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Abstract 

In the construction industry, achieving high 

standards in surface finishing is essential for 

structural integrity and aesthetic quality, yet 

traditional inspection methods can be slow and miss 

subtle defects. This paper introduces a drone-based 

system that utilizes advanced sensor processing for 

automated surface quality assessment in construction 

finishing tasks. The system integrates Light Detection 

and Ranging (LiDAR) and high-resolution RGB 

cameras to collect detailed surface data. The LiDAR 

module applies Gaussian filtering for noise reduction, 

followed by bicubic interpolation to generate a 

smooth and continuous elevation map, allowing for 

precise flatness estimation across the scanned surface. 

For visual defect detection, a Convolutional Neural 

Network based de-blurring algorithm is first applied 

to captured images to remove motion blur caused by 

drone movement. This process enhances image 

sharpness by passing the blurred image through 

multiple convolutional layers, where each layer 

reconstructs finer details, resulting in a deblurred 

image. Subsequently, a zero-shot transformer-based 

segmentation model uses multi-head self-attention to 

analyze spatial relationships within the deblurred 

image, allowing for effective identification and 

segmentation of defect regions without requiring 

extensive training data. Testing was conducted in 

both a ROS-based simulation and on real-life surface 

work. The LiDAR-based flatness estimation achieved 

a Root Mean Square Error (RMSE) of 0.2 mm in 

simulation and 0.8 mm in real-life tests, with Mean 

Absolute Error (MAE) values of 0.4 mm and 1.1 mm, 

respectively. The camera-based defect detection 

showed substantial improvement with the de-blurring 

module, increasing Intersection over Union (IoU) for 

defect segmentation to over 95% with de-blurring. 

Keywords – Construction Robotics, Computer Vision, 

Unmanned Aerial Vehicle, Machine Learning 

1 Introduction 

Ensuring consistent surface quality is an essential 

aspect of construction that significantly impacts the 

functionality of buildings [1]. Surface finishing 

operations—such as plastering, painting, floor leveling, 

and coating—are not merely cosmetic but serve as 

critical elements for achieving structural performance 

and regulatory compliance. These processes contribute to 

the durability, safety, and appearance of finished 

structures, underscoring their importance across various 

construction projects, from residential homes to 

industrial facilities. However, maintaining high standards 

in surface quality remains a complex task [2], particularly 

as project scales and technical requirements continue to 

grow. The ability to accurately monitor surface 

conditions and promptly identify defects is crucial, not 

only for achieving desired design outcomes but also for 

reducing potential maintenance issues and ensuring the 

longevity of the finished surface [3]. 

Despite the fundamental role of surface finishing, 

current methods for tracking progress and assessing 

quality still rely heavily on manual inspections. 

Traditional approaches are predominantly labor-

intensive, involving visual assessments and basic 

measurement tools like spirit levels, tape measures, and 

straight edges [4]. These methods, while useful for 

identifying major defects, are limited in their capacity to 

detect subtle surface imperfections, such as minor texture 

inconsistencies, fine cracks, or small deviations in 

flatness. As a result, errors can be missed, leading to 

compromised surface quality that may only be detected 

during later stages of construction or post-completion 

inspections. Additionally, manual inspection processes 

are time-consuming and often contribute to delays, 

especially in large-scale projects where extensive surface 

areas must be monitored [5]. The variability in human 

assessment further complicates achieving consistent 

quality, making it difficult to maintain uniform standards 

across diverse site conditions. 

Given these limitations, the adoption of automation in 

construction has gained momentum, with drones 

emerging as a promising tool for progress monitoring and 

quality assessment in surface finishing [6]. Drones offer 

advantages that extend beyond traditional methods, 

including rapid data collection, broad area coverage, and 
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the ability to access elevated or hard-to-reach locations 

without scaffolding or other support structures [7]. 

Equipped with high-resolution cameras and LiDAR 

sensors, drones can capture detailed surface data, 

enabling comprehensive analysis and monitoring in real-

time [8]. This capability allows for faster and more 

systematic inspections, improving both accuracy and 

consistency in quality control. By integrating drone 

technology into surface finishing workflows, 

construction teams can reduce reliance on manual 

processes, increase inspection speed, and enhance defect 

detection. 

However, despite the growing use of drones for 

surface monitoring, existing systems still face significant 

challenges that limit their effectiveness. Current drone-

based systems often depend on basic imaging techniques 

that lack the sensitivity needed to identify fine surface 

defects. Issues such as slight texture variations, minor 

cracks, and subtle flatness deviations may go undetected 

due to inadequate image resolution and algorithm 

limitations. Additionally, many drone systems are not 

designed to handle real-time data analysis, making them 

less effective in dynamic conditions where factors like 

changing light levels, reflective surfaces, or varying 

environmental conditions can influence inspection 

accuracy. As a result, these systems may fail to provide 

the precision required for complex surface assessments, 

prompting the need for more advanced solutions that can 

adapt to diverse monitoring conditions. 

To overcome the limitations of traditional inspection 

methods in surface finishing, this paper proposes an 

advanced drone-assisted system for real-time progress 

tracking and quality assessment. The system integrates 

high-resolution cameras and LiDAR sensors to capture 

comprehensive data on surface characteristics, including 

smoothness, evenness, and potential defects such as 

cracks and texture inconsistencies. To enhance 

measurement accuracy, the raw sensor data undergoes 

pre-processing with Gaussian filtering to reduce noise, 

followed by calibration for reliable results. 

For defect detection, a Convolutional Neural 

Network (CNN)-based de-blurring module first restores 

clarity in motion-blurred images captured by the drone, 

ensuring sharper details. This deblurred data is then 

processed by a zero-shot transformer-based segmentation 

model, which uses multi-head self-attention to examine 

spatial relationships, accurately segmenting defect areas 

without the need for extensive labeled training data. 

In parallel, the system employs bicubic interpolation 

on the LiDAR data to generate a smooth elevation map, 

facilitating precise flatness estimation. The system’s 

combination of enhanced sensor processing and adaptive 

algorithms offers a robust and efficient solution for 

monitoring surface quality in complex construction 

settings. This method minimizes the risk of rework, 

improves accuracy, and supports consistent adherence to 

quality standards, contributing to more reliable and 

efficient surface finishing in construction environments. 

Additionally, the system employs a vision transformer-

based segmentation model, which reduces the need for 

extensive training across different test environments, 

enhancing adaptability in diverse construction scenarios 

while maintaining high defect detection accuracy. 

2 Current Developments in Surface 

Finishing and Drone-Based Quality 

Tracking in Construction 

2.1 Limitations of Traditional Surface Quality 

Monitoring Methods 

Traditional methods for monitoring surface quality in 

construction primarily rely on manual inspections [9]. 

These techniques often involve visual evaluations and the 

use of handheld tools to measure attributes such as 

smoothness, flatness, and texture consistency [10]. While 

these approaches can be effective in identifying major 

defects, they are inherently limited by their reliance on 

human observation. Subtle surface imperfections, such as 

minor texture variations, small cracks, or slight 

deviations in flatness, are frequently overlooked during 

manual inspections [11], compromising the overall 

quality of the finished surface. Additionally, these 

methods are time-consuming and labor-intensive [12], 

making it challenging to achieve consistent results across 

large or complex surfaces. Irregularly shaped areas and 

confined spaces pose further difficulties, as inspectors 

may struggle to access or measure these regions 

accurately. This often results in uneven quality, the need 

for rework, and delays in project timelines [13]. As 

construction projects grow in scale and complexity, the 

demand for more accurate, efficient, and real-time 

quality assessment tools has become increasingly evident, 

necessitating a shift toward automated solutions. 

2.2 Emergence of Drone Technology in 

Construction 

Drones have increasingly been adopted in 

construction for a variety of applications, owing to their 

versatility and capability to access areas that are 

otherwise difficult to reach [14]. Drones have proven to 

be valuable tools for tasks such as site inspections, 

surveying, and progress tracking [15], providing real-

time aerial data that can be used to monitor various 

aspects of a project. Equipped with high-resolution 

cameras, LiDAR sensors, and GPS, drones can rapidly 

collect comprehensive visual and spatial information [16], 

covering large areas more quickly than manual methods 

[17]. Drones offer non-invasive data collection 
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capabilities, allowing for detailed topographical mapping, 

structural inspections, and general site monitoring 

without the need for direct contact [18].  

Despite these advantages, the use of drones for 

surface-specific quality monitoring in finishing 

operations remains relatively underdeveloped. While 

some research has explored drone manipulation of tools 

or objects for surface tasks, achieving the precision and 

stability needed for delicate surface analysis and 

adjustments has proven challenging. 

2.3 This Paper’s Contribution to Drone-Based 

Surface Monitoring and Quality Tracking 

This paper addresses a critical need in construction 

quality control by introducing a drone-based system that 

integrates high-resolution LiDAR and RGB camera 

sensors with advanced machine learning algorithms to 

monitor surface quality. The proposed system improves 

upon existing methods by combining multiple 

innovations to enhance accuracy, adaptability, and 

efficiency in surface assessment tasks. 

To improve flatness estimation, the system 

incorporates a LiDAR-based mapping module enhanced 

with Gaussian filtering to reduce noise and bicubic 

interpolation to generate a smooth and continuous 

elevation map. This approach enhances measurement 

precision, improving surface elevation mapping accuracy 

and ensuring consistent results across diverse conditions. 

For defect detection, our system integrates a CNN-

based de-blurring module that effectively restores 

motion-blurred images captured during drone operation. 

This enhancement improves image clarity, ensuring 

sharper details that are crucial for identifying subtle 

surface defects such as cracks and texture inconsistencies. 

Additionally, the system employs a vision 

transformer-based segmentation model, which requires 

significantly less training across diverse test 

environments compared to conventional CNN-based 

models. This reduced training requirement improves the 

system's adaptability and scalability, minimizing the 

need for extensive data collection and retraining when 

applied to different construction scenarios. Together, 

these advancements improve the precision of flatness 

mapping, enhance defect detection through improved 

visual data clarity, and increase the system's adaptability 

with reduced training demands. The resulting framework 

offers a robust, efficient, and scalable solution for real-

time surface quality assessment in construction 

environments.[19]. 

3 Drone-Based Real-Time Surface 

Quality Assessment and Defect 

Detection

 

 

Figure 1. Drone-Based Real-Time Surface Quality Assessment and Defect Detection System Overview  

 

The proposed UAV-based system for surface quality 

assessment and defect detection in construction 

applications is divided into two main components: 

LiDAR-Based Surface Elevation Measurement and 

Camera-Based Surface Defect Detection as shown in 

Figure 1. Each component is designed to address 

different aspects of surface monitoring, enabling the 
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system to capture both topographical and visual defects 

with high accuracy. 

3.1 LiDAR-Based Surface Elevation 

Measurement 

The LiDAR module scans the target surface to obtain 

detailed elevation data. This initial scan captures the 

surface topography, producing a series of elevation 

profiles that can identify height variations indicative of 

surface irregularities. The LiDAR data is represented as 

a 3D point cloud, with each point denoted by coordinates 
(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), where: 

𝐿 = {(𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2), … , (𝑥𝑛 , 𝑦𝑛, 𝑧𝑛)} (1) 

(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) represents the spatial position and height 

of each LiDAR data point on the surface. 

3.1.1 Noise Removal Module 

The raw LiDAR data often contains noise due to 

environmental factors or sensor inaccuracies, which can 

lead to errors in surface mapping. To enhance accuracy, 

a Gaussian filtering approach is applied to the LiDAR 

data, effectively smoothing out noise while preserving 

the underlying topography. The Gaussian filter calculates 

a weighted average of neighboring points, giving higher 

importance to points closer to the target point and 

gradually reducing the influence of more distant points. 

The filtered height value 𝑧filtere  (𝑥, 𝑦) at each position 

(𝑥, 𝑦) is computed as: 

𝑧filtere  (𝑥, 𝑦) =
1

2𝜋𝜎2
∑  

𝑘

𝑖=−𝑘

∑  

𝑘

𝑗=−𝑘

𝑧(𝑥 − 𝑖, 𝑦 − 𝑗) exp (−
𝑖2 + 𝑗2

2𝜎2
) (2)

 

 

where 𝜎  is the standard deviation of the Gaussian 

kernel, controlling the extent of smoothing, and 𝑘 is the 

filter size determining the neighborhood around each 

point (𝑥, 𝑦) . This Gaussian filtering process reduces 

noise effectively while preserving the s rface’s str ct ral 

features, ensuring a more accurate representation of the 

surface elevation for subsequent analysis.  

 

3.1.2 Smooth Interpolation for Elevation 

Estimation 

After noise removal, a bicubic interpolation method 

is applied to fill gaps between scanned points, creating a 

continuous and smooth elevation map of the surface. 

Bicubic interpolation estimates the elevation between 

data points by fitting a smooth surface through the 

existing points, calculated as: 

𝑧(𝑥, 𝑦) = ∑  

3

𝑖=0

∑  

3

𝑗=0

𝑐𝑖𝑗𝑥𝑖𝑦𝑗 (3) 

where 𝑐𝑖𝑗  are coefficients derived from the 

neighboring data points. This interpolation process 

generates a smooth elevation profile, allowing the system 

to visualize height changes continuously across the 

surface and detect any deviations from expected flatness, 

such as undulations or depressions. 

3.2 Camera-Based Surface Defect Detection 

The Camera Module captures high-resolution RGB 

images of the surface, allowing the system to detect 

visual defects such as cracks, texture inconsistencies, or 

other surface imperfections. This component involves 

two main steps: motion-blur removal and defect area 

segmentation. 

 

3.2.1 Motion-Blur Removal Using Convolutional 

Neural Networks (CNN)  

During UAV operations, motion blur can be 

introduced due to drone movement, compromising the 

clarity and accuracy of captured images. A Convolutional 

Neural Network (CNN) is applied to each image to 

remove any motion blur, reconstructing the image with 

sharp details. The blurred image 𝐼 l rre  (𝑥, 𝑦)is processed 

through several convolutional layers, where the output 

deblurred image 𝐼 e l rre  (𝑥, 𝑦) is generated as: 

𝐹𝑙(𝐼) = 𝜎(𝑊𝑙 ∗ 𝐼 + 𝑏𝑙) (4) 

where 𝐹𝑙(𝐼)  denotes the feature map at layer 𝑙 , 𝑊𝑙 

and 𝑏𝑙 represent the weights and biases of the filters, ∗*∗ 

denotes the convolution operation, and 𝜎 is the activation 

function (commonly ReLU). We adopted a Multi-Scale 

Convolutional Neural Network architecture [20]. This 

architecture was chosen due to its improved stability 

during training, reduced computational overhead, and 

lower risk of generating artifacts in low-texture regions, 

which are common in construction environments. 

The CNN model employs three parallel convolutional 

branches operating at different scales to effectively 

capture both fine textures and large structural patterns. 

The network integrates residual connections to improve 

gradient flow and enhance detail preservation, 

particularly in texture-rich environments such as concrete 

and brick surfaces. The multi-scale outputs are fused 

through a concatenation layer, followed by additional 

convolutional layers for image reconstruction. The final 

output layer adopts a ReLU activation function to 

enhance image contrast and preserve sharp details. 

 

 

 

3.2.2 Zero-Shot Defect Area Segmentation Using 

Transformer Networks 

After deblurring, a zero-shot transformer-based 
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network is used to segment defect areas without requiring 

extensive labeled data for training. This network utilizes 

a multi-head self-attention mechanism to highlight areas 

likely to contain defects, based on spatial features in the 

image. The segmented defect map 𝑀def(𝑥, 𝑦)  is 

generated by passing the deblurred image through the 

transformer network, resulting in a probability map that 

indicates the likelihood of defects at each pixel: 

𝑀def(𝑥, 𝑦) = softmax (∑  

𝐻

ℎ=1

Attention(𝑄ℎ , 𝐾ℎ , 𝑉ℎ)) (5) 

where 𝐻  is the number of attention heads, 

and 𝑄ℎ , 𝐾ℎ , 𝑉ℎ  represent the query, key, and value 

matrices for each head. This multi-head attention 

mechanism allows the transformer to capture nuanced 

spatial relationships within the image, enabling it to 

effectively identify defects such as cracks, discolorations, 

or texture inconsistencies on the surface. 

4 Implementations 

This section describes the implementation and testing 

of the two primary components of the proposed system: 

LiDAR-Based Surface Elevation Detection and Camera-

Based Surface Defect Detection. Testing is conducted in 

both a ROS (Robot Operating System) simulation 

environment to provide controlled, reproducible 

conditions and on a compact real-life setup with an 

uneven concrete surface for real-world evaluation. These 

tests aim to assess the system's performance in de-

blurring and segmenting surface defects, as well as 

accurately estimating surface flatness. 

 

4.1 Training and Testing for Surface Defect 

Detection Methods 

The CNN-based deblurring model was initially 

trained using the GoPro Blur Dataset [20] and further 

fine-tuned using 500 images collected from construction 

sites. This fine-tuning dataset captured materials such as 

concrete, brick, and plastered walls under varying 

lighting and motion conditions to better simulate realistic 

UAV inspection scenarios. The zero-shot transformer 

segmentation model was adapted from a pre-trained 

Vision Transformer model [21]. During evaluation, the 

model was tested on images collected from three 

construction sites featuring varied building materials 

(e.g., concrete, brick, and plastered walls) to assess 

adaptability. The vision transformer model enhances the 

system’s a apta ility  y re  cing the nee  for scenario-

specific retraining. By leveraging pre-trained weights 

and multi-head attention mechanisms, the model 

efficiently identifies surface defects in environments it 

has not been explicitly trained on. During tests, the 

system successfully identified defects without additional 

fine-tuning. 

 

4.2 ROS-Based Simulation for Surface Defect 

Detection and Flatness Estimation 

The ROS environment serves as an initial testing 

ground for the proposed UAV system, simulating real-

world construction surfaces under controlled conditions. 

This simulation is designed to evaluate both the LiDAR-

based surface elevation detection and the camera-based 

defect detection modules, allowing for precise 

performance assessment before moving to real-world 

testing. 

In the ROS environment, a simulated construction 

site surface is created with a variety of textures, 

irregularities, and defects. The simulated surface includes 

flat regions, textured areas, and sections with artificial 

cracks and bumps to mimic typical construction site 

conditions. This environment allows for thorough testing 

of both the LiDAR and camera modules under a variety 

of scenarios. 

The virtual UAV in the ROS simulation is equipped 

with simulated RGB camera and LiDAR sensors, both of 

which are configured to replicate real-world data 

acquisition processes. The RGB camera captures high-

resolution images of the surface from a consistent altitude 

of 2 meters. To evaluate the de-blurring module, 

synthetic motion blur is introduced to the images to 

sim late the  rone’s movement   ring flight. The 

LiDAR sensor, positioned alongside the camera, 

continuously scans the surface to create a 3D point cloud 

that represents surface elevation data, including 

controlled noise to test the noise removal and 

interpolation modules. 

In the first phase of testing, the UAV captures both 

RGB images and LiDAR data as it hovers over the 

surface at a designated altitude. 

4.3 Real-Life Test for Motion Blur Removal 

and Defect Segmentation 

Following the ROS simulation, a real-life test is 

conducted to validate the de-blurring and segmentation 

capabilities on an actual uneven concrete surface. This 

real-life setup is designed to closely replicate the types of 

surfaces commonly encountered on construction sites, 

including intentional irregularities such as cracks, bumps, 

and texture inconsistencies. This research also used open-

access dataset to validate the effectiveness and accuracy 

of the defect detection methodology [22]. This 

experiment provi es insights into the system’s 

performance under realistic lighting, material, and 

environmental conditions. 

The experimental setup employed a quadcopter drone, 
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equipped with a compact Runcam Phoenix 2 camera 

(1000 TVL resolution, 2.1mm lens) and an Ouster OS1-

32 LiDAR sensor with ±0.01° angular sampling accuracy 

for both vertical and horizontal directions. The UAV 

maintained a flight speed of 0.5 – 1.0 m/s and followed a 

predefined grid pattern at a height of 1.5 meters to ensure 

comprehensive data coverage with a 75% forward 

overlap and 60% lateral overlap. Data collection occurred 

in both indoor and outdoor construction environments 

under varied lighting conditions to evaluate system 

adaptability and robustness. Due to unavoidable minor 

movements during hover, moderate motion blur is 

naturally introduced into the images. The captured 

images are processed in real-time by the de-blurring 

module, which uses a CNN architecture to remove the 

motion blur and enhance clarity. This de-blurred image 

is then fed into the zero-shot transformer-based 

segmentation model to detect and isolate defect areas. 

The segmentation output is visualized as a colored mask, 

with highlighted regions indicating the presence of 

cracks, texture inconsistencies, or other defects. This test 

not only verifies the effectiveness of the de-blurring and 

segmentation process but also provides a realistic 

evaluation of how well the system performs in 

identifying defects on rough, uneven surfaces like 

concrete. 

The ROS simulation is conducted in 20 different 

environment and the real-life test collects 200 images to 

gather performance metrics. Key metrics include defect 

detection accuracy, de-blurring effectiveness, and the 

system's ability to accurately estimate flatness. In each 

test, the accuracy of defect detection is measured by 

comparing the binary defect maps with known defect 

locations on the test surfaces. The success of flatness 

estimation is assessed by measuring the deviation 

between the estimated surface heights from the LiDAR 

data and the actual surface profile, with an emphasis on 

identifying areas with elevation deviations exceeding 

acceptable tolerance levels. 

Through these tests, the proposed UAV-based system 

demonstrates its capability to accurately detect defects, 

segment surface irregularities, and estimate surface 

flatness. 

5 Results 

The results of the implementation are presented in 

this section, focusing on the performance of the LiDAR-

based surface elevation measurement and camera-based 

surface defect detection modules. 

5.1 LiDAR-Based Surface Elevation Detection 

To evaluate the accuracy and consistency of the 

LiDAR-based surface elevation detection, several 

metrics were calculated to compare the estimated surface 

elevation data with the actual physical surface 

measurements obtained from the test environment. The 

main metrics used were Root Mean Square Error (RMSE) 

and Mean Absolute Error (MAE), both of which quantify 

the deviation between the LiDAR-generated elevation 

map and the actual surface profile. 

Root Mean Square Error (RMSE): The RMSE was 

calculated to quantify the average magnitude of errors in 

the LiDAR-derived elevation data. This metric reflects 

how well the LiDAR data matches the actual surface 

heights across all tested points. The RMSE for the 

LiDAR-based flatness estimation was observed to be 

approximately 0.2 mm in the ROS simulation and 0.8 

mm in the real-life test, indicating a high degree of 

accuracy for both controlled and real-world 

environments. 

Mean Absolute Error (MAE): The MAE provides an 

alternative error measurement, representing the average 

of absolute differences between estimated and actual 

surface heights. The MAE for the flatness estimation was 

0.4 mm in the ROS environment and 1.1 mm in the real-

life set p, f rther  emonstrating the  iD R system’s 

consistency in representing surface elevation. 

Consistency Across Multiple Runs: To assess 

consistency, the  iD R mo  le’s flatness meas rements 

were repeated across multiple runs in both the simulated 

and real-life environments. The Standard Deviation of 

the RMSE across five independent runs was 0.1 mm in 

the ROS simulation and 0.4 mm in the real-life test, 

demonstrating consistent performance with minimal 

variation, even in the presence of environmental noise. 

 
                          (a)                              (b) 

 
                          (c)                              (d) 

Figure 2. Example Real-life Image Processing. (a) 

Initial Motion Blurred Image. (b) Segmentation 

Result without Deblurring (c)  Deblurred Image 

with CNN (d) Segmentation Result after 

Deblurring 

5.2 Camera-Based Surface Defect Detection 

The effectiveness of the de-blurring module can be 

observed in Figure 2. The first image (a) represents the 
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raw data captured by the camera, where significant 

motion blur obscures surface details, making it 

challenging to identify surface defects accurately. 

Texture and fine structural elements, crucial for detecting 

cracks or bumps, are blurred, which would likely hinder 

the segmentation module's ability to accurately isolate 

defect areas. The third image (c), after processing 

through the CNN-based de-blurring module, shows a 

marked improvement in clarity and sharpness. Fine 

textures and subtle surface irregularities that were 

previously obscured are now distinctly visible. The 

improved clarity allows for enhanced contrast in texture 

features, essential for precise defect detection. This 

qualitative improvement demonstrates the critical role of 

the de-blurring module in enhancing the fidelity of image 

data, ultimately supporting higher segmentation accuracy 

and ensuring robust defect detection. 

The effectiveness of the camera-based surface defect 

detection module was evaluated by measuring the 

Precision, Recall and Intersection over Union (IoU), for 

the segmentation results. The experiments compared 

segmentation performance with and without the de-

blurring module, revealing a significant improvement in 

defect detection accuracy when the de-blurring process 

was applied. 

Precision was calculated to assess the proportion of 

correctly identified defect pixels out of all pixels 

classified as defects. Without de-blurring, precision was 

observed to be around 78%, indicating a high rate of false 

positives due to motion blur. After de-blurring, precision 

improved to 96%, showing that the de-blurring module 

reduced false positives significantly, enabling the system 

to accurately classify defect regions. Recall was also 

used to measure the proportion of actual defect pixels that 

were correctly identified. The recall score without de-

blurring was around 15%, highlighting that many true 

defect areas were missed due to image blurriness. With 

the de-blurring module, recall improved to 94%, 

indicating that the system could accurately capture 

almost all defect areas present on the surface. 

Intersection over Union (IoU) was used as the 

primary metric to evaluate segmentation accuracy, 

measuring the overlap between the predicted defect 

regions and the ground truth defect areas. Without 

applying the de-blurring module, the IoU for defect 

segmentation was approximately 28%, indicating a high 

degree of misalignment between the segmented defects 

and actual defect locations due to motion blur in the 

images. However, with the de-blurring module applied, 

the IoU increased dramatically to over 95%, showing 

that the de-blurred images allowed for accurate 

identification of defect areas, with high consistency 

between predicted and actual defects. 

6 Conclusions 

This paper presents a novel UAV-based system 

designed for real-time surface quality assessment in 

construction, integrating LiDAR for flatness estimation 

and a camera module for defect detection. The 

implementation of a CNN-based de-blurring module 

significantly enhanced defect segmentation accuracy, 

achieving an IoU improvement from 28% to over 95%, 

by restoring image clarity affected by motion blur. The 

LiDAR module demonstrated high consistency with 

actual surface elevations, with low RMSE and MAE 

values, validating its effectiveness in accurately 

representing surface topography. Field tests in both 

simulated and real-world environments confirmed the 

system’s ro  stness, achieving relia le performance in 

detecting surface defects and estimating flatness.  

Future research directions include conducting more 

comprehensive real-life field tests in diverse construction 

environments to evaluate the system's adaptability to 

varying lighting, weather, and material conditions. 

Additionally, exploring the integration of advanced 

machine learning techniques, such as self-supervised 

learning or transformer-based models, could further 

improve defect detection and flatness estimation across a 

broader range of surface types. 
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