measures, and it will require construction domain 
knowledge to modify the Python codes to use them in 
practical building code compliance checking tasks. In 
conclusion, the GPTChat did not immediately change the 
landscape in building codes conversion research but it 
has great potential to facilitate a faster implementation 
and even scaling up of existing automated code 
compliance checking systems by reducing the amount of 
efforts needed in coding. Furthermore, providing specific 
domain knowledge as part of the prompt could further 
improve the results, which the author is planning to test 
in his future work. More holistic testing in the future is 
also planned to use precision, recall, F1-measure, ROC 
curve, etc.  
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