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Abstract – 

Rebar tying is a time-consuming and labor-

intensive process that involves repetitive bending and 

hand motions to secure rebar with wire, often leading 

to muscular and skeletal injuries. To address these 

challenges, rebar tying robots have been developed to 

automate the process. However, existing studies 

primarily focus on tying point localization for 

horizontal rebar mesh, neglecting the 6 Degrees of 

Freedom (DoF) pose estimation necessary for tying 

complex reinforcement skeletons where rebar may be 

arranged in various spatial orientations. Therefore, 

this study proposes a 6-DoF rebar pose estimation 

method based on keypoint detection and point cloud 

registration. A deep learning-based keypoint 

detection algorithm is employed to extract point cloud 

data from each rebar intersection. Additionally, to 

tackle challenges posed by texture-less and self-

occluding features of rebar point clouds, a coarse 

registration method utilizing geometric features and 

a fine registration method based on adaptive 

displacement correction is introduced to ensure 

accuracy and stability in rebar pose estimation. The 

proposed method enables the robot to autonomously 

understand the relative spatial relationship between 

itself and the tying objects, facilitating precise tying 

across a broader range of reinforcement skeletons, 

thereby significantly reducing the demand for 

manual labor. 

 

Keywords –  
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1 Introduction 

Rebar tying is a crucial process in reinforced concrete 

construction. Its primary purpose is to secure the position 

of rebar, ensuring that it remains correctly positioned 

according to the design drawings during concrete pouring. 

However, manual rebar tying is a labor-intensive task 

that requires workers to bend repeatedly and tie each 

rebar crosspoint by hand [1].  

To overcome this problem, vision-guided robotic 

systems have been applied to automate rebar tying tasks 

in recent years. For example, Tybot [2], a gantry-

mounted tying robot shown in Figure 1 (a), navigates 

along the screed or porta-rail and uses a dual-camera 

system to extract tying information for bridge deck 

operations. Similarly, the rebar tying robot developed by 

the Beijing Institute of Technology [3], as shown in 

Figure 1 (b), moves steadily in four directions across the 

rebar mesh and employs a vision system to detect 

crosspoints and guide the tying process. A similar robot, 

T-iROBO [4], is shown in Figure 1 (c). In both types of 

robots, the vision system plays a critical role in tying 

operations by extracting spatial information about tying 

points through visual perception technology, thereby 

guiding the robot to complete tying tasks efficiently. 

 

   
(a) (b) (c) 

Figure 1. Rebar tying robots: (a) Tybot [2], (b) the 

rebar tying robot developed by the Beijing 

Institute of Technology [3], (c) T-iROBO [4]. 

 

For tying information extraction in the vision systems 

of rebar tying robots, Jin et al. [3] proposed using a deep 

learning-based keypoint detection algorithm to identify 

pixel coordinates of the rebar crosspoint and then 

calculate the rebar crosspoint’s spatial coordinates by 

integrating the depth value of the point. Similarly, Cheng 

and Deng [5] introduced a rebar crosspoint recognition 
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method based on MobileNetV3 and the SSD algorithm. 

Previous research on rebar tying robots has primarily 

focused on detecting rebar crosspoints, enabling the 

robotic arm to perform three linear motions to position 

the end effector at the tie point. However, estimating the 

tying orientation has been less explored, despite its 

importance in guiding the end effector to rotate to the 

appropriate angle. This ensures that the tying wire 

correctly wraps around the rebar and facilitates 

subsequent tying operations. In construction practice, 

rebar planes are often positioned in various orientations 

on construction sites, such as the reinforcement skeletons 

of beams and walls, which can be vertical or inclined as 

well as horizontal. In these scenarios, a robotic arm with 

at least 6 Degrees of Freedom (DoF) is typically required 

to perform 6-DoF tying operations, enabling flexible 

positioning and orientation to meet complex rebar tying 

requirements. Consequently, merely detecting tying 

position information in previous research is insufficient 

for addressing rebar tying tasks in reinforcement 

skeletons, and it is desired to develop advanced vision 

perception methods to enable rebar tying robots to adapt 

to various spatial configurations and perform 6-DoF 

tying operations effectively. 

Object pose estimation plays a crucial role in 6-DoF 

robotic manipulation, enabling robots to determine the 

spatial position and orientation of objects for accurate 

task execution [6]. Traditional methods determine the 

object pose by aligning the template point cloud with the 

scene point cloud using point cloud registration 

techniques [7]. The Iterative Closest Point (ICP) 

algorithm is one of the most commonly used point cloud 

registration methods for object pose estimation. It is 

typically employed to refine the pose after an initial 

rough estimate, as ICP is prone to get trapped in local 

optimal without a good starting pose [7]. Coherent Point 

Drift (CPD) is another widely used registration method 

capable of handling rigid, non-rigid, and affine 

transformations, making it suitable for pose estimation of 

deformable objects like cables and ropes [8,9]. 

Additionally, feature-based registration techniques, 

including point feature histograms (PFH) and fast point 

feature histograms (FPFH) have also been adapted for 

object pose estimation [10]. However, despite their 

widespread use, traditional methods exhibit limitations 

when applied to texture-less objects, as similar surface 

features can lead to incorrect matches between 

corresponding and non-corresponding points during the 

registration process [11]. Rebar point cloud models often 

exhibit texture-less surfaces, and occlusions caused by 

outer rebar obscuring inner rebar further complicate point 

cloud registration. These challenges increase the risk of 

inaccurate rebar pose estimation, potentially leading to 

collisions between the robot and the rebar. Therefore, 

there is a pressing need for a novel rebar pose estimation 

method capable of addressing the challenges posed by 

texture-less and self-occluding features to enhance the 

accuracy of robotic tying operations. 

To enhance the robot’s capability to perform tying 

operations on complex reinforcement skeletons, where 

rebar may be arranged in various spatial orientations, this 

paper proposes a rebar pose estimation method that using 

deep learning-based keypoint detection and point cloud 

registration. The proposed method includes several key 

innovations: (1) Introducing a tying point localization 

method based on keypoint detection, generating input 

data with prior displacement information. (2) Proposing 

a coarse-to-fine registration approach to handle texture-

less and self-occluding rebar point clouds for rebar pose 

estimation. This innovative method enables the robot to 

adapt to diverse spatial configurations of the 

reinforcement skeleton and perform tying operations 

from various orientations and positions. 

2 Method 

To apply robotic rebar tying technology to diverse 

reinforcement skeletons in three-dimensional (3D) space, 

this paper develops a rebar pose estimation method to 

guide a 6-DoF robot in performing flexible tying 

operations from various orientations and positions. As 

shown in Figure 2, the proposed method comprises three 

modules: data generation, coarse registration, and fine 

registration. The data generation module functions as a 

preprocessing component, generating input data and 

prior displacement information for rebar pose estimation. 

The coarse registration and fine registration modules 

implement a coarse-to-fine point cloud registration 

method to address the challenges of texture-less and self-

occluding, enabling accurate alignment of the template 

point cloud from the template frame to the camera frame 

for precise rebar position estimation. A detailed 

explanation is provided below. 

 

Figure 2. Flowchart of proposed formwork 
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2.1 Data Generation 

2.1.1 Rebar Point Cloud 

Keypoint detection is a critical task in computer 

vision, aimed at identifying essential features such as 

edges, corners, and textured areas within images or 

videos. In this study, the recently proposed deep 

learning-based keypoint detection model YOLOv8 [12] 

is employed to generate rebar point cloud data and extract 

the coordinate information of tying points for rebar pose 

estimation. This is achieved by detecting the bounding 

boxes and rebar crosspoints, followed by extracting the 

point cloud from the depth map of the tying area.  

Reinforcement skeletons often contain multiple rebar 

layers at varying depths, presenting a visual challenge for 

keypoint detection algorithms in accurately identifying 

the top-layer crosspoints. To mitigate visual interference 

from rebars at different depths, this study uses a 

preprocessing technique [13] that applies a point cloud 

plane fitting algorithm to segment the point cloud at 

various depths and extract data corresponding to the 

nearest plane. The resulting point cloud data is 

transformed into a 2D color image containing only the 

pixels from the top-layer rebar. By focusing exclusively 

on the relevant layer, the preprocessing step facilitates 

accurate localization of tying points on the top layer, 

ensuring precise coordinate and point cloud data in the 

crosspoint area. Throughout this paper, the rebar point 

cloud in the area of the rebar crosspoint is referred to as 

the “rebar point cloud”. 

2.1.2 Template Point Cloud 

Traditional object pose estimation method determines 

the pose of an object by aligning a template point cloud, 

which represents the object’s shape and geometric 

features, with the object point cloud using point cloud 

techniques. In this study, the template point cloud used 

for rebar pose estimation is designed based on the typical 

layout of two intersecting cylindrical rebars in the tying 

area. The rebar length in the template point cloud is set 

to 3d, where d is the diameter of the largest rebar in the 

intersection. Furthermore, to ensure a clear interpretation 

of registration results, the template’s coordinate frame is 

aligned with the camera’s coordinate frame with the Z-

axis normal to the rebar plane and the X- and Y-axes 

aligned with the horizontal and vertical rebars, 

respectively. 

2.2 Coarse Registration 

The goal of the coarse registration module is to 

achieve a rough alignment between the template point 

cloud and the rebar point cloud. As shown in Figure 3, 

this is accomplished by determining the appropriate 

rotation matrix R and translation vector t based on the 

geometric feature of the rebar point cloud. 

The rotation matrix R is computed by aligning the 

template point cloud parallel to the rebar point cloud 

using the normal vectors of the planes associated with 

both point clouds. Let nt and nr represent the normal 

vectors of the planes corresponding to the template point 

cloud and the rebar point cloud, respectively. In this 

study, we assume that nt=(0,0,1). The normal vector nr 

can have two possible orientations, which can result in 

different rotation axes and angles. To ensure consistent 

alignment, we control the orientation of nr by ensuring its 

Z-component is positive, thereby aligning it with nt. The 

rotation angle and axis can then be uniformly determined 

using the following equations: 
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where (nr)z represents the Z-component of the vector nr, 

  refers to the rotation angle from nt to 
rn , and k 

represents the rotation axis vector. To determine the 

desired rotation matrix, an extended Rodrigues vector 

rotation formula is employed, which is widely utilized to 

describe rotations involving known rotation axes and 

specified angles [14]. 
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where kx, ky and kz denote the three components of the 

rotation axis k. 

Furthermore, the translation vector t is determined by 

the difference in spatial coordinates between the tying 

point in the rebar point cloud, calculated from the pixel 

coordinates pr(u,v) predicted by YOLOv8, and the 

corresponding predefined point Pt.in the template point 

cloud. To obtain the spatial coordinate of the tying point 

in the rebar point cloud, pixel coordinates pr(u,v) are 

converted into spatial coordinates Pr(X,Y,Z) using the 

following formula: 
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where d is the depth value of tying point, and K represents 

the camera intrinsic matrix. The translation vector t can 

be calculated as: 

r tt P R P= − 
 

(6) 

2.3 Fine Registration 

To further enhance the registration accuracy, the 

point-to-plane ICP method [15] is employed to minimize 

the alignment errors between the template point cloud 

and the rebar point cloud during fine registration. Upon 

completion of the registration process, the ICP algorithm 

yields the transformation matrix that aligns the roughly 

registered template point cloud with the rebar point cloud, 

ensuring precise alignment for subsequent processing 

tasks. However, the rebar point cloud often exhibits 

uneven density between the inner and outer rebar due to 

self-occlusion, which can cause the registration 

algorithm to prematurely converge to a local optimum. 

This typically occurs when the outer rebar is aligned, 

leaving the sparser inner rebar unaccounted for. To 

address this issue, an adaptive displacement correction 

strategy is designed to help the algorithm escape from 

local optima, as shown in Figure 3. Specifically, after the 

initial fine registration using point-to-plane ICP, the 

registration quality is evaluated based on the root mean 

square error (RMSE) threshold ε. If the RMSE between 

the aligned template and rebar point clouds exceeds ε, it 

indicates insufficient alignment and necessitates 

corrective action. The correction involves introducing 

displacement value s along both the positive and negative 

directions of the outer rebar axis in the template frame, 

followed by recalculating the RMSE for both cases. The 

displacement correction is then applied in the direction 

that minimizes the error. Point-to-plane ICP is 

subsequently reapplied until either the accuracy 

requirement is satisfied or the maximum number of 

iterations is reached. In this paper, the RMSE threshold ε 

was set to 0.9, and the displacement value s was set to 2d, 

where d represents the diameter of the inner rebar. This 

displacement correction strategy enhances alignment 

robustness and improves overall registration accuracy, 

leading to more accurate pose estimations for the rebar 

tying task. 

 

Figure 3. Coarse registration module and fine registration module. 

 

3 Experiment Design 

3.1 Experiment Device 

The proposed rebar pose estimation method has been 

integrated into a rebar tying robot developed by our 

research team, as shown in Figure 4. This system 

comprises several key components: a 4WD mobile base 

with a load capacity of 150 kg for enhanced mobility; a 

6-DoF robotic arm with a working radius of 1,300 mm 

for versatile manipulation; and a rebar tying gun as the 

end effector. Additionally, a 3D camera is configured in 

an "eye-in-hand" setup, providing a resolution of 

1280×1024 and achieving a repeatability of 0.1 mm at a 

distance of 0.5 m. The industrial PC, operating on 

Ubuntu 20.04, is equipped with an NVIDIA Ampere 

GPU and an 8-core ARM Cortex-A78AE CPU, ensuring 

robust computing capabilities for efficient processing. 

 

Figure 4. Rebar tying robot developed by our 

research team. 
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3.2 Experiment Settings 

Two experiments were conducted to validate the 

proposed method. Experiment 1 aimed to test the 

effectiveness of the proposed coarse-to-fine point cloud 

registration algorithms for rebar pose estimation, 

comparing it with other mainstream registration 

algorithms, such as ICP [15], RANSAC [16], and FGR 

[17]. All algorithms were implemented using Open3D. 

To assess the performance of each algorithm in complex 

scenes, a dataset comprising 3,000 point clouds was 

created, with 600 point clouds captured at each of the 

following angles: 0°, 10°, 20°, 30°, and 40°. As shown in 

Figure 5, the production process involved the following 

steps: (1) Color maps and depth maps were captured at 

various angles, with 0° being the ideal camera orientation 

(Z-axis perpendicular to the rebar plane, X- and Y-axes 

are aligned parallel to the rebar). Other angles were 

achieved by rotating around the X-, Y-, and Z-axes. (2) 

The collected color images underwent preprocessing 

before being input into the YOLOv8 model for tying 

point localization. (3) Based on the predicted bounding 

boxes from the YOLOv8 model and the corresponding 

depth maps, point cloud models of crosspoint regions 

were extracted. 

Experiment 2 aimed to explore the significance of the 

proposed visual perception technique by deploying it on 

a rebar tying robot developed by our team (as shown in 

Figure 4) and comparing it with other rebar tying 

methods, including manual tying, handheld tying 

machine, and other rebar tying robots. To verify the 

robustness of the proposed method across different 

scenarios, tying accuracy and efficiency are analyzed 

through tests involving rebars positioned horizontally, 

vertically, and inclined, as illustrated in Figure 6. 

 

Figure 5. Point cloud model dataset under 

different shooting angles. 

 

   
(a) (b) (c) 

Figure 6. Different test scenarios: (a) horizontal tying work surface, (b) vertical tying work surface, and (c) 

inclined tying work surface. 

 

4 Results 

4.1 Result of Experiment 1 

In Experiment 1, the average RMSE and processing 

time were utilized to evaluate the performance of four 

point cloud registration methods. To ensure a fair and 

reliable comparison of different registration algorithms, 

an initial translation vector based on the spatial 

coordinate difference between the tying points in the 

rebar and template point clouds was provided to each 

algorithm. This improved both the convergence speed 

and stability of the registration methods. The 

experimental results are presented in Table 1. The 

proposed point cloud registration method significantly 

reduced the average RMSE error compared to unaligned 

raw data, effectively addressing texture-less and self-

occluding issues during template alignment for rebar 

pose estimation. Furthermore, the proposed method 

outperformed other algorithms in registration accuracy 

across all camera angles and is less affected by camera 
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angle variations. The superior performance of this 

method suggests its suitability for the rebar pose 

estimation task. According to Table 2, the proposed 

method was slightly slower than ICP, but higher than the 

other point cloud registration algorithms and still 

maintained high real-time performance. 

Table 1. Average RMSE of different point cloud registration methods (unit: millimeter) 

Method 0° 10° 20° 30° 40° 

“Raw” 1.039 1.817 3.340 4.913 5.354 

ICP 0.522 0.597 0.613 0.812 1.287 

RANSAC 1.527 1.751 1.965 2.221 2.532 

FGR 2.860 2.893 3.495 4.394 4.637 

AnyDirectTying 0.480 0.551 0.526 0.602 0.650 

Table 2. Average time consumption of different point cloud registration methods (unit: seconds) 

Method 0° 10° 20° 30° 40° 

ICP 0.009 0.009 0.010 0.013 0.014 

RANSAC 0.098 0.103 0.112 0.119 0.112 

FGR 0.032 0.033 0.037 0.039 0.038 

AnyDirectTying 0.019 0.024 0.027 0.033 0.034 

Given that the ICP algorithm generally outperforms 

other mainstream methods in terms of accuracy, Figure 7 

presents a comparison of the point cloud registration 

results from the proposed method and the ICP algorithm 

at various shooting angles. As shown in Figure 7, when 

the camera angle was at 0°, the performance of ICP 

algorithm was excellent due to the unaligned raw data 

being closely aligned, providing an ideal initial state that 

allowed the ICP algorithm to converge quickly to the 

correct registration result. However, as the camera angle 

increased, the accuracy of the algorithm declined. At 

angle of 10° and 20°, the ICP algorithm tended to fall into 

local optima rather than achieving the global optimum. 

This issue was primarily due to self-occlusion, where 

fewer points were captured from the inner rebar, causing 

the algorithm to align more readily with the outer rebar 

while overlooking the misalignment of the inner rebar. 

This problem became more pronounced when the camera 

angle reached 30° and 40°, resulting in a rapid decrease 

in ICP registration accuracy. The proposed method 

effectively reduces interference by applying an adaptive 

displacement correction strategy. 

In summary, current mainstream point cloud 

registration methods generally exhibited higher RMSE 

errors, with some even exceeding those of the unaligned 

raw data. This discrepancy suggested that existing 

methods were unsuitable for the task of rebar pose 

estimation. In contrast, the proposed coarse-to-fine point 

cloud registration method significantly reduced the 

RMSE error across different scenarios. This indicated 

that the proposed method effectively addresses issues 

related to texture-less surfaces and self-occlusion during 

template alignment for rebar pose estimation, enabling 

the robot to accurately perceive the spatial relationship 

between itself and the tying object, thereby facilitating 

tying tasks across a broader range of scenarios. 

 

Figure 7. The registration effects of the ICP and the proposed method at different photo angles. 

 

4.2 Result of Experiment 2 

To evaluate tying accuracy, 100 rebar crosspoints 

were tied point by point using the rebar tying robot 

developed by our research team under different working 

conditions. As shown in Table 3, the robot achieved a 

high tying success rate across various working conditions. 
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In contrast to the visual perception methods of existing 

robots, which are mainly designed for horizontal rebar 

mesh and predict only the spatial position of tying points, 

the proposed method enabled robot to determine the 6-

DoF rebar pose in crosspoint region. This capability 

allows the robot to autonomously perceive the spatial 

relationship between itself and the tying object, making 

it capable of performing tying tasks across a broader 

range of scenarios and demonstrating greater adaptability 

than existing robotic systems. 

Moreover, tying efficiency was analyzed by 

comparing the average tying time of various tying 

methods. As shown in Table 4, the average tying time of 

the rebar tying robot developed in this study was reduced 

by approximately 39.71% in safe mode and 57.84% in 

extreme mode compared to manual tying. When 

compared to handheld tying machine, the robot shortened 

operation time by approximately 14.58% in safe mode 

and 40.28% in extreme mode. These results demonstrate 

that the robot significantly outperforms manual labor by 

completing more tasks within the same period, thereby 

boosting construction efficiency. Additionally, the 

average tying time of our robot was faster than that of 

other tying robots in extreme mode, although it was 

slightly slower in safe mode. Nonetheless, the robot 

maintained a notable overall efficiency advantage.  

A further analysis of the tying time components in 

safe mode revealed that visual perception method 

accounted for only 0.05 seconds per tying point, just 2.03% 

of the total tying time. Most of the time was consumed 

by the execution of the tying action and the movement of 

the robot arm. This indicates that the slightly lower 

efficiency in safe mode is primarily due to the 

mechanical speed of the equipment rather than the 

performance of the algorithm. Future improvements 

could focus on deploying the proposed algorithms onto 

faster, more robust tying robots to enhance their 

adaptability to multi-directional tying and further 

improve operational efficiency. 

Through the above experiments, it was found that the 

proposed 6-DoF rebar pose estimation method enabled 

the robot to perform tying operating across a broader 

range of scenarios accurately. Additionally, the rebar 

tying robot deployed with the proposed method 

demonstrated significant efficiency advantages 

compared to manual tying and other automatic tying 

techniques, highlighting the potential of the proposed 

method to improve construction productivity by guiding 

the robot towards more efficient and accurate robotic 

operations. 

Table 3. Success rates of our rebar tying robot under 

different working conditions 

Scenario horizontal vertical inclined 

Ours 99% 98% 98% 

Table 4. Comparison of efficiency of different rebar 

tying techniques [3,5] 

Rebar tying techniques Average tying time 

Manual tying 4.08 

Handheld tying machine 2.88 

Beijing Institute of 

Technology 
2.34 

T-iROBO 2.1 

TyBot 2.01 

Ours (extreme mode) 1.72 

Ours (safe mode) 2.46 

5 CONCLUSIONS 

Traditional visual perception algorithms for rebar 

tying robots are often limited to tying objects on 

horizontal rebar meshes. This study proposes a 6-DoF 

rebar pose estimation method to guide robotic arms in 

executing tying operations at arbitrary positions and 

orientations in 3D space, thereby broadening the 

application of automated tying technology to various 

rebar configurations. The key innovations include using 

a deep learning-based keypoint detection algorithm to 

extract rebar point data, along with a coarse registration 

method based on geometric features and a fine 

registration method utilizing adaptive displacement 

correction strategy. These innovations effectively 

address the challenges of rebar pose estimation caused by 

weak texture and self-occlusion. 

Two experiments validated the effectiveness of the 

proposed algorithm. Experiment 1 demonstrated that the 

proposed coarse-to-fine point cloud registration method 

outperformed other mainstream algorithms (ICP, 

RANSAC, and FGR) in accuracy across different camera 

angles, achieving an average RMSE of 0.650 mm in 

complex environments and 0.480 mm in ideal conditions. 

The algorithm maintains real-time performance, with 

processing time ranging from 0.019 to 0.034 seconds, 

demonstrating its capability to handle the challenges 

posed by the weak texture and self-occlusion in rebar 

point clouds. 

Experiment 2 revealed that the tying robot equipped 

with the proposed algorithm achieved success rates of 

99%, 98%, and 98% for horizontal, vertical, and inclined 

rebar, respectively, demonstrating improved flexibility 

and adaptability. The robot also exhibited notable 

efficiency advantages, completing ties in 1.72 seconds 

(extreme mode) to 2.46 seconds (safe mode), compared 

to manual methods and other robots. 

In summary, this study enhances the tying 

capabilities of vision-guided rebar tying robots by 

developing a 6-DoF rebar pose estimation method, 

thereby extending their applicability to diverse rebar 

configurations. This research fills a research gap in 6-

DoF rebar pose estimation for robotic rebar tying, 
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offering an advanced visual perception method that 

reduces reliance on manual labor. Future work will focus 

on improving the accuracy and stability of the algorithm, 

particularly regarding variations in rebar diameter or 

spacing. 
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