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Abstract – 
Rebar tying is a critical yet time-consuming 

process in construction, often criticized by high labor 
intensity, repetitive motions, and low efficiency. 
These challenges have led to the development of 
rebar tying robots, which offer a promising solution 
to automate and enhance the process. However, 
existing rebar tying robots are unable to deal with 
varying orientations of working surface in practical 
environments, making it difficult for cameras to 
consistently maintain an ideal pose. To address these 
challenges, this paper proposes a vision-guided 
camera pose estimation method. This method 
includes three steps: (1) image preprosessing, (2) 
feature point detection and matching, and (3) 
transformation matrix calculation. Through these 
steps, the optimal camera pose can be estimated from 
images captured at random initial poses, allowing the 
camera to autonomously adjust to its ideal pose. 
Furthermore, an image evaluation method is 
introduced, forming a feedback loop with the pose 
estimation process to ensure high-quality image 
capture. The proposed method achieves a 99.5% 
success rate for pose estimation within three 
attempts, with an average computation time of 1.05 
seconds. This approach helps improve the efficiency 
and accuracy of rebar tying operations, facilitating 

the automation of the rebar tying process for planar 
rebar cages. 
Keywords – 

Rebar tying, Camera pose estimation, Computer 
vision, Feature point matching, Rebar cage 

1 Introduction 
Rebar tying is a labor-intensive and repetitive 

process in rebar product manufacturing, often leading to 
physical strain [1] and reduced efficiency. To mitigate 
these challenges, rebar tying robots have been 
developed, such as Tybot [2], TOMOROBO [3], and 
RBBD-Bot2.0 [4], reflecting a trend toward automation 
in rebar tying. 

Most rebar tying robots rely on vision guidance for 
their operations [5,6,7], mainly dealing with horizontal 
rebar meshes, where the camera is fixed to the robot 
body and does not require pose adjustments. However, 
in practical applications, rebar cages may be placed in 
various orientations, such as horizontally for composite 
slabs and vertically or inclined for T-beams and box 
girders in bridges, requiring adaptive adjustments to the 
camera pose. A 6-Degree-of-Freedom (DoF) robotic 
arm allows flexible positioning, ensuring that the 
camera maintains a perpendicular view of the rebar 
mesh, as shown in Figure 1. Additionally, efficient rebar 
tying requires that (1) the captured rebar mesh area 
remains rectangular (as shown in Figure 1); (2) rebar 
intersection points do not align with image edges, 
minimizing overlap and optimizing tying efficiency. 
Manual camera adjustments are time-consuming and 
impractical in fast-paced environments, necessitating an 
autonomous pose estimation method. 
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Figure 1. A rebar mesh divided into multiple rectangular work areas 

Camera pose estimation involves determining the 
camera’s position and orientation in 3D space, often 
using feature point matching techniques such as SIFT 
[8], SURF [9], and ORB [10]. However, these 
traditional methods struggle with rebar cages due to 
their uniform structure, leading to mismatches and 
inaccurate results. 

Recent deep learning advancements, such as 
SuperPoint [11] and SuperGlue [12], have improved 
feature point detection and matching. SuperPoint 
provides high-quality keypoints and descriptors, while 
SuperGlue, based on Graph Neural Networks (GNN) 
[13], enhances matching accuracy. This study integrates 
SuperPoint, SuperGlue, and the Perspective-n-Point 
(PnP) algorithm to achieve accurate and reliable camera 
pose estimation. 

To address the challenges posed by varying rebar 

cage orientations, this paper proposes a computer 
vision-based camera pose estimation method with two 
key innovations: (1) integrating a feature detector, a 
feature matcher, and PnP algorithm to determine the 
optimal camera pose from randomly initialized images, 
and (2) incorporating an image evaluation mechanism to 
establish a feedback loop for autonomous pose 
adjustment. This enables rebar tying robots to achieve 
optimal camera pose adjustment, improving operational 
efficiency and accuracy. 

2 Method 
The proposed method comprises three modules as 

illustrated in Figure 2: (1) image preprocessing; (2) the 
6-DOF pose estimation of the camera; (3) image 
evaluation. 

 
Figure 2. The workflow of the proposed method 

2.1 Image Preprocessing 

The proposed method requires two inputs: an RGB 
image and depth map, captured in an ideal pose and 
random initial pose, respectively. The RGB image and 
depth map captured in random initial poses are intended 

to consider the effects from the unanimous ground 
vehicle (UGV), which will be deviated due to its low 
positioning accuracy and complicated construction sites. 
This deviation causes the Z axis of the structured light 
camera, mounted at the end of the robotic arms, hard to 
maintain perpendicular to the top-layer rebar mesh of 
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the rebar cage. 
The raw RGB image captured by the structured light 

camera contains excessive background information, 
making image matching and rebar crosspoints 
recognition difficult. To address this, it is essential to 
filter the background information of the raw RGB image. 
The process follows these steps: (1) align the captured 
RGB image and depth map to obtain the 3D point cloud 
of the rebar cage; (2) the point cloud of the top-layer 
rebar mesh is contained in the plane closest to the 
camera’s optical center, which is the origin of the 
camera coordinate system; (3) a method based on 
RANdom SAmple Consensus [14] (RANSAC) is 
adopted to fit planes; (4) the plane closest to the 
camera’s optical center is extracted. 

After extracting the plane closest to the optical center 
of the camera, the point cloud belonging to this plane 
can be obtained. The pixel coordinates corresponding to 
the point cloud date can be calculated by depth values 
and the camera’s intrinsic matrix, and an RGB image 
with background information removed can be obtained. 

2.2 Camera Pose Estimation 

This section describes a method for estimating the 
optimal camera pose based on RGB images and depth 
maps captured from a random initial pose. Initially, we 
perform feature point detection and matching on two 
filtered RGB images, which have excluded background 
information. Then, based on the coordinates of these 
matched feature points, the PnP algorithm is used to 
obtain the estimated camera pose. 

2.2.1 Detect and Match the Feature Points 

Recently, a significant number of algorithms have 
been substantially applied to detect the feature points 
between two images captured in different poses, such as 
FAST corner detector [15], SIFT, ORB, etc. However, 
these algorithms cannot cope with RGB images in 
complex scenarios, which exhibit poor robust during the 
process of detecting. Therefore, we adopt an approach 
based on neural network named SuperPoint, which can 
detect the feature points without manual annotations. 
After that, utilize a matching algorithm named 
SuperGlue to match feature points. 

SuperPoint is a self-supervised network for training 
feature point and descriptors. In this framework, the 
authors trained a full convolutional network (FCN) 
based on synthetic dataset, which includes simple 
geometric shapes with no ambiguity in the feature point 
locations named MagicPoint. However, this pre-trained 
network performs poor performance in real dataset. As 

a result, they introduced Homographic Adaptation for 
boosting performance from synthetic dataset to real 
dataset. Finally, this framework can efficiently detect 
the location of feature points and provide descriptors for 
feature points. In this paper, we created a dataset 
consisting of 375 preprocessed rebar cage images as the 
training dataset for SuperPoint. These images were 
captured by the camera from different shooting 
distances and angles relative to the rebar cage. The 
image collection area is shown in Figure 3. 

 
Figure 3. Image capture area of the SuperPoint 
training dataset 

After detecting the positions of feature points and 
obtaining their descriptors, they are input into a GNN 
called SuperGlue. This network can match two sets of 
feature points using an attention-based flexible context 
aggregation mechanism. 

2.2.2 Camera Pose Estimation 

After extracting and matching feature points using 
the SuperPoint and SuperGlue algorithms, the pixel 
coordinates of the matched feature points in the initial 
image (filtered image obtained at a random initial pose) 
and the reference image (filtered image obtained at the 
ideal pose) can be obtained. By combining the depth 
map captured by the camera at the random initial pose, 
the 3D coordinates of the matched feature points in the 
initial image can be obtained. The input to the PnP 
algorithm includes the 3D coordinates of the matched 
feature points in the initial image and the pixel 
coordinates of the matched feature points in the 
reference image. 
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Figure 4. The core target of PnP algorithm 

The core target of PnP algorithm is to get the 
transformation matrix from random initial pose to the 
ideal pose, which is illustrated in Figure 4. When getting 
the input of PnP algorithm, the transformation matrix T 
can be calculated based on Levenberg-Marquardt 
method [16]. As a result, the estimated pose can be 
determined by the equation below: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 ⋅ 𝑇𝑇 (1) 

2.3 Image Evaluation 

After obtaining the estimated pose of the camera 
through the PnP algorithm, move the camera to the 
estimated pose and collect images, and preprocess the 
original images to obtain the top-layer rebar mesh image. 
In order to ensure that the image meets the requirements, 
the image needs to be evaluated. The specific process is 
as follows: (1) the rebar crosspoints in the top-layer 
rebar mesh image are identified and located based on the 
YOLOv8-pose [17] keypoint detection algorithm; (2) 
find the maximum and minimum pixel coordinates 
along the u-axis and v-axis among all the rebar 
crosspoints, i.e., umax, umin, vmax, and vmin, as shown in 
Figure 5; (3) three image evaluation metrics can be 
calculated to assess the quality of filtered RGB images, 
where ‘a’ denotes the pixel width of the image and “b” 
represents the pixel height of the image. 

𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑_𝑢𝑢 = 𝑑𝑑𝑎𝑎𝑃𝑃(1 −
𝑢𝑢𝑒𝑒𝑒𝑒𝑚𝑚
𝑑𝑑

−
𝑢𝑢𝑒𝑒𝑒𝑒𝑖𝑖
𝑑𝑑

) (2) 

𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑_𝑣𝑣 = 𝑑𝑑𝑎𝑎𝑃𝑃(1 − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏

− 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
𝑏𝑏

) (3) 

𝑃𝑃𝑢𝑢𝑠𝑠_𝑢𝑢 = 1 −
𝑢𝑢𝑒𝑒𝑒𝑒𝑚𝑚
𝑑𝑑

+
𝑢𝑢𝑒𝑒𝑒𝑒𝑖𝑖
𝑑𝑑

 (4) 

 
Figure 5. An ideal captured filtered RGB image 

It is noticeable that all crosspoints are located on the 
central area of the filtered RGB image when 𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑_𝑢𝑢 <
0.08,𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑_𝑣𝑣 < 0.08. Additionally, while all crosspoints 
are located on the center area of the RGB image, there 
are still a lot of places around the image that do not 
contain crosspoints. To make crosspoints are full of the 
RGB image, 𝑃𝑃𝑢𝑢𝑠𝑠_𝑢𝑢 should be in a range from 0.1 to 
0.4. 

If the filtered image captured by the camera at the 
estimated pose meets the above metric requirements, the 
pose estimation is considered successful. Otherwise, if 
the captured filtered image does not meet the above 
requirements, it indicates that the camera has not yet 
reached its ideal pose. The filtered image captured by 
the camera at the current pose is used as input to the pose 
estimation module, and the camera pose estimation is 
repeated until the captured filtered image meets the 
above metric requirements. 
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3 Experiments and Results 

3.1 Experiment Device 

The proposed method was deployed on the rebar 
tying robot independently developed by our research 
group, as shown in Figure 6. This robot consists 
primarily of a mobile chassis, an industrial computer, 
and a 6-DOF robotic arm equipped with a structured 
light camera and a rebar tying actuator at the end. The 
structured light camera can simultaneously capture RGB 
images and depth maps, providing three-dimensional 
information of the captured objects. It is mounted at the 
end of the robotic arm in an “eye-in-hand” configuration, 
and the transformation matrix from the camera 
coordinate system to the robotic arm base coordinate 
system has been obtained through hand-eye calibration. 

The industrial computer used in this study is 
configured as follows: Operating System: Ubuntu 20.04; 
CPU: 8-core ARM Cortex-A78; GPU: NVIDIA Ampere 
with 1,792 CUDA cores; RAM: 32GB. The 
development environment is primarily based on Python. 

 
Figure 6. Rebar tying robot developed by our 
research group 

3.2 Experiment Settings 

The filtered rebar cage image shown in Figure 7 was 
obtained by gradually adjusting the camera pose, 
capturing images, and preprocessing the images. The 
evaluation metrics for this image is 𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑_𝑢𝑢 =
0.003,𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑_𝑣𝑣 = 0.026, 𝑃𝑃𝑢𝑢𝑠𝑠_𝑢𝑢 = 0.291, which meets the 
requirements of the image evaluation module. Thus, it is 
used as the reference image for the pose estimation 
module. Filtered images captured and preprocessed at 
all initial poses are matched with this reference image in 
the pose estimation module. When capturing this image, 
the optical center of the camera was 48 cm away from 
the plane of the top-layer rebar mesh. The z-axis of the 
camera coordinate system was perpendicular to this 
plane, the x-axis was parallel to the transverse rebar, and 

the y-axis was parallel to the longitudinal rebar. 

 
Figure 7. Reference image 

To evaluate the performance of the pose estimation 
method when the camera is in different initial poses, the 
camera captured images from various shooting distances 
and angles as the input for the proposed pose estimation 
method. Additionally, to verify the robustness of the 
pose estimation method, the images used to test the 
method’s performance were collected from different 
regions of the rebar cage, differing from the dataset used 
to train the SuperPoint network, as shown in Figure 3. 
And the design transverse rebar spacing and the design 
longitudinal rebar spacing of the rebar cage used in the 
experiment are both 10 cm. 

After obtaining the initial image, the process for 
testing the performance of the pose estimation method 
is as follows: the initial image is input into the pose 
estimation module to calculate the estimated camera 
pose. The camera is adjusted to the estimated pose to 
capture an image, and the filtered image is input into the 
image evaluation module. If the image meets the 
required metrics, the camera pose estimation is complete, 
and the computation time for the pose estimation 
method is recorded. If the image does not meet the 
metrics, it is used as the initial image and input into the 
pose estimation module for re-estimation. This process 
is repeated until the captured image meets the required 
metrics, with the total computation time and the number 
of pose estimations recorded. 

Considering that the recommended working distance 
of the structured-light camera is 30 cm to 60 cm, the 
camera’s optical center is set at distances of 40 cm, 45 
cm, and 50 cm from the plane of the top rebar mesh to 
ensure the depth values of rebar pixels in the filtered 
image fall within this range. This distance is hereafter 
referred to as the “shooting distance”. Taking a shooting 
distance of 40 cm as an example, the camera pose is first 
adjusted so that the z-axis of the camera coordinate 
system is perpendicular to the plane of the top rebar 
mesh, the x-axis is parallel to the transverse rebar, and 
the y-axis is parallel to the longitudinal rebar. This pose 
is referred to as its “standard pose”, as shown in Figure 
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8. Then, the camera can be rotated around its x-axis, y-
axis, and z-axis respectively by the following angles: 

10 5 0 5 10− ° − ° ° ° °, , , ,  (counterclockwise is positive, 
clockwise is negative). Therefore, the camera has a total 
of 125 initial poses at this shooting distance, and a total 
of 375 initial poses at the three shooting distances. 

 
Figure 8. Standard pose of the camera 

3.3 Experiment Results 

For each initial pose scenario, the following 
parameters are recorded: whether it can be adjusted to 
the ideal pose, the number of pose estimation attempts 
required to reach the ideal pose, and the computation 
time of the pose estimation method. The results are 
shown in Table 1. It can be seen from Table 1 that for 
the total of 375 initial pose scenarios at three shooting 
distances, the success rate of the pose estimation method 
within three attempts is 99.5%, and the success rate with 
just one attempt is 91.5%. 

Table 1 Number of pose estimation attempts, corresponding scenario counts, and average computation time 

Number of pose estimation attempts and the corresponding scenario counts 
Shooting distance (cm) 1 Success rate (%) 2 Success rate (%) 3 Success rate (%) Failure 

40 114 91.2 8 97.6 1 98.4 2 
45 115 92.0 9 99.2 1 100.0 0 
50 114 91.2 9 98.4 2 100.0 0 

Total 343 91.5 26 98.4 4 99.5 2 
Average computation time of pose estimation method (run once) 1.05s 

The failure of a single pose estimation attempt can 
be attributed to the large number of incorrect matching 
points in the initial image matching results, which leads 
to inaccurate pose estimation by the PnP algorithm. 
Consequently, the first estimated image fails to meet the 
evaluation metrics, necessitating additional pose 
estimation attempts. If the estimated pose renders the 
robotic arm unreachable or causes collisions, the pose 
estimation is considered a failure. The computation time 
in this study refers to the duration from receiving an 
image captured at an initial camera pose to generating 
the corresponding optimal camera pose that meets the 
predefined requirements. The proposed method 
achieves an average computation time of 1.05 seconds 
per pose estimation, meaning that the system can 
determine the desired camera pose within 1.05 seconds 
after receiving the initial image. This efficiency ensures 
minimal impact on production scheduling in precast 
plants and construction sites, making the method 
suitable for real-world deployment. 

Figure 9 shows the test results of three initial pose 

scenarios, each of which includes: an image captured 
and preprocessed by the camera at the initial pose 
(referred to as “initial image”), the matching result with 
the reference image, and an image captured and 
preprocessed at the estimated pose (referred to as 
“estimated image”). In Figure 9(a), the initial pose of the 
camera for the initial image is: the shooting distance is 
40 cm, and the camera rotates 10°, -10°, and -10° around 
its own x-axis, y-axis, and z-axis based on the standard 
pose. The match results show the matching between the 
initial image and the reference image. The image pose 
estimation module only requires a single run with a 
computation time of 1.062 seconds. The evaluation 
metric value for the estimated image is: 𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑_𝑢𝑢 =
0.005,𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑_𝑣𝑣 = 0.002, 𝑃𝑃𝑢𝑢𝑠𝑠_𝑢𝑢 = 0.270, which meets the 
requirements. It can be concluded that even when the 
camera’s initial pose significantly deviates from its ideal 
pose, the proposed pose estimation method can still 
calculate an ideal pose, enabling the camera to capture 
rebar cage images that meet the evaluation metrics. 
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(a) 

 

(b) 

 

(c) 

 

Figure 9. The initial image, matching result, and 
estimated image corresponding to the camera in 
different initial pose 

4 Conclusion 
This paper proposes a vision-guided camera pose 

estimation method for rebar tying robots, designed to 
calculate the ideal camera pose. This ideal pose 
facilitates efficient and high-quality rebar tying for 
rectangular planar rebar cages. The key innovations of 
the proposed method are as follows: 

(1) A feature point-based camera pose estimation 
method is proposed. For the 375 initial pose scenarios 
tested in this study, the method achieves a 99.5% 
success rate for pose estimation within three attempts, 
with a 91.5% success rate for a single attempt. The 
average computation time for each estimation is 1.05 
seconds, which is generally sufficient for practical 
applications. 

(2) A method for evaluating the image quality 
captured by the rebar tying robot’s camera is proposed. 
This method incorporates three evaluation metrics and 
forms a feedback loop with the camera pose estimation 
process, further ensuring the quality of the captured 
images. As a result, it contributes to the efficient and 
high-quality completion of rebar tying tasks for planar 
rebar cages. 

However, the proposed pose estimation method 
requires multiple adjustments of the camera under 
certain initial pose scenarios and is only applicable to 
planar rebar cages. It is necessary to develop more 
efficient and robust pose estimation methods applicable 
to curved rebar cages and corresponding image 
evaluation metrics in the future. 
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