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Abstract -

This paper presents a robotic system developed to enhance
automation in construction workflows through advanced Al
and computer vision technologies. The system integrates
a robotic arm with a 3D point cloud camera and state-
of-the-art 2D pre-trained Deep Learning models, such as
GroundingDINO and SegmentAnything, to detect and seg-
ment construction elements in 3D dynamic, unstructured
environments. By processing point cloud data from the cam-
era and aligning it with real-world coordinates, the system
achieves precise object localization, enabling tasks such as
element handling and assembly. Designed to address chal-
lenges like clutter, occlusion, and variability in construction
sites, this system bridges the gap between controlled labora-
tory conditions and real-world applications. Experimental
evaluations highlight its potential to improve efficiency and
adaptability in construction tasks.
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1 Introduction

The integration of artificial intelligence (AI) with
robotics offers transformative potential for the construc-
tion industry. Construction workflows, requiring preci-
sion and efficiency, are well-suited for robotic automation,
which can address critical challenges like labor shortages,
high costs, and safety risks by automating repetitive tasks
such as element handling, assembly, and inspection [1].
However, deploying robotics effectively in the chaotic and
unpredictable environments of real construction sites re-
mains a significant hurdle.

The transition from controlled laboratory settings to dy-
namic construction sites presents formidable challenges.
Real-world construction environments are inherently com-
plex, characterized by clutter, inconsistent lighting, diverse
materials, and unforeseen obstacles. Unlike controlled ex-
periments, these sites involve overlapping objects, occlu-
sions, and constantly changing conditions that can severely
limit the effectiveness of conventional robotic systems.
While robotic automation has advanced, adapting these

187

systems to the visual complexities of real-world construc-
tion remains a critical gap.

Figure 1. Robotic environment setup for object ma-
nipulation in a construction scenario. The system
integrates a UR10e robotic arm and a Visionary-S
point cloud scanner.

Vision is paramount for robotic automation in these
environments. Although 2D image recognition models
have advanced significantly [2], they often lack the spatial
understanding essential for robots in complex 3D spaces.
Trained primarily for 2D analysis, they struggle with depth
perception and spatial relationships crucial for manipula-
tion and assembly in cluttered scenes. In contrast, 3D
vision systems, capable of capturing detailed spatial data
through point clouds, offer a more comprehensive under-
standing of the environment, enabling robots to perceive
and interact with objects more effectively, even under chal-
lenging conditions. Our work seeks to leverage the power
of these advanced 2D image recognition models and apply
them within a 3D context. Figure 1 illustrates our system
setup.

Recent Al breakthroughs in object detection and seg-
mentation have bolstered robotic vision. Models such
as GroundingDINO and SegmentAnything leverage pre-
trained deep learning techniques to detect and segment


mailto:yusuf.aykin@th-owl.de
mailto:hans.sachs@th-owl.de
mailto:nikolai.gerzen@th-owl.de

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

unseen objects with high accuracy, even in cluttered, com-
plex environments [3, 2]. These models use transformer
networks to process image data, achieving high accuracy
and robustness. Additionally, real-time advancements like
YOLO-World [4] and EfficientSAM [5] make them suit-
able for dynamic environments. Extensions of such mod-
els for 3D point cloud processing [6] enable robust frame-
works for detecting, segmenting, and manipulating objects
under real-world constraints. However, directly applying
these powerful 2D models within a comprehensive 3D
robotic perception system for construction remains largely
unexplored.

The integration of robotics and Al in construction has
seen significant progress in object detection, manipula-
tion, and automation of tasks. Early methods relied on
feature-based approaches such as SIFT and HOG de-
scriptors [7], which struggled with clutter and occlusions.
The introduction of deep learning architectures, includ-
ing transformer-based models, revolutionized object de-
tection and segmentation [8]. Joint vision-language mod-
els like GroundingDINO and SegmentAnything demon-
strated remarkable performance, enhancing applications
in cluttered construction settings. Several successful ap-
plications of these techniques in construction-related tasks
include ROI-based detection systems for equipment [9]
and advanced point cloud segmentation using networks
like PointRCNN [10]. Despite these gains, a cohesive
framework effectively using 2D Al models within a 3D
robotic system for construction tasks is still needed.

Robotic manipulation in construction settings also re-
quires robust planning and control mechanisms. Recent re-
search expanded into reinforcement learning and Al-based
control strategies, as shown in [1]. Grasp planning with
point clouds, advanced by tools like PointNetGPD [11],
and tactile feedback integration [12] have enabled precise
manipulation in real-world scenarios. Transformer-based
architectures, such as RT-1 and RT-2 [13], have further
shown promising results in robotic manipulation through
vision-language understanding. However, realizing the
potential of these manipulation advances in unstructured
construction requires enhanced 3D perception, which our
work addresses.

3D vision systems play a vital role in enabling robots
to understand and interact with their surroundings. Point
cloud data provides detailed spatial information for ac-
curate object localization and manipulation. Enhanced
registration techniques, such as Colored ICP [6], incor-
porate color information valuable in construction scenes.
Recent depth estimation methods, such as Depth Anything
V2 [14], and fusion techniques like BEVFusion [15], con-
tinue to advance 3D perception capabilities. Building on
these, our system aims for a more integrated and practical
approach for construction robotics by leveraging both 2D

Al models and 3D point cloud data.

This paper presents a novel system designed to bridge
the gap between controlled lab settings and the challenges
of real construction sites. Our core novelty is the effective
application of state-of-the-art 2D image recognition mod-
els within a 3D point cloud framework. This integration
enhances robotic automation in construction by combining
2D Al object recognition with 3D spatial understanding.
By equipping a robotic arm with a cloud scanner and ad-
vanced object detection and segmentation algorithms, the
system achieves:

* Accurate detection and segmentation of unseen con-
struction elements and tools using Al-based pre-
trained models, originally designed for 2D images,
but adapted for 3D point cloud understanding, even
in cluttered scenes.

* Precise alignment of 3D data with real-world coordi-
nates for effective robotic manipulation.

The experimental setup, shown in Figure 1, demon-
strates the system’s ability to adapt to the complexities of
real-world construction environments. This work is an ini-
tial step in a controlled lab setting mimicking construction
scenarios. While simplified, our experiments demonstrate
the feasibility and potential of our approach to tackle vi-
sual challenges in real-world construction. Future work
will validate and extend these findings in more complex
field conditions. By addressing challenges such as clut-
tered scenes, occlusions, and dynamic conditions, the pro-
posed system aims to enhance efficiency and adaptability
in construction workflows.

2 System Overview

This section provides a comprehensive overview of the
hardware and software components used in the proposed
robotic system, focusing on its adaptability to dynamic
construction tasks. The integration of advanced Al models
with a collaborative robotic arm for efficient execution
of operations such as element handling, assembly, and
inspection.

2.1 Hardware Setup

Our experimental setup, designed to mimic real-world
construction scenarios, comprises a UR10e robotic arm,
an OnRobot 2FG7 gripper, a Visionary-S point cloud scan-
ner, and a high-performance workstation. The workspace
is set on a 1000 mm x 700 mm table where construction
elements are placed.

The UR10e (Universal Robots) offers a 10 kg payload
capacity, 1300 mm reach, and +0.03 mm repeatability,
making it suitable for tasks like manipulating construction
elements and assembling components. Its collaborative
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Figure 2. Flowchart of the process: integrating Al-based object detection, point cloud processing, and robotic

manipulation.

design, including force sensing, enables safe human-robot
interaction. Attached to the UR10e, the OnRobot 2FG7
two-finger gripper provides adjustable gripping force and
width for handling various elements, such as bricks and
tools.

The SICK Visionary-S point cloud scanner captures
high-resolution 3D data of the environment. It boasts
a pixel resolution of 640 x 512, depth accuracy of <
0.25mm, a detection angle of 60° x 50°, and operates
within a camera distance of 0.5 to 65 meters. Long dis-
tance capture allows us to operate in large construction
environments. The scanner is positioned at one end of the
workspace to capture the scene from a distance of approx-
imately 1 meter from the table. To handle the computa-
tional demands of the AI models and point cloud process-
ing, a high-performance workstation is used. This work-
station is equipped with an NVIDIA RTX 3070 GPU, an
Intel i7-12700H processor, and 64 GB of RAM, providing
the necessary processing power for real-time operations.

2.2 Software Architecture

The software architecture integrates advanced Al mod-
els with point cloud processing and robotic control to en-
able seamless operation. The Visionary-S scanner cap-
tures 3D point clouds and RGB images, which undergo
preprocessing to enhance data quality. Techniques such as
noise filtering using DBSCAN and voxel downsampling
reduce the computational load while preserving geometric
details, ensuring the accuracy and reliability of the data
for subsequent stages.

Al models are employed to process the preprocessed
data for object detection and segmentation. These mod-
els run within Docker containers to provide consistent
and isolated environments. GroundingDINO and Seg-
mentAnything models form the backbone of the detection
and segmentation pipeline. The processed data, includ-
ing the detected objects and their segmentation masks, is
then used to calculate target positions and orientations for
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robotic manipulation. The robot executes these commands
through a Python-based control system, which translates
high-level instructions into precise joint movements.

2.3 Al Models

The system relies on advanced Al models, Ground-
ingDINO and SegmentAnything, to identify and segment
construction elements and components accurately. These
models are optimized to handle the diverse and cluttered
nature of construction environments to provide reliable
performance in a wide range of tasks.

GroundingDINO is used for object detection in 2D im-
ages derived from the 3D point cloud. Using its language-
guided detection capabilities, the model can identify ob-
jects based on natural language prompts, such as “brick”
or “wooden block.” This adaptability allows the system to
handle a wide variety of construction elements. Ground-
ingDINO generates precise 2D bounding boxes for de-
tected objects, even in complex and cluttered environ-
ments, as compared with YOLO-World [4] in Figure 3.

SegmentAnything complements GroundingDINO by
providing detailed instance masks for the detected ob-
jects. The versatility of the model allows it to segment
a diverse range of objects without requiring additional
training, which makes it suitable for dynamic construction
scenarios. The high-quality instance masks generated by
SegmentAnything allow the robot to distinguish between
overlapping objects and perform precise manipulations.

3 Methodology

The proposed system integrates advanced Al models
with robotic control to achieve accurate detection, seg-
mentation, and manipulation of objects in dynamic con-
struction environments. This section outlines the method-
ological framework shown in Figure 2 for data acquisition,
preprocessing, point cloud registration, Al-driven detec-
tion and segmentation, object localization, grasp planning,
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Figure 3. Comparison between GroundingDINO and YOLO-World with different prompts.

and robotic execution.

3.1 Data Acquisition and Preprocessing

The data acquisition process begins with the Visionary-
S point cloud scanner capturing 3D data of the construction
workspace. The scanner provides a high-resolution depth
map and corresponding RGB image. Noise filtering is
applied to the raw point cloud P = {p1, p2, ..., pn} using
the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm. DBSCAN classifies points
into core, border, and noise points based on their local
density. The e-neighborhood of a point p is defined as:

Ne(p) ={q € P | dist(p,q) < €} (1

where dist(p, g) is the Euclidean distance between

points p and ¢, and € is a predefined radius. A point

p is a core point if its e-neighborhood contains at least
minPts points:

[Ne(p)| = minPts 2)

A point g is a border point if it is within the e-
neighborhood of a core point p but is not a core point
itself. A point that is neither a core point nor a border point
is classified as a noise point. The filtered point cloud P’
consists of core and border points, excluding noise points.
The filtered point cloud is then projected onto a 2D image
plane using the intrinsic parameters of the Visionary-S
scanner. The camera intrinsic matrix K is defined as:

S 0 cx
K=(0 fy ¢ 3)
0o 0 1

where f, and f, are the focal lengths in the x and
y directions, and (cy,cy) is the principal point. For a
point p = (x,y,z) in the 3D point cloud, its projection
p’ = (u,v) onto the 2D image plane is given by:

K|y/z|,

u
v|= uzfx)—c+cx, v=fyX+cy @)
1 1 z z

This projection provides image format required for ob-

ject detection. (Figure 4)

Figure 4. Projection from 3d pointcloud to 2d image.
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3.2 Point Cloud Registration

Point cloud registration aligns the captured point cloud
with a predefined reference frame, enabling accurate lo-
calization of objects within the workspace. The Iterative
Closest Point (ICP) algorithm is used to refine the align-
ment between the source point cloud (captured data) and
the target point cloud (reference frame). The ICP algo-
rithm iteratively minimizes the difference between two
point clouds. Let P, be the source point cloud and P,
be the target point cloud. The algorithm aims to find the
optimal transformation 7 that aligns Ps with P;. The al-
gorithm starts with an initial transformation 7. For each
point p; € Pg, the closest point ¢; € P; is found. This
forms a set of corresponding pairs C = {(p;,q;)}. The
transformation 7 that minimizes the mean squared error
between the corresponding pairs is computed:

N

1 2

E(T)=— i = Tikpi 5

(T) N;nq el (5)

where N is the number of corresponding pairs. The

optimal transformation can be found using Singular Value

Decomposition (SVD). The source point cloud P is trans-
formed using Tk:

Py ={Twp | p € Pg} (6)

These steps are repeated until convergence. For im-
proved registration accuracy the Colored ICP variant is
used. Colored ICP incorporates color information in addi-
tion to spatial coordinates. The error function for Colored
ICP is modified to include a color difference term:

N

> (llge = Tepal® + Alle(an) - e(Tipi) )
)

i=1
where ¢(p;) and c(q;) are the color vectors of the corre-
sponding points, and A is a weighting factor that balances
the geometric and color terms.

E(T) =%

3.3 AI-Driven Detection and Segmentation

The preprocessed and registered data is fed into a
pipeline comprising GroundingDINO and SegmentAny-
thing (SAM) models. GroundingDINO processes the 2D
image projection of the registered point cloud, generating
bounding boxes for objects based on language prompts.
The output of GroundingDINO is a set of bounding boxes
B = {by, by, ..., b, }, where each bounding box b; is rep-
resented by its coordinates (X,min, Ymin> Xmax> Ymax) and
a confidence score s;. The bounding boxes generated by
GroundingDINO are refined using Non-Maximum Sup-
pression (NMS) to eliminate overlapping and redundant
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Figure 5. Segmentation mask created with SAM.

detections. The Intersection over Union (IoU) between
two bounding boxes b; and b; is computed as:

Area(b; N bj)

Area(b; U bj) ®)

IOU(bi . b j) =
If the ToU between two boxes exceeds a predefined
threshold, the box with the lower confidence score is sup-
pressed. The refined bounding boxes are passed to the Seg-
mentAnything model, which generates precise instance
masks for each detected object (Figure 5). The output of
SAM is a set of instance masks M = {my,my,...,m,},
where each mask m; corresponds to a detected object and
has the same dimensions as the input image. The 2D seg-
mentation masks are mapped back onto the 3D registered
point cloud shown in Figure 6. For each point p = (x, y, 2)
in the point cloud, its corresponding pixel (u, v) in the 2D
image is determined using the projection equations de-
rived from the camera intrinsic matrix K. The value of the
segmentation mask m; (u, v) at that pixel is then assigned
to the point p as shown in equation (4).

3.4 Object Localization and Grasp Planning

After detection and segmentation, localized objects are
analyzed for spatial attributes using Principal Component
Analysis (PCA). For a segmented point cloud P;, the co-
variance matrix C is computed to determine its principal
axes:

1 n
C=— —p)(pi—p)T 9
n_lg(p, P)(pi = p) ©)
where n is the number of points, p; is a point, and p is
the centroid. The eigenvectors of C represent the principal
axes, forming the basis for the Oriented Bounding Box
(OBB). The extents of the OBB are defined by projecting
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i

Figure 6. Mapped segmentation mask.

P; onto the principal axes. Gripping points are selected by
evaluating the longest edges of the OBB, with midpoints
prioritized as candidate gripping lines:

m= Pj+ Pk
2

where p; and py are endpoints of the edge. Suitability
of gripping points is based on gripper dimensions and
workspace accessibility. Figure 7 illustrates the OBB and
selected gripping locations.

(10)

Figure 7. Calculated OBB and grasping locations.

3.5 Robotic Execution

The gripping and placement actions are translated into
joint commands for the UR10e robotic arm. Inverse
kinematics (IK) computes the joint angles 6 required to
achieve the desired end-effector pose T, ensuring smooth,
collision-free movements. The desired pose 7T is derived
from the calculated gripping points and desired placement
locations. The relationship between joint angles and end-
effector pose is given by:

FK@) =T (11)

where FK () represents the forward kinematics func-
tion of the robot, mapping joint angles 6 to the end-effector
pose.

Trajectory planning generates intermediate waypoints
between the initial and target poses, optimizing for speed
and safety. Smooth joint-space trajectories are interpo-
lated using cubic splines:

a(t) =ag+at + axt’ + a3t (12)

where 6(t) is the joint angle at time ¢, and ag, a1, az, a3
are the spline coeflicients.

The trajectory is validated in a PyBullet simulation and
converted into robot-specific motion and gripper control
commands. These commands are executed by the UR10e
robot to perform the desired tasks, such as picking up a
detected object and placing it at the target location.

4 Experimental Evaluation and Results
4.1 Experimental Setup

The experiments were carried out in the setup described
in the System Overview section 2, representing typical
construction scenarios. A total of 150 test scenarios were
executed, with varying object arrangements of items like
wooden blocks, cables and other common construction
items, and environmental conditions to evaluate the ro-
bustness and adaptability of the system.

4.2 Evaluation Metrics

The performance of the system was evaluated using the
following metrics:

* Detection Accuracy: The percentage of correctly
detected objects compared to the ground truth, mea-
sured for both bounding boxes and segmentation
masks.

¢ Segmentation Precision: The Intersection over
Union (IoU) between predicted and ground-truth
masks, averaged across all detected objects.

* Manipulation Success Rate: The percentage of suc-
cessful grasp-and-place operations out of the total
attempts.

* Processing Time: The average time required for data
acquisition, detection, segmentation, and command
generation.

4.3 Results

The system achieved high performance across all evalu-
ated metrics, demonstrating its robustness and adaptability
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Table 1. Performance Metrics of the Robotic System

Metric Average Value
Detection Accuracy 95.8%
Segmentation Precision (IoU) 89.6%
Manipulation Success Rate 93.2%
Average Processing Time 6.3s

to diverse scenarios. The results, averaged over the 150
test scenarios, are summarized in Table 1.

The integrated use of GroundingDINO and Segmen-
tAnything resulted in an average detection accuracy of
95.8% and an average segmentation precision (IoU) of
89.6%. These results demonstrate the system’s ability to
accurately detect and segment objects even in cluttered
environments with varying object arrangements. Fig-
ure 8 illustrates the detection and segmentation outputs
for a sample scene, highlighting the precision of bounding
boxes and instance masks generated by the Al models.

Figure 8. Sample outputs showing object detection
and segmentation results.

The robotic arm successfully completed 93.2% of the
grasp-and-place tasks across the 150 test scenarios. This
high success rate demonstrates the system’s capability to
handle objects with varying shapes, sizes, and orientations.
The few instances of failure were primarily attributed to
limitations in the accuracy of the point cloud data for ob-
jects located further away from the scanner or those with
highly reflective surfaces. These inaccuracies occasion-
ally led to slight errors in the generated bounding boxes,
making grasping more challenging.

The average processing time from data acquisition to
command execution was 6.3 seconds. This includes 2.1
seconds for point cloud preprocessing and registration,
1.5 seconds for detection and segmentation using Ground-
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ingDINO 1.0 and SAM, and 2.7 seconds for object local-
ization, grasp planning, trajectory generation, and com-
mand execution. Experiments were also conducted with
GroundingDINO 1.5, which resulted in a slightly higher
processing time of 9.5 seconds. The increased time is at-
tributed to its API-based object detection approach, which
added latency. However, GroundingDINO 1.5 provided a
marginal improvement in detection precision (+2.5%).

4.4 Discussion

The lab evaluation demonstrates the system’s potential
for construction robotics, achieving high accuracy in de-
tection and segmentation using 2D Al models in a 3D
context. However, the controlled lab environment differs
significantly from complex real-world construction sites,
which involve dynamic lighting, dust, and larger scales.
Sensor limitations were observed with reflective surfaces
and distant objects, suggesting lab performance may not
directly translate to real-world scenarios. Processing time,
while acceptable for lab demonstrations, could limit real-
time applications in dynamic environments. Validation
metrics are encouraging for lab experiments, but failure
analysis highlights areas for improvement. Manipulation
failures were mainly due to perception inaccuracies from
degraded point clouds, leading to grasping errors. Even
with accurate detection, subtle 3D localization errors im-
pacted grasping, emphasizing manipulation’s dependence
on robust perception in challenging conditions. Qualita-
tively, compared to methods like PointNetGPD, [11], RT-2
[13], PointRCNN [10] our 2D Al-in-3D approach, using
pre-trained GroundingDINO and SAM, offers a balance
of generalization and performance. It leverages 2D vision
advancements but involves a pipeline that may introduce
latency. Quantitative comparisons are needed to validate
our approach against state-of-the-art methods. The suc-
cessful manipulation rate in the lab confirms perception-
to-action feasibility in a controlled setting.

5 Conclusion and Future Works

This work demonstrates a robotic system for object de-
tection, segmentation, and manipulation in a controlled
lab, showing promise for construction automation. Lever-
aging 2D Al models like GroundingDINO [3] and Seg-
mentAnything [2] for 3D vision was effective in simula-
tions, and manipulation success validated grasp planning
strategies under these conditions. Future efforts will pri-
oritize robustness, versatility, and real-time performance
for real-world deployment. Rigorous virtual testing using
game engines and datasets is crucial to assess robustness
and bridge the gap to real-world validation. Future re-
search should generalize Al models to diverse construc-
tion elements and tools, exploring adaptation strategies.
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Improving robustness requires better sensing solutions,
including sensor fusion and advanced point cloud pro-
cessing, to address challenges like reflective surfaces and
distance. Future directions include integrating advanced
depth estimation models like Depth Anything V2 [14],
exploring tactile sensing [16] for dexterous manipulation,
and optimizing efficiency for real-time performance. Ex-
panding to multi-robot collaboration using multi-RGBD
camera setups [6], addressing occlusion, and investigating
intuitive human-robot interaction via AR [17], NLP, and
voice commands using reasoning LLMs like OpenAlI’s ol
[18] are also key. Furthermore, continual learning will
be explored for autonomous adaptation. Building upon
the findings of this research, our next step involves imple-
menting the system on a larger KUKA robot and deploying
it in a real construction site environment to further eval-
uate its performance and address real-world challenges.
Pursuing these paths aims to create a highly adaptable
and efficient robotic solution to enhance construction pro-
ductivity, safety, and flexibility, enabling broader robotic
automation and transforming building practices.
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