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Abstract  

For construction site monitoring, the use of seg-

mentation-based computer vision technology has 

been proposed. In such environments, the main tech-

nical challenge is the generation of data for training 

the segmentation model. The training data for a seg-

mentation model involves polygon annotation of ob-

jects within an image, which is a time-consuming task. 

To address this issue, this study proposes a new ap-

proach that uses the YOLOv8 object detection model 

to predict bounding box labels and inputs these into a 

Segment Anything Model (SAM) to automatically 

generate polygon label data. The performance of the 

YOLOv8 model exceeded 80%, and the automatic 

generation of polygon labels through SAM resulted in 

an IoU range of 55-86%, producing high-quality 

mask label data. This approach significantly reduces 

the time, labor, and cost associated with the labeling 

process. 

 

Keywords – Polygon label generation, Instance seg-

mentation, Zero-shot learning 

1 Introduction 

The construction industry is recognized globally as 

one of the most hazardous sectors, with a high incidence 

of injuries and fatalities [1]. Global statistics indicate that 

the fatality and injury rates in the construction industry 

are three and two times higher, respectively, than the av-

erage for other industries [2]. 

Faced with this high rate of accidents, the construc-

tion industry is progressively adopting advanced digital 

technologies such as Digital Twins (DT), Building Infor-

mation Modeling (BIM), Artificial Intelligence (AI), the 

Internet of Things (IoT), and Smart Vision (SV) to im-

prove efficiency, productivity, accuracy, and safety[3]. 

The introduction of these technologies represents a con-

tinuous effort to transition from traditional industrial 

practices and manufacturing methods to autonomous 

smart systems [4], and the construction industry has in-

novated its work processes through the digitalization of 

project management processes, gradually improving 

competitiveness [5].  

Traditional methods of construction site monitoring 

often involve manual inspections and assessments, which 

are not only time-consuming but also prone to human er-

ror[6]. The application of computer vision technologies 

for site monitoring has emerged as a pivotal tool [7,8], 

significantly enhancing safety and progress management. 

Computer Vision-based systems offer a more efficient, 

accurate, and real-time alternative to traditional monitor-

ing methods[9]. However, the efficacy of such systems is 

heavily reliant on the quality of the training data used to 

develop them, particularly in the context of object seg-

mentation models [10]. 

The process of generating polygon annotations for the 

training of segmentation models has historically been a 

labor-intensive and time-consuming task [6]. These an-

notations are crucial for teaching models to accurately 

identify and segment various objects in a construction 

setting, such as equipment and personnel. The challenge 

is further compounded when adapting deep learning 

models to new domains, a process that traditionally re-

quires extensive manual data annotation[6,11]. 

Recent advancements in deep learning have seen the 

exploration of few-shot learning and domain adaptation 

methods [12,13]. These techniques aim to reduce the re-

liance on large volumes of manually annotated training 

data when adapting models to new domains. However, 

the performance of segmentation models trained using 

these methods remains suboptimal. There is a notable 

lack of research focused on the preparation of polygon 

annotations for construction objects, despite the potential 

benefits they offer, such as monitoring personal protec-

tive equipment (PPE) compliance. 

Addressing this gap, this research proposes an inno-

vative method for the automatic generation of polygon 

masks, which serve as training data for segmentation 

models. This method leverages the capabilities of an in-

stance segmentation model, utilizing detection results 

(bounding boxes) as inputs to fully automate the polygon 

mask generation process. Specifically, the study employs 

the "You Only Look Once version 8" (YOLOv8) [14] for 

predicting bounding boxes of construction objects. These 

bounding boxes are then used as prompts for the Segment 

Anything Model (SAM)[15], which generates the poly-

gon masks. 
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To validate the effectiveness of the proposed method, 

experiments were conducted using the Moving Objects 

in Construction Sites (MOCS) dataset [16]. This dataset 

encompasses a comprehensive range of construction ob-

jects including workers, various types of vehicles, and 

equipment. The experimental design involved training 

the model with 19,404 images and testing it with a sepa-

rate set of 4,000 images. The results indicate that the pol-

ygon masks generated by the method are comparable to 

those produced through manual human annotation, with 

an Intersection over Union (IoU) deviation ranging from 

10.8% to 34.6%. 

This research makes significant contributions to the 

field of computer vision in construction engineering. 

Firstly, it presents a method to automatically generate 

polygon annotations without the need for human involve-

ment, thus streamlining the training process for segmen-

tation models. Secondly, it demonstrates the quality and 

viability of automatically generated segmentation masks 

derived from detection results.  

2 Related work  

In the field of computer vision, the development of 

deep learning models heavily relies on the quality and 

quantity of training data. Particularly, segmentation mod-

els require pixel-level labeling data, a process that con-

sumes approximately ten times more resources in terms 

of labor and cost compared to bounding box labeling for 

object detection models [17]. In this experience, the prep-

aration of polygon masks takes ten to twenty times more 

efforts than the preparation of bounding box labels. This 

challenge becomes more complex in dynamic environ-

ments such as construction sites, where the constant 

movement of equipment and machinery necessitates di-

verse data collection. To overcome these challenges, the 

construction domain has conducted active research in 

various ways such as synthetic data generation, zero-shot 

or few-shot learning, and domain adaptation.  

2.1 Synthetic data generation 

Synthetic data has emerged as a key solution to alle-

viate the time and labor burdens associated with prepar-

ing data for model training. There has been research uti-

lizing synthetic data for visual data analysis in infrastruc-

ture management, automating the data collection process 

to address labor-intensive and time-consuming issues 

[18]. Additionally, studies have been conducted on ac-

quiring scaffolding point cloud data through Mobile La-

ser Scanning (MLS) and utilizing it for training data in 

construction sites [19]. 

2.2 One-shot or few-shot learning 

One of the key challenges in the advancement of 

segmentation model, especially supervised learning 

models, is effectively recognizing object with limited 

training data. Many models require a substantial amount 

of training data for each class, but obtaining sufficient 

data for certain classes can often be challenging. To ad-

dress this issue, new learning paradigms such as few-shot 

and one-shot learning methods [20,21] have been pro-

posed. These approaches utilize knowledge from in-

stances of various classes to enable effective learning 

even with a small number of instances, aiming to over-

come additional challenges such as classifying instances 

of classes that have not been encountered before [22]. 

2.3 Domain Adaptation 

Domain adaptation addresses performance degrada-

tion due to differences in data distribution between 

source and target domains. Enhancing model perfor-

mance by adding data from the target domain similar to 

the source domain has been explored. Particularly, self-

training techniques, which involve using a trained model 

to predict labels on unlabeled data and utilizing it as train-

ing data, have been researched to improve the generali-

zation capabilities of models [6]. 

2.4 Knowledge gap of previous studies 

Despite the advancements in these technologies, the 

need for human annotation remains a crucial element in 

the training process of segmentation models, especially 

when the model is applied to a new target domain. Hu-

man annotation ensures the quality and accuracy of data, 

playing a vital role in reflecting the complexity and di-

versity of construction environments in the data. Based 

on this context, this study proposes a new methodology 

that can automatically generate training data, emulating 

the characteristics of human-annotated data. 

The methodology developed in this research utilizes 

SAM to automatically generate high-quality training data 

comparable to human annotation. This presents an oppor-

tunity to effectively enhance the performance of deep 

learning models, particularly in complex and dynamic 

environments like construction sites. The automated data 

generation process can significantly replace the time-

consuming and costly tasks performed by human annota-

tors, providing rich training data in a faster and more 

cost-efficient manner. 

3 Proposed Method  

3.1 Overview of the proposed method 

To automatically generate polygon masks of con-

struction objects, the proposed method, as shown in Fig. 

1, is divided into 2 steps, as follows: 
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1) Training the YOLOv8 object detection model 

using the MOCS training dataset to predict 

bounding boxes on the test dataset.  

2) Polygon mask generation using the Segment 

Anything Model (SAM)  

3.1.1 Object detection model training and bound-

ing box prediction 

You Only Look Once version 8 (YOLOv8) [14,23] is 

the latest model that enables fast and accurate object de-

tection, similar to the human visual system. This model 

performs the process of classifying objects within an im-

age and determining their location information through a 

single inference. Among the YOLO series, YOLOv8 has 

established itself as the preferred architecture in applica-

tions requiring fast inference speeds by providing the 

highest mAP performance and inference speed on the Mi-

crosoft Common Object in Context (MS COCO) dataset 

[24].  

Despite these capabilities, performance degradation 

occurs due to visual differences between the training do-

main and the intended application domain (target do-

main), which is more pronounced in complex environ-

ments like construction sites. Therefore, to maximize the 

model's performance for a specific domain, it is essential 

to optimize or retrain the model's weights for the target 

domain data. In this study, the YOLOv8 model pre-

trained on the COCO dataset was retrained on the MOCS 

dataset. The re-trained YOLOv8 model was used to pre-

dict bounding boxes of target construction object classes 

(see Fig.2 listing the target object classes). 

3.1.2 Automated polygon mask generation with 

predicted bounding box 

This study utilizes the Segment Anything Model 

(SAM), an instance segmentation model, which serves as 

a foundational model in the field of computer vision, aim-

ing for the universality like that of ChatGPT. This model 

was trained on the 1.1 billion SA-1B dataset and pos-

sesses the capability to perform segmentation of various 

objects through simple prompt input [25]. SAM can pro-

cess various forms of prompts, including masks, bound-

ing boxes, points, and text, enabling the automatic gener-

ation of polygon label data [15,17]. The proposed method 

leverages SAM to efficiently generate high-quality poly-

gon label data within construction site environments. 

Specifically, the bounding box prediction information for 

construction site objects predicted by the YOLOv8 

model is used as input prompts, generating accurate pol-

ygon label data. This methodology automates the gener-

ation of polygon mask data in complex and dynamic con-

struction site environments by integrating prompt-based 

systems with the latest computer vision model, SAM, re-

placing labor-intensive data labeling tasks in the target 

domain. 

4 Experiments 

4.1 Experimental Settings 

4.1.1 Computer & Datasets 

The experiments were conducted on systems 

equipped with 4 NVIDIA GeForce RTX 4090 GPUs run-

ning on Ubuntu 20.04 operating system. The Moving Ob-

jects in Construction Sites (MOCS) dataset was utilized, 

comprising 19,404 training images and 4,000 validation 

images. All target classes (Worker, Static crane, Hanging 

head, Crane, Roller, Bulldozer, Excavator, Truck, Loader, 

Pump truck, Concrete mixer, Pile driving, Other vehicle) 

were used. This data was used to train a YOLOv8 object 

detection model, which was then utilized to predict 

bounding boxes on the MOCS validation dataset com-

posed of 4,000 images. The MOCS dataset includes pub-

licly available images for training, validation, and testing; 

however, bounding boxes and polygon annotations are 

only provided for the training and validation datasets, 

which limits the use of the test dataset. Therefore, the per-

formance of the fully trained model was evaluated using 

the validation dataset. The predicted bounding boxes and 

original images were inputted into SAM to generate pol-

ygon mask label data, and the IoU of these extracted 

mask labels was calculated. To compare the accuracy of 

the generated mask label data, ground truth bounding 

boxes and original images were inputted into SAM to cal-

culate the IoU, and finally, the differences between the 

two results were compared. 

4.1.2 Model selection & hyperparameters 

In this experiment, the largest 'x' model of the 

YOLOv8, pre-trained on the COCO dataset, was used. 

Although this model has a large number of parameters, 

resulting in longer training times, it was selected for its 

outstanding performance on the COCO dataset. Addi-

tionally, a threshold of 0.5 was set for the bounding boxes 

predicted by the detection model, and the extracted 

bounding boxes were used as prompt values for SAM. 

4.1.3 Model training 

The hyperparameters set for YOLOv8 training in-

cluded an image size of 1280*720 HD, 300 epochs, a 

batch size of 16, and a learning rate of 0.01. The epochs 

were adjusted to 300 to correspond with the quality of the 

data. Additionally, data augmentation techniques such as 

Mixup and Copy-Paste were incorporated into the train-

ing process. 
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5 Experimental Results 

5.1 Detections results of YOLOv8 

As shown in Table 1, the mAP results, which are the 

primary performance metrics for the YOLOv8 detection 

model trained on the MOCS dataset. The target class that 

exhibited the highest performance was 'Excavator' with 

mAP of 94.2%, while the lowest performing target class 

was 'Crane' with mAP of 77.7%. Despite a considerable 

number of instances in the Worker class as shown Fig. 2, 

which could have led to concerns about model bias, the 

model still achieved high performance. 

 

Figure 1. Overview of proposed method 

 

 
Figure 2. Number of instances each class in the 

MOCS dataset 

5.2 SAM Result 

Table 2 shows the results of the Segment Anything 

Model. The IoU values for masks generated by inputting 

predicted bounding boxes and original images into SAM 

were calculated and compared with those of masks cre-

ated using actual ground truth bounding boxes. The most 

substantial discrepancy was observed in the 'Concrete 

Mixer' class with approximately 21%, and the smallest 

discrepancy was in the 'Bulldozer' class with about 3%. 

These figures provide crucial information on how accu-

rately SAM classifies and labels objects across various 

classes. 

These results indicate that SAM can generate poly-

gon labels with relatively higher accuracy for certain 

classes of objects, while exhibiting lower accuracy for 

others. This suggests a critical interplay between the per-

formance of the SAM algorithm and characteristics of 

objects such as their features, shapes, sizes, and colors. 

Understanding this interaction is vital in improving the 

algorithm of SAM and enhancing its detection and la-

beling performance for specific classes. 
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Figure 3. Original images and generated polygon labels 

6 Discussion 

Performance of YOLOv8 to generate bounding box 

prompts for SAM: In this study, the performance of the 

YOLOv8 object detection model was evaluated based on 

the mean Average Precision@50 (mAP@50) metric, 

showed an impressive result of 85.8% in the average 

mAP across all classes. Additionally, the mAP perfor-

mance for each class was observed to range between 77% 

and 94%, further emphasizing the model's excellence 

(see Table 2). According to the study by Xuehui et al. 

[16], when other models such as YOLOv3 and Faster R-

CNN were applied to the MOCS test dataset, they 

showed relatively low performances with mAP at 9.99% 

and 66.59%, respectively. However, the direct compari-

son between the previous methods [16] and our method 

is not possible as the test datasets were different (This 

study used the MOCS validation dataset because the 

ground truth of the MOCS test dataset is not publicly 

available).  

Quality of generated polygon annotations: Further-

more, the Intersection over Union (IOU) of polygon 

mask labels generated by inputting predicted bounding 

boxes to SAM was measured between 55% to 86% 

among the target classes. In contrast, when actual ground 

truth bounding boxes were input into SAM, the IOU was 

evaluated to be between 65% and 89%. There was a per-

formance difference of 5% to 22% between polygon label 

data generated by these two methods.  

In the study by Chern et al. [26], a dataset having a 

single target class per image was used, and the model's 

Pseudo Label (P.L), Refined Pseudo Label (Refined P.L), 

and Feature Pyramid Networks (FPN) performance for 

target classes Background, Dump truck, Excavator, 

Mixer truck, Roller ranged between 48.48% and 78.76%. 

This demonstrated that the IOU performance of mask la-

bels generated by SAM for all classes was higher. 

These results illustrate the competitiveness of the pro-

posed system to generate target domain annotations in a 

fully automated manner, reducing the labor and cost in-

volved in bounding box labeling. These results offer the 

possibility of automatic training data generation in com-

plex environments like construction sites.  

As shown in Fig. 3, instances were identified where 

ground truth labeling for certain objects was inaccurately 

applied. In some cases, polygon annotations generated by 

SAM were more accurate than the original annotations. 

These factors are considered to have contributed to the 

observed decline in overall performance. 

6.1 Limitation & Future study  

Several key limitations were identified in the pro-

cess of automatically generating polygon mask label data. 

Firstly, it was revealed that the detection performance for 

small objects with a low number of pixels within the im-

age was low. If small objects’ bounding boxes were not 

accurately detected, SAM was not able to generate poly-

gon masks for those objects. Secondly, SAM experienced 

difficulties in generating accurate mask labels in areas 

where the object's features are similar to the background. 

For example, as shown in Fig. 4, the generated polygon 

annotations by SAM are more accurate compared to the 

annotations by humans. This was particularly pro-

nounced in situations involving objects partially ob-

scured by other objects. While SAM generates masks 

without considering the obscured parts, ground truth data 

includes the obscured portions of objects in the polygon 

masks. Since the exact shape of objects hidden behind 

obstructions cannot be known, the predicted polygons by 

SAM are more accurate than the original masks in these 
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respects. Additionally, some ground truth annotations 

were represented differently from the actual objects’ ap-

pearance. These factors are deemed to have negatively 

impacted the overall performance of SAM. 

7 Conclusion 

This study presents the automated polygon annota-

tion generation method using YOLOv8 for an object de-

tector and SAM for an annotation generator. The experi-

mental results showed promising results, with quality an-

notations comparable to the ground truth, as shown in 

Figure 3. These results provide important implications 

for the accuracy and reliability of generating polygon la-

bel data in complex environments like construction sites. 

Therefore, future research should focus on improving the 

performance of the object detection model and 

optimizing the SAM model. Through this, more accurate 

and reliable generation of polygon label data is expected, 

contributing to the expansion of the application scope in 

the fields of deep learning and computer vision. 
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Figure 4. Original image (Left), Ground truth mask (Center), SAM predicted mask (Right) 

 

 

Table 1. mAP performance for each class of object detection 
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Table 2. SAM result on MOCS dataset 
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