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Abstract 

Ensuring the proper use of personal protective 
equipment (PPE), particularly helmets, is crucial for 
enhancing safety on construction sites. This study 
proposes a novel approach for detecting helmet usage 
and worker states using ultra-wideband (UWB) 
localization sensors combined with machine learning 
algorithms. Unlike traditional sensor-based or image-
based systems, the proposed method integrates 
helmet detection into existing proximity warning 
systems, offering a cost-effective solution without the 
need for additional hardware. Data was collected 
from 12 participants in a controlled environment 
using UWB sensors, and a machine learning model 
was developed to classify four worker states: standing 
with a helmet, standing while holding a helmet, 
walking with a helmet, and walking while holding a 
helmet. The Gradient Boosting Decision Trees 
(GBDT) algorithm was selected for model 
development due to its superior performance. The 
model achieved an overall accuracy of 74.46% and 
performed well in detecting unsafe conditions. 
However, variability was observed in identifying safe 
states. Additionally, the study explored the impact of 
worker height on Z-axis localization error, revealing 
a correlation that suggests the need for height-
adjusted safety monitoring systems. This research 
demonstrates that UWB-based systems can enhance 
PPE monitoring, reduce computational costs, and 
address privacy concerns, while also highlighting 
areas for future improvement, such as expanding the 
model to detect other PPE and refining its ability to 
differentiate between worker postures. 
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1 Introduction 

Construction sites are among the most hazardous 
environments for workers, with many sustaining injuries 

or losing their lives in workplace accidents every year. 
Numerous solutions have been proposed to enhance 
safety on construction sites, one of which is the use of 
personal protective equipment (PPE). The use of PPE can 
significantly reduce workplace risks and fatal accident [1, 
2]. Previous studies have demonstrated that safety 
behaviors, including the consistent use of PPE, are 
strongly associated with a reduction in work-related 
injuries. Conversely, unsafe behaviors, such as the failure 
to wear PPE, are key risk factors in workplace accidents 
[3]. 

One of the challenges related to construction worker 
safety is the ineffective use of PPE. Factors such as 
discomfort, inadequate training, and poor 
communication between safety managers and workers 
can hinder the effective use of PPE. As a result, one of 
the main responsibilities of safety managers is to ensure 
that workers are wearing PPE on site. However, due to 
the dynamic and expansive nature of construction sites, 
manual supervision of PPE usage by safety managers is 
often inefficient. Consequently, efforts have been made 
to develop automated solutions for monitoring PPE usage 
by workers. Solutions include wearable devices, 
computer vision, and deep learning models [4-6]. 

These technologies enable real-time monitoring of 
PPE usage and can proactively warn workers of potential 
safety hazards, ensuring that they are properly wearing 
their safety gear, thereby reducing the likelihood of 
accidents. However, the adoption of these technologies is 
not without challenges [7-9]. For instance, the use of 
cameras on construction sites, in addition to the high 
costs associated with purchasing and processing 
equipment, raises concerns about worker privacy. 

One technology used to improve worker safety is 
real-time localization through Ultra-wideband (UWB) 
sensors. This technology is typically employed in 
proximity warning systems to locate workers on 
construction sites and provide alerts when they approach 
hazardous areas. While these systems generally offer 
accurate two-dimensional localization of workers, three-
dimensional localization, which involves the z-axis, often 
results in significant errors [10]. Consequently, using the 
z-axis for tasks that require high precision may not yield 
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satisfactory results. However, if machine learning can be 
used to detect helmet usage based on the relatively 
imprecise z-axis data from these systems, it would be 
possible to extend their functionality without additional 
equipment. 

Therefore, the objective of this research is to develop 
a model for detecting helmet usage by workers on 
construction sites using machine learning and UWB 
technology. By developing this model, it will be possible 
to monitor both the location of workers and their PPE 
status using current proximity warning systems without 
the need for additional equipment. This method not only 
preserves worker privacy but also reduces the financial 
and computational costs associated with system 
development. 

2 Literature Review 

Given the importance of safety in construction sites, 
numerous previous studies have proposed various 
solutions to ensure the appropriate use of PPE by workers. 
These solutions typically follow two main approaches: 
sensor-based methods and image processing techniques. 
Sensor-based studies often use proximity sensors, such as 
Bluetooth and RFID, to monitor the use of PPE [8, 11-
13]. However, due to the limited applicability of these 
solutions, using such equipment solely to track PPE 
usage can increase initial costs. Another limitation of 
these methods is their inability to detect individuals 
outside of the predefined system. Moreover, the need for 
separate hardware to address different safety-related 
applications ultimately reduces the feasibility of 
implementing these solutions in construction sites. 

On the other hand, image processing and deep 
learning models have gained significant attention in 
recent years. In this line of research, scholars typically 
collect images from construction site environments and 
process them using deep learning models. These models 
first detect target equipment, such as helmets and vests, 
and then assess whether workers are wearing the 
equipment by analyzing the relationship between the 
worker and the detected gear [4, 6, 9, 14-16]. Researchers 
have worked to incorporate equipment of various colors 
into their models and evaluate the performance of 
different models, such as YOLO and YOLACT-based 
approaches. However, this method also presents 
challenges.  

One such challenge is the dependence of cameras on 
direct line of sight. Additionally, using cameras to 
monitor workers on construction sites raises concerns 
about worker privacy. Furthermore, many studies that 
employ this approach often integrate several deep 
learning models to achieve their goals, which 
significantly increases computational load. As a result, to 
achieve near-real-time performance, costly hardware is 

required to run the models. Considering the advantages 
and disadvantages of these approaches, there is a need to 
develop a model that retains the strengths of both 
methods while addressing their associated challenges. 

3 Methodology 

This research followed a three-step process to achieve 
its objective of developing a model for detecting helmet 
usage in construction sites using UWB sensors. These 
steps included data collection, machine learning model 
training, and performance evaluation. In the following 
sections, the scope of the research will first be outlined, 
followed by a detailed description of each step in the 
methodology. 

3.1 Research Scope 

Construction workers engage in various tasks on site, 
during which wearing a helmet is mandatory. Since this 
study aims to explore the use of UWB sensors and 
machine learning models for helmet usage detection, four 
possible worker states were considered: (1) standing 
while wearing a helmet (CL1), (2) standing while holding 
a helmet (CL2), (3) walking while wearing a helmet 
(CL3), and (4) walking while holding a helmet (CL4). 
These states represent typical conditions encountered in 
construction sites. Accordingly, the necessary data for 
developing a machine learning model to differentiate 
between these states were collected, followed by the 
model’s development. 

3.2 Data Collection 

Data collection was conducted in a controlled 
laboratory environment. UWB Real-Time Location 
Systems (RTLS) generally consist of anchors and tags, 
where the anchors serve as reference points and the tags 
represent moving objects. In this study, the DWM1001C 
6.5 GHz transceiver was used, which can function as both 
tags and anchors. Four anchors were placed at a height of 
1.9 meters, covering a square area of 7 by 7 meters. 
Additionally, a tag was attached to a helmet, which was 
used for data collection in this study (Figure 1c). 

To gather the data, participants were asked to perform 
each of the states outlined in the research scope for a 
duration of two minutes, during which their localization 
data, including x, y, and z coordinates, were recorded. 
The UWB modules were set to a frequency of 10 Hz, 
ensuring that data points were collected at 10 readings 
per second. Prior to data collection, participants' 
demographic information, such as height and gender, was 
recorded. A total of 12 participants took part in the 
experiment, resulting in the collection of 66,446 data 
records. Their collective demographic information is 
presented in Table 1. 

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

196



 

Figure 1. (a) Laboratory setup with UWB anchors. 
(b) UWB anchor at 1.9 m. (c) Helmet with UWB 
tag. 

Table 1. Participant demographics: gender, count, 
height stats. 

Gender Count 
Avg. 

Height 
(m) 

Min. 
Height 

(m) 

Max. 
Height 

(m) 

Std. of 
Height 

F 3 1.64 1.62 1.69 0.03 
M 9 1.80 1.68 1.93 0.07 

Total 12 1.76 1.62 1.93 0.09 

3.3 Data Preprocessing 

3.3.1 Data Cleaning 

As previously mentioned, the aim of using machine 
learning algorithms in this study to detect helmet usage 
by workers is addressing the significant error in the z-axis 
measurements provided by UWB sensors. Therefore, 
outlier removal must be handled with extra care, as 
removing a substantial portion of the data could limit the 
model's generalizability. Additionally, given the wide 
range of data values due to variations in participant 
heights, removing outliers based on aggregated user data 
could introduce bias into the model. To avoid this, the 
Isolation Forest [17] algorithm was applied individually 
to each participant’s data, with a contamination rate of 2% 
used to identify and remove outliers. The data 
preprocessing was implemented using Python 3.8.9 with 
Scikit-learn 1.3.2 and Pandas 2.0.3. After performing 
outlier detection and cleaning, the total number of data 
records decreased from 66,446 to 64,380. 

3.3.2 Feature Engineering 

Feature selection and extraction are critical steps in 
developing a machine learning model when working with 
location data collected in a laboratory environment. Since 
the laboratory space is limited, the data range in all three 
dimensions is also constrained, which can lead to 
overfitting. In such cases, the model may associate 
different states with the participants’ specific locations in 
the lab, rather than identifying meaningful relationships 
between the data points. For instance, if participants 
remain in one specific area of the lab while performing a 

particular state, the model might incorrectly link that 
state to those specific coordinates. However, this would 
not hold true in real-world construction sites. 

To mitigate overfitting, instead of using the raw x and 
y coordinates, the changes in these coordinates relative to 
previous steps were used as features for model training.  
The specific time intervals (10, 50, 100, and 150 steps) 
were selected based on temporal considerations. Since 
the UWB modules were set to a frequency of 10 Hz, each 
10 steps correspond to approximately 1 second of data 
collection. The selected intervals therefore represent time 
windows of approximately 1, 5, 10, and 15 seconds, 
respectively. This range was chosen to balance the trade-
off between model accuracy and real-time performance 
capabilities. Shorter intervals (e.g., 10 steps) capture 
immediate movements but may miss longer patterns, 
while longer intervals (e.g., 150 steps) capture more 
comprehensive movement patterns but increase the 
latency of detection in real-time applications. Table 2 
lists the features selected for developing the machine 
learning model. It should be noted that, in addition to the 
rationale mentioned above, these features were also 
chosen based on their significance as determined through 
feature importance analysis. 

3.4 Machine Learning Model Development 

3.4.1 Algorithm Selection 

The model training process involved training multiple 
models based on different machine learning algorithms, 
evaluating the performance of each, selecting the best-
performing algorithm, and subsequently optimizing the 
chosen model and reporting its performance. In the initial 
selection of algorithms, a range of options was 
considered, from less complex algorithms such as SVM 
to more complex ones like deep learning algorithms. The 
rationale behind this approach was to identify an 
algorithm with lower computational cost and greater 
transparency. All models were implemented using Scikit-
learn 1.3.2, with the Gradient Boosting Decision Trees 
(GBDT) implementation utilizing XGBoost 2.1.1. 
Additional libraries used in the analysis include NumPy 
1.24.4 and Seaborn 0.13.2 for data manipulation and 
visualization. After evaluating the models developed in 
the first step, the GBDT algorithm was selected for 
further development and optimization due to its superior 
performance compared to other algorithms. A list of the 
evaluated algorithms and their performance is presented 
in Table 3. 
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Table 2. Selected features for ML model to mitigate 
overfitting 

Feature Description 

z Z coordinate values 

z_norm 
Z coordinate values normalized by 

the participant's height 

dz_10 
Change in Z coordinate compared to 

the value 10 steps earlier 

dist_10 
Distance change compared to the 

position 10 steps earlier (using X, Y, 
and Z) 

dz_norm_10 
Normalized Z changes compared to 

10 steps earlier 

dz_50 
Change in Z coordinate compared to 

the value 50 steps earlier 

dz_norm_50 
Normalized Z change compared to 

50 steps earlier 

dist_50 
Distance change compared to the 

position 50 steps earlier (using X, Y, 
and Z) 

dz_100 
Change in Z coordinate compared to 

the value 100 steps earlier 

dz_norm_100 
Normalized Z changes compared to 

100 steps earlier 

dist_100 
Distance change compared to the 

position 100 steps earlier (using X, 
Y, and Z) 

dz_150 
Change in Z coordinate compared to 

the value 150 steps earlier 

dz_norm_150 
Normalized Z changes compared to 

150 steps earlier 

dist_150 
Distance change compared to the 

position 150 steps earlier (using X, 
Y, and Z) 

Table 3. Performance metrics of ML algorithms. 

Model AUC F1 Prec. Recall 

Random Forest 0.945 0.712 0.721 0.724 

SVM 0.763 0.398 0.415 0.395 

Decision Tree 0.803 0.671 0.674 0.682 

AdaBoost 0.773 0.626 0.629 0.635 
Logistic 

Regression 
0.928 0.585 0.674 0.615 

kNN 0.843 0.489 0.49 0.491 
Gradient 
Boosting 

0.946 0.717 0.731 0.728 

Naive Bayes 0.891 0.571 0.596 0.596 

3.4.2 Model Training and Evaluation 

The XGBoost library was used to implement the 
GBDT algorithm. One critical aspect to consider was the 

division of the available data for training, validation, and 
testing of the model's performance. In this study, instead 
of merging the data from all participants and splitting it 
based on a percentage of the total data, the data were 
divided based on the number of participants, without 
merging. Specifically, data from 6 out of the 12 
participants were used for training the model, 3 
participants' data were used for testing, and 3 participants' 
data were reserved for validation during training. 

The model training process involved optimizing the 
model's parameters to achieve the best possible results. 
This was done using a Grid Search approach with 5-fold 
cross-validation to find the optimal hyperparameters. The 
parameter grid explored ranges for learning rate (0.05-1), 
max depth (3-9), number of estimators (50-150), 
subsample ratio (0.5-0.9), column sample by tree (0.5-1), 
and gamma (0-0.1). The XGBoost model was configured 
to utilize GPU acceleration via CUDA, and 
hyperparameter tuning was performed by selecting the 
parameter combination that achieved the highest 
accuracy. The training and optimization process was 
performed on an Nvidia RTX 4070 Ti GPU. Once the 
optimal parameters were obtained, the model was trained 
and tested 100 times to assess its performance. In each 
iteration, the participants were randomly assigned to 
training, testing, and validation sets. The results of the 
model evaluation will be discussed in the next section. 

4 RESULTS 

After repeating the training and evaluation process 100 
times, the model's performance for each class was 
recorded in every iteration. The average performance 
metrics from these evaluations can be seen in Table 4 and 
Figure 2. The overall accuracy of the model, considering 
all classes, was 0.744. The developed model 
demonstrated satisfactory capability in distinguishing 
between safe and unsafe conditions. In Classes 2 and 4, 
where workers are not wearing helmets and are thus 
considered in an unsafe state, the model performed well. 
The average accuracy for Class 2 was 69%, with a 
precision of 74.2%, while for Class 4, the accuracy was 
83%, and the precision was 86.7%. These results indicate 
that the model effectively identifies unsafe conditions. 
However, the model's performance was more variable for 
Classes 1 and 3, where workers are wearing helmets and 
are considered to be in a safe state. Class 1 achieved an 
average accuracy of 66.6% and a precision of 66.4%, 
while Class 3 had a higher accuracy of 79.1%. Overall, 
the model was able to adequately differentiate between 
safe and unsafe conditions, but improvements in 
accurately detecting safe workers could help reduce false 
negatives and enhance the system's overall accuracy. 
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Figure 2. One-vs-Rest ROC curve showing AUC 
values across four classes. 

Table 4. Performance metrics for each class. 

Class Acc. Precision Recall F1 AUC 

CL1 0.666 0.664 0.666 0.652 0.860 

CL2 0.690 0.742 0.690 0.696 0.929 

CL3 0.791 0.750 0.791 0.766 0.905 

CL4 0.830 0.867 0.830 0.845 0.974 

As the model demonstrated, it not only performed 
well in distinguishing safe conditions—where workers 
are wearing helmets—from unsafe ones, but it also 
showed the ability to differentiate between various 
worker states, such as standing or walking. Based on this 
capability, it was decided to assess the model's 
performance with the addition of another class. A new 
class was introduced, which involved the worker sitting 
on a chair while wearing a helmet. The entire training and 
testing process was repeated to evaluate the model's 
performance with this additional class. The results of this 
extended evaluation can be found in Table 5 and Figure 
3. 

 

Figure 3. One-vs-Rest ROC curve showing AUC 
values across five classes. 

Table 5. Performance metrics for five classes. 

Class Acc. Precision Recall F1 AUC 

CL1 0.318 0.415 0.318 0.341 0.740 

CL2 0.673 0.733 0.673 0.684 0.913 

CL3 0.817 0.792 0.817 0.801 0.915 

CL4 0.852 0.888 0.852 0.868 0.984 

CL5 0.601 0.474 0.601 0.521 0.851 

5 DISCUSSION 

5.1 Advantages and Limitations of the 
Proposed UWB and Machine Learning 
Approach 

This study aimed to develop a model that not only 
detects whether workers are wearing helmets but also 
identifies various worker states using UWB RTLS, which 
are commonly used for tracking workers and issuing 
warnings when they approach hazardous areas or to 
prevent collisions. Machine learning algorithms were 
employed to achieve this goal. 

The solution presented in this study offers both 
advantages and limitations compared to previous 
research. One of the key advantages of this approach over 
other sensor-based methods is that the UWB RTLS are 
not limited solely to PPE detection. Because this method 
can be integrated as an additional layer of safety 
monitoring within proximity warning systems, due to its 
software-based nature, it addresses the challenge of high 
initial costs typically associated with sensor-based 
methods. Moreover, the proposed model demonstrated 
that this approach can also be used to recognize different 
worker gestures, which could provide additional 
information to safety systems, facilitating their further 
development. 

Additionally, the proposed model, being independent 
of cameras, avoids the disadvantages of image 
processing-based methods, such as privacy concerns, 
reliance on direct line of sight, and heavy computational 
loads. This independence allows for near-real-time 
performance in the dynamic environments of 
construction sites. However, it is important to note that 
this study focused solely on detecting helmet usage. In 
contrast, image processing methods can potentially 
detect the use of various other safety equipment, such as 
vests.  

Moreover, the proposed model was tested in a 
controlled laboratory environment. However, previous 
studies have demonstrated that the accuracy of UWB 
RTLS can be impacted by various factors present in real 
construction sites, such as metal structures, equipment, 
and environmental conditions. Therefore, it is important 
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to validate the developed model in construction 
environments in future studies. Future work should also 
extend this model to include the detection of additional 
PPE to further enhance its applicability. 

5.2 Impact of Participant Height on Z-Axis 
Localization Error 

As demonstrated in the results section, while the 
models presented in this study are capable of 
distinguishing between safe conditions—indicated by 
helmet usage—and unsafe conditions, this capability 
fulfills the primary research objective of providing a 
model for differentiating these states using UWB. 
However, to improve the model’s ability to differentiate 
between similar states, it is essential to identify the root 
cause of the existing error. One potential factor 
contributing to the increase in sensor error in the 3D 
space is the placement of the tags and anchors on the 
same plane (at the same height), which can reduce 
localization accuracy along the Z-axis. 

To investigate this issue further, localization errors 
were evaluated based on the participants’ heights. As 
shown in Figure 4, as the participants' height increases, 
the absolute localization error along the Z-axis also 
increases. The correlation between participant height and 
absolute error is 0.75, and the statistical significance of 
this relationship, with a p-value of 0.0052, suggests that 
as participants’ height approaches the height at which the 
anchors are placed (1.9 meters), the error significantly 
increases. This finding is important because individuals 
with varying heights experience differing levels of error, 
and using the same system for individuals of different 
heights would result in varying safety levels. Therefore, 
it is necessary to adopt more flexible approaches, such as 
machine learning models, that can account for these 
variations. 

 

Figure 4. Correlation between participant height 
and Z-axis error. 

6 Conclusion 

This study successfully demonstrated the feasibility of 
using UWB sensors and machine learning algorithms to 
detect helmet usage and differentiate between various 
worker states on construction sites. The proposed 
approach offers significant advantages over existing 
sensor- and image-based methods by integrating PPE 
detection into existing proximity warning systems, 
thereby reducing costs and addressing privacy concerns. 
The model proved capable of accurately identifying 
unsafe conditions, though further improvements are 
necessary to enhance the detection of safe worker states, 
particularly in distinguishing between specific postures. 
Additionally, this study highlighted the impact of worker 
height on localization errors, suggesting that future 
systems should account for this factor to improve overall 
performance.  
Future research should focus on several directions. First, 
expanding the model to detect other types of PPE, such 
as safety vests, would enhance its applicability in 
construction safety monitoring. Second, field validation 
in real construction site environments is needed to test the 
solution's reliability and performance under authentic 
conditions. Finally, as this study built its solution on top 
of existing proximity warning systems to decrease 
adoption costs, future studies can explore this approach 
to expand current safety systems and increase the 
practicality of proposed solutions for different 
applications in construction. 
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