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Abstract –  

Infrastructure inspection requires balancing 
coverage and detail for effective assessment. This 
paper presents a multi-robot inspection system 
combining aerial and ground platforms through a 
hierarchical approach. A hexacopter drone performs 
rapid site mapping, while specialized ground robots 
(hexapod and tracked variants) conduct detailed 
inspections. The system implements bidirectional 
learning where aerial mapping guides ground robot 
deployment, while ground inspection data refines 
aerial strategies. Multi-modal sensor data integration 
uses an Extended Kalman Filter framework to create 
unified structural health representations. 
Experimental results demonstrate 96.3% feature 
extraction accuracy, sub-millimeter registration 
between sensors, 3.2-second anomaly response time, 
and 99.7% collision-free operation. The system shows 
significant potential for inspecting large-scale 
infrastructure including bridges, industrial facilities, 
and power plants. 
Keywords – 

Multi-robot Inspection; Infrastructure 
Assessment; Sensor Fusion; Hierarchical Strategy; 
Bidirectional Learning. 

1 Introduction  
Infrastructure forms the backbone of modern society, 

enabling transportation, energy distribution, and 
industrial operations. Maintaining this critical 
infrastructure is essential for ensuring public safety, 
economic stability, and operational reliability. However, 
traditional manual inspection methods face significant 
challenges, including time constraints, labor intensity, 
and accessibility limitations, particularly in large-scale or 
hazardous environments [1,2]. 

Recent advances in robotic inspection systems have 
demonstrated promise in addressing these challenges 
through automation [3–5]. Single-platform solutions, 
such as autonomous drones or ground robots, offer 
improved efficiency and accessibility compared to 

manual methods [6–8]. However, these systems often 
struggle to balance comprehensive coverage with 
detailed examination. Aerial platforms excel at rapid site 
mapping but typically lack the resolution for detailed 
structural analysis, while ground robots provide high-
fidelity inspection data but are limited by slower 
operational speeds and restricted mobility. Furthermore, 
existing robotic inspection systems typically operate with 
limited adaptability, following predetermined paths 
without the capability to dynamically adjust their 
strategies based on real-time environmental feedback [9]. 
This rigid approach can result in inefficient resource 
utilization and potentially missed critical areas, 
particularly in complex or evolving inspection 
environments. 

This paper presents a novel multi-robot inspection 
system that addresses these limitations through a 
hierarchical strategy combining aerial and ground 
platforms. The system employs a specially equipped 
hexacopter drone featuring 30m-range LiDAR, 4K RGB 
imaging, and high-resolution thermal sensors for 
preliminary site mapping, working in concert with 
specialized ground robots - a hexapod capable of 
navigating 30° inclines and a tracked variant offering 
0.1mm crack detection resolution.  

A key innovation of our approach lies in its 
bidirectional learning mechanism, where inspection 
strategies are continuously refined through real-time data 
sharing between platforms. The aerial module efficiently 
generates preliminary site maps using RANSAC-based 
segmentation for feature extraction, while ground robots 
provide high-fidelity inspection data through contact-
based sensors and close-range imaging. This 
collaborative approach is enhanced by a sophisticated 
sensor fusion framework that integrates visual, thermal, 
and LiDAR data through an Extended Kalman Filter, 
achieving sub-millimeter registration accuracy. The 
system implements a market-based task allocation 
strategy with token-based access control, enabling 
efficient coordination between platforms while 
preventing inspection conflicts. This coordination is 
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further optimized through a Q-learning based adaptation 
framework that continuously refines inspection strategies 
based on accumulated experience and environmental 
feedback. Experimental results demonstrate 96.3% 
accuracy in feature extraction and 3.2-second anomaly 
response time. The system maintains 99.7% collision-
free operation while reducing overall inspection time, 
establishing new benchmarks for automated 
infrastructure assessment. These achievements suggest 
the potential for widespread adoption in various 
infrastructure maintenance applications, from bridge 
inspection to industrial facility assessment. 

2 Related Works  
Infrastructure inspection has evolved significantly 

from traditional manual methods to increasingly 
automated approaches. Manual inspection methods, 
while detailed, face substantial challenges including time 
constraints, labor intensity, and accessibility limitations 
[10]. These limitations become particularly acute in 
large-scale infrastructure inspection, where human 
inspectors often struggle to access critical areas safely 
and efficiently [11]. Recent advances in robotics have 
introduced various single-platform solutions for 
infrastructure inspection. Aerial platforms, particularly 
UAVs, have demonstrated considerable success in rapid 
large-scale inspections. Tu and Liang [6] developed a 
UAV-based bridge inspection system achieving 
comprehensive coverage through automated flight paths. 
However, these aerial systems typically sacrifice detail 
for coverage area. 

Multi-robot systems have emerged as a promising 
solution to address the limitations of single-platform 
approaches. Cacace et al. [12] demonstrated the 
advantages of combining aerial and ground robots for 
industrial facility inspection, but their approach did not 
implement bidirectional learning between platforms.  
Yang et al. [13] explored a hierarchical inspection 
strategy for bridge monitoring, albeit without a 
comprehensive sensor fusion framework. More recent 
studies have advanced multi‐ robot sensor fusion by 
emphasizing robustness and adaptability. For instance, 
Amorim et al. [14] introduced a modified particle filter 
that robustly fuses visual data from multiple robots to 
track targets even under severe occlusion, effectively 
mitigating sensor limitations. Zhou et al. [15] leveraged 
graph neural networks to combine multi‐view visual 
information, significantly enhancing individual robot 
perception accuracy and resilience to sensor failures. 
Sensor fusion techniques have become increasingly 
crucial in infrastructure inspection. Huang et al. [16] 
developed a framework for integrating visual and thermal 
data in structural assessments, while Nam et al. [17] 
implemented LiDAR-visual fusion for enhanced defect 

detection. However, these approaches typically focus on 
single-platform applications.  

Adaptive path planning and learning mechanisms 
represent a growing focus in robotic inspection systems. 
Zhang et al. [18] implemented reinforcement learning for 
optimizing UAV inspection paths, while Zhao et al. [8] 
developed adaptive navigation strategies for ground 
robots in complex environments. The integration of 
market-based task allocation in multi-robot systems, as 
demonstrated by [19], has shown promise in optimizing 
resource utilization, though primarily in controlled 
laboratory settings. 

3 Methodology  
The multi-robot inspection system combines 

complementary aerial and ground platforms. The aerial 
drone uses 3D point cloud technology for large-scale 
mapping and identifying regions of interest. Ground 
robots (hexapod and tracked variants) perform detailed 
inspections of these areas with high-resolution sensors, 
enabling in-depth structural analysis. 

3.1 System Architecture 
As shown in Fig. 1, the system architecture is 

designed to facilitate seamless communication and 
collaboration between the aerial and ground platforms. A 
centralized control system coordinates the activities of 
both modules, ensuring an efficient and adaptive 
inspection workflow. Each platform is equipped with 
wireless communication modules to enable real-time data 
sharing and bidirectional learning. 

The aerial module consists of a custom-designed 
hexacopter drone equipped with an integrated sensor 
suite. At its core is a primary LiDAR sensor offering 30m 
range with 0.5° angular resolution, complemented by a 
4K RGB camera providing a 120° field of view. Thermal 
imaging capabilities are delivered through a FLIR 
(Forward Looking Infrared) camera with 640×512 
resolution. An onboard computing unit handles real-time 
data processing, while an RTK (Real-Time Kinematic) 
GPS system ensures precise positioning with ±2cm 

 
Figure 1. System with inspection phases overview 
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accuracy. 
Two specialized ground robots complement the aerial 

system. The first is a hexapod robot featuring a 6-legged 
configuration with 18 degrees of freedom. This platform 
can carry a 2.5kg sensor payload and navigate terrains 
with up to 30° incline. Its sensor package includes high-
resolution contact sensors for surface analysis and close-
range LiDAR for detailed geometric mapping. 

The second ground platform is a tracked robot 
designed for stability and precision. Operating at a 
maximum speed of 0.5 m/s, it incorporates an integrated 
stabilization system for precise measurements. The robot 
carries a specialized surface crack detection camera 
capable of 0.1mm resolution at 10cm distance for 
comprehensive structural analysis. 

The proposed multi-robot inspection system 
integrates aerial and ground platforms. The system state 
at time t can be represented as: 

 

𝑆𝑆(𝑡𝑡) =  �𝑃𝑃𝑎𝑎(𝑡𝑡),𝑃𝑃𝑔𝑔(𝑡𝑡),𝑀𝑀(𝑡𝑡),𝑅𝑅(𝑡𝑡)� (1) 
 

where 𝑃𝑃𝑎𝑎(𝑡𝑡)represents the aerial platform state, 𝑃𝑃𝑔𝑔(𝑡𝑡) the 
ground robot states, 𝑀𝑀(𝑡𝑡) the environmental map, and 
𝑅𝑅(𝑡𝑡) the set of identified regions of interest.  

The aerial platform state is defined as: 
 

𝑃𝑃𝑎𝑎(𝑡𝑡) = [𝑥𝑥𝑎𝑎(𝑡𝑡), 𝑣𝑣𝑎𝑎(𝑡𝑡),𝜔𝜔𝑎𝑎(𝑡𝑡),𝐸𝐸𝑎𝑎(𝑡𝑡)]𝑇𝑇 (2) 
 

where 𝑥𝑥𝑎𝑎(𝑡𝑡) ∈ ℝ3  is position, 𝑣𝑣𝑎𝑎(𝑡𝑡) ∈ ℝ3  is velocity, 
𝜔𝜔𝑎𝑎(𝑡𝑡) ∈ ℝ3 is angular velocity, and 𝐸𝐸𝑎𝑎(𝑡𝑡) is remaining 
energy.  

For ground robots, each platform state is: 
 

𝑃𝑃𝑔𝑔𝑖𝑖(𝑡𝑡) = �𝑥𝑥𝑔𝑔𝑖𝑖 (𝑡𝑡), 𝑣𝑣𝑔𝑔𝑖𝑖(𝑡𝑡),𝜃𝜃𝑔𝑔𝑖𝑖 (𝑡𝑡),𝐸𝐸𝑔𝑔𝑖𝑖 (𝑡𝑡)�𝑇𝑇 (3) 
 

where 𝑖𝑖 denotes the specific ground robot (hexapod or 
tracked). 

The system employs a mesh network topology 
operating wireless communication. Communication 
reliability is ensured through redundant channels, while 
edge computing nodes enable distributed processing. A 
central server coordinates data fusion and mission control 
operations across all platforms. 

3.2 Hierarchical Inspection Strategy 
The system implements bidirectional data flow 

between platforms. The aerial platform provides global 
site mapping updates, new Region of Interest (ROI) 
identifications, mission priority adjustments, and 
environmental hazard alerts to ground units. Conversely, 
ground robots transmit high-resolution inspection data, 
updated anomaly classifications, local environment maps, 
and status information to the aerial platform.  

Phase 1: Initial Survey 
The aerial platform initiates inspection using cellular 

decomposition for coverage planning, operating at 
altitudes between 30-50m for overview scanning. The 
system maintains a 60% overlap ratio to ensure accurate 

3D reconstruction, generating real-time point clouds with 
density exceeding 100 points/m². 

ROI identification employs RANSAC-based 
segmentation for feature extraction, coupled with 
geometric analysis for anomaly detection. The system 
conducts thermal mapping to identify subsurface defects. 
Priority scoring incorporates geometric deviation 
thresholds exceeding 2cm, thermal gradient anomalies 
greater than 5°C, surface texture irregularities, and 
structural criticality indices. 

The hierarchical inspection strategy prioritizes 
regions based on a combined score: 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖) =  𝛽𝛽1𝐶𝐶(𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖) + 𝛽𝛽2𝐴𝐴(𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖) + 𝛽𝛽3𝐷𝐷(𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖) (4) 

 

where 𝐶𝐶(𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖)  is criticality, 𝐴𝐴(𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖)  is accessibility, 
and 𝐷𝐷(𝑅𝑅𝑅𝑅𝐼𝐼𝑖𝑖) is detection confidence for region 𝑖𝑖. 

Phase 2: Detailed Inspection 
The detailed inspection task allocation follows a 

dynamic assignment protocol based on robot capabilities. 
The system employs a comprehensive cost function 
incorporating distance to target, robot specialization, 
battery status, and inspection priority. Ground robot 
deployment utilizes the enhanced RRT* (Rapidly 
Exploring Random Tree) algorithm for path planning, 
complemented by a dynamic window approach for 
obstacle avoidance. The sliding window optimization 
approach periodically refines local trajectories based on 
updated environmental information and inspection 
requirements. This optimization considers multiple 
objectives including minimizing path length, maximizing 
sensor coverage, and maintaining stable sensor 
positioning for high-quality data collection. The 
refinement process incorporates feedback from both 
successful and failed inspection attempts, building a 
knowledge base that informs future planning decisions. 
3.3  Sensor Fusion Framework 

The system fuses multi-modal data streams from 
complementary sensors (Fig 2-a). The aerial platform 
uses LiDAR for structural mapping, thermal imaging for 
temperature analysis, and high-resolution cameras for 
surface inspection. Ground robots carry enhanced 
versions of these sensors with superior resolution for 
detailed close-range examination. 

3.3.1 Data Collection and Synchronization 

The data collection process maintains precise 
temporal alignment through hardware-level 
synchronization, achieving millisecond timing accuracy 
across all sensors. Each measurement receives accurate 
timestamps and position tags, enabling coherent data 
integration. The system implements rigorous calibration 
procedures to optimize intrinsic sensor parameters, 
establish inter-sensor transformation matrices, and 
compensate for environmental factors that could affect 
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measurement accuracy. 
Data preprocessing begins with adaptive threshold 

filtering to remove noise while preserving critical 
structural information. The system applies statistical 
outlier removal techniques and motion compensation 
algorithms to ensure data quality. A crucial step in the 
pipeline involves spatial alignment of LiDAR, thermal, 
and visual data streams using advanced registration 
algorithms. This process creates a coherent multi-modal 
representation of the inspection site, where each data 
point combines structural, thermal, and visual 
information. 

The LiDAR data provides precise 3D structural 
information, capturing geometric features with 
millimeter-level accuracy. Thermal imaging data reveals 
temperature variations that may indicate subsurface 
defects, material fatigue, or thermal stress patterns not 
visible to other sensors. High-resolution visual data 
enables detailed surface analysis, particularly for 
identifying cracks, corrosion, and material degradation. 
The fusion of these complementary data streams enables 
the detection of complex structural anomalies that might 
be missed by single-sensor approaches. 

The multi-modal sensor fusion process combines data 
from different sensors using a weighted fusion approach: 

 

𝐹𝐹(𝑋𝑋) = �𝑤𝑤𝑖𝑖𝑆𝑆𝑖𝑖(𝑋𝑋)
𝑛𝑛

𝑖𝑖=1

(5) 
 

where 𝐹𝐹(𝑋𝑋)  is the fused data point, 𝑆𝑆𝑖𝑖(𝑋𝑋)  represents 
individual sensor measurements, and 𝑤𝑤𝑖𝑖  are confidence 
weights satisfying ∑ 𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 1. 

3.3.2 Feature Extraction and Unified Data 
Integration 

The feature extraction phase employs multiple 
specialized algorithms working in parallel. Visual feature 
extraction utilizes SIFT/SURF algorithms to identify 
surface anomalies, while geometric processing identifies 
structural deviations from expected patterns. Thermal 
pattern recognition algorithms detect temperature 
anomalies and track thermal gradients across structural 
elements. 

Feature confidence scoring is calculated as: 
 

𝐶𝐶𝑓𝑓 = 𝛼𝛼𝑣𝑣𝑄𝑄𝑣𝑣 + 𝛼𝛼𝑡𝑡𝑄𝑄𝑡𝑡 + 𝛼𝛼𝑙𝑙𝑄𝑄𝑙𝑙 (6) 
 

where 𝑄𝑄𝑣𝑣, 𝑄𝑄𝑡𝑡, and 𝑄𝑄𝑙𝑙 represent quality metrics for visual, 
thermal, and LiDAR data respectively, with 𝛼𝛼𝑣𝑣 + 𝛼𝛼𝑡𝑡 +
𝛼𝛼𝑙𝑙 = 1. 

The final stage of sensor fusion employs an Extended 
Kalman Filter for state estimation, combining the 
extracted features into a unified structural health 
assessment. Point cloud registration using Iterative 
Closest Point (ICP) algorithms ensures precise spatial 
alignment of all data sources. The system implements 
confidence-weighted integration of features from 
different modalities, prioritizing the most reliable data 

sources for each type of structural assessment.  

3.3.3 Sensor Modalities Alignment and 
Visualization 

The alignment of different sensor modalities is 
achieved through a transformation matrix: 

 

𝑇𝑇 =  �𝑅𝑅 𝑡𝑡
0 1� (7) 

 

where 𝑅𝑅 ∈ 𝑆𝑆𝑅𝑅(3) is the rotation matrix and 𝑡𝑡 ∈ 𝑅𝑅3 is the 
translation vector. 

The fusion framework produces comprehensive 
inspection outputs including detailed 3D textured meshes 
overlaid with thermal data. These visualizations combine 
geometric, thermal, and visual information into an 
intuitive representation of infrastructure health. The 
system generates detailed defect mapping and 
classification reports, along with confidence metrics for 
each detected anomaly. Quality assessment metrics 
provide quantitative measures of inspection coverage and 
data reliability, enabling informed decision-making for 
infrastructure maintenance planning. 

By integrating diverse sensor data streams and 
employing advanced processing algorithms, the 
framework achieves superior inspection accuracy while 
minimizing false positives. The resulting unified 
representation of infrastructure health provides 
unprecedented insight into structural conditions, 
enabling more effective maintenance planning and risk 
assessment. The implementation of our sensor fusion 
framework leverages several established open-source 
libraries: Point Cloud Library (PCL v1.12.1) for point 
cloud processing and registration [20], OpenCV (v4.7.0) 
for image processing and feature extraction [21], and 
Robot Operating System (ROS Noetic) for inter-platform 
communication and data synchronization [22]. The 
RANSAC-based segmentation utilizes optimized 
implementations from the MRPT (Mobile Robot 
Programming Toolkit) [23]. 

3.4 Path Planning and Adaptation  
The path planning and adaptation framework (Fig. 2-

b) implements a hierarchical strategy that combines 
global coverage optimization with reactive local 
navigation. This multi-layered approach enables efficient 
site inspection while maintaining robustness to 
environmental changes and emerging inspection 
requirements. 

3.4.1 Global Planning and Multi-Robot 
Coordination 

The global path planning optimization problem is 
formulated as: 

 

min𝑃𝑃��𝜆𝜆1𝐸𝐸(𝑝𝑝𝑘𝑘) + 𝜆𝜆2𝑇𝑇(𝑝𝑝𝑘𝑘) + 𝜆𝜆3𝑅𝑅(𝑝𝑝𝑘𝑘)�
𝐾𝐾

𝑘𝑘=1

(8) 
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subject to: 
|𝑣𝑣(𝑡𝑡)| ≤ 𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚 , |𝜔𝜔(𝑡𝑡)| ≤ 𝜔𝜔𝑚𝑚𝑎𝑎𝑚𝑚 ,𝐸𝐸(𝑡𝑡) ≥ 𝐸𝐸𝑚𝑚𝑖𝑖𝑛𝑛 (9) 

 

where 𝐸𝐸(𝑝𝑝𝑘𝑘) is energy cost, 𝑇𝑇(𝑝𝑝𝑘𝑘) is time cost, and 
𝑅𝑅(𝑝𝑝𝑘𝑘) is risk cost for path segment 𝑝𝑝𝑘𝑘. 

The system uses modified Boustrophedon 
decomposition [24] to partition inspection space 
efficiently, considering structural complexity, 
accessibility, and priorities while minimizing energy 
consumption. A global planner creates a task dependency 
graph for mission scheduling, employing dynamic 
programming to optimize resources based on battery 
constraints, sensor capabilities, and real-time 
requirements. A distributed coordination framework with 
token-based access control prevents inspection conflicts, 
using a market-based approach where robots bid for tasks 
based on position, battery life, and capabilities. Real-time 
communication enables continuous strategy refinement 
between aerial and ground platforms. 

3.4.2 Local Navigation and Reactive Control 

The system implements a multi-layered navigation 
framework where each robot platform employs 
specialized algorithms optimized for their mobility 
characteristics. At its core, ground robots utilize an 
enhanced RRT* algorithm for local path planning, which 
integrates real-time obstacle detection and dynamic 
avoidance capabilities. This planning framework 
continuously maintains optimal safety distances while 
ensuring comprehensive inspection coverage through 
trajectory adjustments based on real-time sensor 
feedback. 

Task allocation within the system follows a 
sophisticated dynamic assignment protocol that evaluates 
robot capabilities through a comprehensive cost function. 
This function synthesizes multiple parameters including 
Euclidean distance to target, platform-specific 
specialization factors, current battery levels, and 
inspection priority weights. The cost function for task 
assignment can be expressed as: 

 

Ctask(r, t) = αdD(r, t) + αsS(r, t) + αbB(r) + αpP(t) (10) 
 

where 𝐷𝐷(𝑆𝑆, 𝑡𝑡) represents the distance cost between robot 
𝑆𝑆 and task 𝑡𝑡, 𝑆𝑆(𝑆𝑆, 𝑡𝑡) is the specialization matching score, 
𝐵𝐵(𝑆𝑆)  indicates battery level, and 𝑃𝑃(𝑡𝑡)  denotes task 
priority. The weights 𝛼𝛼𝑖𝑖 satisfy ∑𝛼𝛼𝑖𝑖 = 1. 

The local navigation system incorporates a dynamic 
window approach for reactive obstacle avoidance, which 
optimizes robot velocity 𝑣𝑣 and angular velocity 𝜔𝜔 within 
an admissible velocity space: 𝑉𝑉𝑎𝑎(𝑥𝑥) = (𝑣𝑣,𝜔𝜔) |𝑣𝑣 ∈
[0,𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚],𝜔𝜔 ∈ [−𝜔𝜔𝑚𝑚𝑎𝑎𝑚𝑚,𝜔𝜔𝑚𝑚𝑎𝑎𝑚𝑚],  𝑣𝑣 ≤ �2 ⋅ 𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡(𝑥𝑥, 𝑆𝑆𝑜𝑜𝑑𝑑) ⋅ 𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 , |𝜔𝜔| ≤
�2 ⋅ 𝜃𝜃(𝑥𝑥, 𝑆𝑆𝑜𝑜𝑑𝑑) ⋅ 𝛼𝛼𝑚𝑚𝑎𝑎𝑚𝑚 where 𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡(𝑥𝑥, 𝑆𝑆𝑜𝑜𝑑𝑑) is the distance to the 
nearest obstacle and 𝜃𝜃(𝑥𝑥, 𝑆𝑆𝑜𝑜𝑑𝑑) is the angular deviation. 

Trajectory optimization occurs through a sliding 
window approach that periodically refines local paths 
based on updated environmental data and inspection 

requirements. The optimization objective function 
combines multiple criteria: 

 

𝐽𝐽(𝜏𝜏) = 𝑤𝑤1 � 𝐿𝐿�𝜏𝜏(𝑡𝑡)�𝑑𝑑𝑡𝑡
𝑡𝑡+𝑇𝑇

𝑡𝑡
+ 𝑤𝑤2 � 𝐶𝐶�𝜏𝜏(𝑡𝑡)�𝑑𝑑𝑡𝑡

𝑡𝑡+𝑇𝑇

𝑡𝑡

+𝑤𝑤3 � 𝑄𝑄�𝜏𝜏(𝑡𝑡)�𝑑𝑑𝑡𝑡
𝑡𝑡+𝑇𝑇

𝑡𝑡
(11)

 

 

where 𝐿𝐿(𝜏𝜏) represents path length, 𝐶𝐶(𝜏𝜏) denotes coverage 
quality, and 𝑄𝑄(𝜏𝜏) indicates sensor positioning stability. 
The weights 𝑤𝑤𝑖𝑖  are dynamically adjusted based on 
inspection priorities. 

3.4.3 Adaptive Learning and Environmental 
Response 

The adaptation framework incorporates 
reinforcement learning techniques to continuously 
improve navigation and inspection strategies. The 
learning system maintains a state representation that 
includes current position, sensor coverage metrics, and 
environmental features. Action selection is guided by a 
policy that balances exploration of uncertain areas with 
exploitation of known inspection requirements. The 
reward function considers multiple objectives including 
coverage completeness, data quality, and energy 
efficiency. 

For adaptive learning, the Q-learning update rule is: 
 

𝑄𝑄(𝑑𝑑𝑡𝑡 ,𝑎𝑎𝑡𝑡) ← 𝑄𝑄(𝑑𝑑𝑡𝑡 ,𝑎𝑎𝑡𝑡)
+𝛼𝛼[𝑆𝑆𝑡𝑡 + 𝛾𝛾max𝑎𝑎𝑄𝑄(𝑑𝑑𝑡𝑡+1, 𝑎𝑎) − 𝑄𝑄(𝑑𝑑𝑡𝑡 ,𝑎𝑎𝑡𝑡)] (12) 

  

where 𝛼𝛼 is the learning rate, 𝛾𝛾 is the discount factor, and 
𝑆𝑆𝑡𝑡 is the immediate reward. This optimization considers 
multiple objectives including minimizing path length, 
maximizing sensor coverage, and maintaining stable 
sensor positioning for high-quality data collection. The 
refinement process incorporates feedback from both 
successful and failed inspection attempts, building a 
knowledge base that informs future planning decisions. 

This adaptive capability, combined with the 
continuous learning and optimization processes, ensures 
consistent high-quality inspection results across diverse 
infrastructure types and operating conditions.  

4 Simulation Experiment 
4.1 Experimental Setup 

The evaluation of the proposed multi-robot inspection 
system was conducted through comprehensive 
simulation experiments designed to test the hierarchical 
inspection strategy, sensor fusion framework, and 
adaptive path planning capabilities. The simulation 
environment was developed using ROS Gazebo, 
incorporating physics-based modeling to ensure realistic 
robot-environment interactions and sensor behavior. 

The test environment (Fig. 2-c) was designed as a 
construction site spanning 20 × 20 m with corridor widths 
ranging from 1.5 m to 3 m. The environment features 
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vertical structures representing construction scaffolding, 
with heights varying between 2 m and 6 m. The site 
contains both uncovered regions and areas beneath 
uncompleted floors, creating zones that are unflyable for 
UAV operation. Predefined structural anomalies were 
strategically placed throughout the structure, including 
surface cracks (0.5-2mm width), thermal variations 
(±5°C from baseline), and geometric deformations (2-
5cm deviation from design specifications).  

The simulated aerial platform matched the 
specifications detailed in the methodology, featuring a 
hexacopter configuration with 30m-range LiDAR (0.5° 
angular resolution), 4K RGB camera (120° FOV), and 
FLIR thermal camera (640×512 resolution). The RTK-
GPS simulation provided ±2cm positioning accuracy. 
The ground robots included both the 18-DOF hexapod 
with 5kg payload capacity and 30° incline capability, and 
the tracked variant with 0.5 m/s maximum speed and 
0.1mm crack detection resolution at 10cm distance.  

4.2 Test Scenarios  
The experimental protocol was structured to validate 

the three core components of the system: hierarchical 
inspection strategy, sensor fusion framework, and 
adaptive path planning. The simulation implemented the 
mesh network topology described in the methodology, 
with wireless communication between platforms and 
edge computing nodes for distributed processing. 

The aerial platform's initial survey followed the 
cellular decomposition strategy outlined in the 
methodology, operating at 30-50m altitude with 60% 
overlap ratio for accurate 3D reconstruction. The point 
cloud density exceeded 100 points/m², enabling 
RANSAC-based segmentation for feature extraction. 
ROI identification utilized the priority scoring system 
defined in Equation 4, incorporating geometric 
deviations exceeding 2cm and thermal gradients greater 
than 5°C. 

Ground robot deployment implemented the enhanced 
RRT* algorithm for path planning, with the sliding 
window optimization approach for trajectory refinement. 
The simulation tested the dynamic assignment protocol 
using the comprehensive cost function from Equation 9, 
evaluating distance, specialization, battery status, and 
inspection priority for task allocation.  

4.3 Experimental Workflow 
The simulation workflow followed the sensor fusion 

framework detailed in the methodology, implementing 
millisecond timing accuracy for data synchronization 
across all platforms. The data preprocessing pipeline 
included adaptive threshold filtering and motion 
compensation, followed by spatial alignment of LiDAR, 
thermal, and visual data streams using the transformation 
matrix defined in Equation 7.  

Feature extraction employed SIFT/SURF algorithms 
for visual anomaly detection, while geometric processing 
identified structural deviations. The Extended Kalman 
Filter state estimation integrated extracted features 
according to the confidence scoring system defined in 
Equation 6. The ICP algorithm ensured precise spatial 
alignment of multi-modal data, with confidence-
weighted integration prioritizing the most reliable data 
sources for each type of structural assessment.  

The adaptive learning framework utilized the Q-
learning update rule specified in Equation 11, with the 
reward function considering coverage completeness, data 
quality, and energy efficiency. The market-based 
coordination approach managed simultaneous operation 
of aerial and ground platforms, with the token-based 
access control mechanism preventing inspection 
conflicts. 

5 Results and Discussion  
The simulation experiments validated the 

effectiveness of our hierarchical multi-robot inspection 

 
Figure 2. Methodology: (a) Mathematical framework for Sensor Fusion (b) Mathematical framework for Path 
Planning and Adaptation (c) Experimental Setup with UAV and UGV models 
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system through comprehensive performance evaluation 
of its core components. The aerial platform's global path 
planning optimization achieved exceptional efficiency, 
generating high-density point clouds (127 points/m²) that 
exceeded design specifications while maintaining precise 
positioning (±2cm accuracy). This preliminary mapping 
capability directly enhanced the RANSAC-based 
segmentation process, achieving 96.3% accuracy in 
feature extraction and enabling optimal task allocation 
for ground robots. The system generates three primary 
output data types from our simulation environment: 
structural point clouds, multi-spectral inspection maps, 
and classification metadata. Data is processed both 
onboard for real-time decisions and offloaded for 
comprehensive offline analysis. Outputs are formatted 
for BIM compatibility, enabling integration with existing 
infrastructure management systems. Offline processing 
requires approximately 45 minutes per 1000m² on 
standard engineering workstations. 

Building upon this foundation, the sensor fusion 
framework demonstrated superior integration of multi-
modal data streams. The transformation matrix achieved 
0.7mm alignment accuracy between sensor modalities, 
while the weighted fusion approach dynamically adjusted 
confidence weights to optimize anomaly detection.. This 
integrated approach resulted in 95.4% accuracy for 
surface anomaly detection (calculated as TP/(TP+FP+FN) 
against 200 ground-truth annotations) and 98.2% 
precision in thermal pattern recognition (TP/(TP+FP)). 
Sensor integration errors influenced inspection 
performance through registration misalignment (2.8% of 
false detections), temporal synchronization drift (1.3% of 
measurements), and sensor-specific noise (±1.7% 
threshold variation). The system mitigated these effects 
through dynamic confidence weighting based on 
estimated reliability factors from signal-to-noise ratios 
and registration quality metrics. 

The adaptive path planning system further enhanced 
these capabilities through efficient resource utilization. 
The enhanced RRT* algorithm, combined with the 
dynamic window approach, maintained path deviations 
within 2.8cm. This optimization extended to the Q-
learning based adaptation framework, which achieved 
3.2-second response times to new anomalies while 
maintaining 99.7% collision-free operation through the 
token-based access control mechanism.  

The experimental results demonstrate the significant 
advantages of our integrated approach to infrastructure 
inspection, particularly in addressing the traditional 
trade-off between coverage and detail. The hierarchical 
strategy's success stems from the effective combination 
of aerial mapping capabilities with specialized ground 
robot functions, enabling comprehensive inspection 
while maintaining high data fidelity. This integration 
proves especially valuable in complex structural 

environments, where the system's adaptive capabilities 
ensure thorough coverage while optimizing resource 
utilization. The bidirectional learning mechanism's 
performance highlights the importance of real-time 
adaptation in infrastructure inspection. This 
improvement directly translates to more reliable 
structural health assessments, with the multi-modal 
approach effectively identifying both surface and 
subsurface defects that might be missed by conventional 
inspection methods.  

6 Conclusion  
This paper presents a novel multi-robot inspection 

system that effectively addresses the fundamental 
challenges in infrastructure assessment through a 
hierarchical strategy combining aerial and ground 
platforms. The system's core innovation lies in its 
bidirectional learning mechanism and advanced sensor 
fusion framework, which enable dynamic adaptation to 
complex inspection environments while maintaining 
high data fidelity. Through comprehensive simulation 
experiments, we demonstrated that this integrated 
approach achieves significant improvements in both 
efficiency and accuracy compared to traditional 
inspection methods. 

The experimental results validate our hierarchical 
inspection strategy's effectiveness, with the aerial 
mapping achieving 96.3% feature extraction accuracy 
while the ground robots maintained precise navigation 
within 2.8cm path deviation. The sensor fusion 
framework demonstrated exceptional performance 
through sub-millimeter registration accuracy and 3.2-
second anomaly response time. 

With robust performance across key metrics, the 
system shows significant promise for broad adoption in 
infrastructure maintenance. Its 99.7% collision-free 
operation sets a new standard for collaborative robotic 
inspection, confirming the feasibility of integrating 
multiple sensing modalities. Future work should explore 
deep reinforcement learning and advanced noise 
reduction for sensor fusion. Implementing wireless map 

Table 1. Performance of each system component 

 

System Component Metric Performance
Mapping & Detection
Aerial Mapping Point Cloud Density 127 points/㎡

Feature Extraction Accuracy 96.30%
Anomaly Detection Visual Detection Accuracy 95.40%

Thermal Pattern Recognition 98.20%
Sensor Integration
Multi-Modal Fusion Registration Error 0.7mm

Data Synchronization <1ms
Navigation & Control
Ground Robot Navigation Path Deviation 2.8cm
System Adaptation Anomaly Response Time 3.2s
Platform Coordination Collision-Free Operation 99.70%
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communication between aerial and ground platforms 
warrants further investigation to address bandwidth, 
latency, and signal degradation. Field experiments will 
measure communication reliability, assess data 
compression for point cloud transmission, and introduce 
fault-tolerance protocols to ensure stable operation in 
varied environments. 

This research advances automated infrastructure 
inspection by presenting a scalable, efficient solution that 
balances comprehensive coverage with detailed 
examination. The demonstrated improvements in 
inspection efficiency and accuracy could significantly 
enhance infrastructure maintenance, ultimately boosting 
public safety and structural reliability. Despite promising 
results, limitations include the simulation environment’s 
imperfect mimicry of real-world conditions, high 
computational demands for real-time sensor fusion, and 
potential performance drops in adverse settings. Future 
efforts will focus on field validation, algorithmic 
optimization for edge computing, fault detection, and 
integrating additional sensor modalities such as ground-
penetrating radar and acoustic emissions monitoring. 
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