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Abstract -

In future automated construction sites, multiple au-
tonomous agents must navigate safely and efficiently. While
velocity obstacle-based algorithms like Optimal Recipro-
cal Collision Avoidance(ORCA) handle microlevel con-
trol, achieving efficiency also requires the management of
macrolevel dynamics, similar to human social behavior. The
existing C-Nav algorithm, which incorporates the concept
of “consideration for others” to promote yielding behavior,
shows promise, but its evaluation method can lead to ineffi-
cient or nonconsiderate actions. This study found out that in-
sufficient space for yielding causes these issues, and proposes
a new evaluation method to encourage social behaviors. The
results indicate reduced stacking in narrow areas, although
some inefficiencies persist. As a result, the “waiting behind”
action functions as an auxiliary mechanism that reinforces
the mutual yielding behavior intended by C-Nav, thereby en-
hancing overall operational efficiency. These insights suggest
that further refining the algorithm, guided by a deeper un-
derstanding of human social interactions, can lead to more
robust and efficient navigation strategies.
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1 Introduction

Owing to the growing shortage of skilled workers in the
construction sector, the automation of construction ma-
chinery is advancing to improve productivity and safety.
A noteworthy example is Taisei Corporation’s T-iCraft®,
which tests coordinated operations using four types of au-
tonomous machines, namely backhoes, crawlers, dump
trucks, and bulldozers.

Path planning for autonomous robots relies heavily on
their ability to “pass each other.” For instance, in environ-
ments in which robots cannot pass each other, all pathways
must be one-way or single-track, which leads to inefficient
movements.

Figure 1 illustrates a situation in a construction site
where passageways are blocked by construction materials,
making it difficult for robots to pass each other. Such
situations are expected to frequently occur in construction
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sites, and developing methods to address them is crucial
for advancing automation.

Dump truck returning after delivery

Obstruction
by Construction Materi;

J Dump truck transporting sand

Figure 1. Illustration of the Situation in Which
Robots Cannot Pass Each Other

Planning the movements of multiple autonomous con-
struction machines (referred to as “agents”) in continuous
space to avoid collisions is not easy. Although humans
can easily manage passing movements, autonomous ma-
chines require advanced algorithms. Velocity obstacle-
based algorithms like Optimal Reciprocal Collision Avoid-
ance (ORCA) [1], Reciprocal Velocity Obstacle (RVO) [2],
Hybrid Reciprocal Velocity Obstacle (HRVO) [3], and Ex-
tended Velocity Obstacle (EVO) [4] treat other agents as
dynamic obstacles and calculate safe velocities to prevent
collisions.

Velocity obstacle-based algorithms use distributed sys-
tems in which each agent independently calculates its
movement based on predefined rules. This ability is
aligned well with construction sites, where obstacles fre-
quently appear, as illustrated in Figure 1. In addition, con-
struction machines are typically large and lack maneuver-
ability, making detours less feasible compared to waiting
for clearance. This constraint is unique to construction
sites, and under this premise, the avoidance-focused al-
gorithm proposed in this study is expected to be highly
effective.

However, the algorithms often leads to overall efficiency
reductions such as traffic jams (referred to as “stacks”).
By drawing inspiration from human interactions, such as
crowd dynamics and mutual respect, and incorporating a
social modeling framework into these algorithms, these
types of problems may be mitigated. The literature on
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game theory and other related disciplines in the social
sciences has a crucial role in developing these enhanced
algorithms.

C-Nav [5] is a collision avoidance algorithm that incor-
porates the concept of “empathy,” voluntarily balancing
agents’ progression toward their goals in consideration of
the freedom of others. While C-Nav improves movement
efficiency in narrow passages, challenges remain in diverse
site conditions and parameter dependencies. Strengthen-
ing the generalizability and robustness of such algorithms
is essential for their practical deployment.

The purpose of this study is to analyze the effects of en-
hancing sociality, by introducing more social parameters
within the existing C-Nav algorithm, on resulting group
performances. It aims to apply analogies with human so-
cial behaviors to agent interactions and examine whether
they improve the algorithm’s performance. Methodolog-
ically, we conduct herein computer simulations based on
existing ORCA and C-Nav codes, visualize agent behav-
iors, propose improvements, and compare results to eval-
uate enhancements. The novelty of this study is its em-
phasis of algorithmic robustness and strengthening of this
robustness through the incorporation of new social behav-
ior concepts.

2 Related Work

2.1 Overview of Collision Avoidance Algorithms

Various approaches exist for collision avoidance algo-
rithms in a continuous space. The mainstream approach
is that associated with the use of velocity obstacle-based
algorithms. In these algorithms, agents calculate the ve-
locity (to be adopted next) at each time step based on
information about their surrounding environment. One of
the advantages of this approach is its distributed nature.
Instead of relying on a central decision-maker overseeing
the entire environment, individual players plan their paths
based on their judgments. This improves the computa-
tional efficiency and allows flexible responses to dynamic
environments.

2.2 Overview of ORCA

Various formulations have been proposed to determine
“safe” velocities, aiming to ensure safety while maintain-
ing the maximum possible freedom for velocity selection.
Among these, ORCA is currently one of the most ex-
tensively used methods. ORCA calculates the “collision
velocity range” based on the velocities and positions of the
surrounding agents. By “sharing” velocity vector adjust-
ments to escape from this range with other agents, ORCA
can estimate a “safe velocity range” with reasonable accu-
racy. Within this “safe velocity range,” agents are free to

select velocities (e.g., by choosing the direction and speed
that brings them closest to their goal).

This method has been demonstrated to enable collision
avoidance among thousands of agents, with the computa-
tion time scaling linearly with the number of agents. How-
ever, as ORCA focuses on guaranteeing safe velocities at
each time step, there is room for improvement in motion
planning from a macroscopic perspective. For example,
in narrow passages, simply directing groups of agents to-
ward their goals can lead to stacking when the two groups
intersect.

Since the introduction of ORCA, research on velocity-
based collision-avoidance algorithms in environments that
guarantee accurate and complete communication has pri-
marily focused on addressing these types of inefficiencies.
Examples include the VGVO [6], proxemics [7], and Gr-
pAvoid [8]. The mainstream approach proposes improve-
ments in velocity decisions at a slightly higher macrolevel
than ORCA. The same approach was adopted in this study.

2.3 Limitations of the ORCA Algorithm and the C-
Nav Algorithm

When proposing algorithms to address the aforemen-
tioned limitations of ORCA, many researchers have
drawn inspiration from human social behaviors and game-
theoretic considerations. Among these, the C-Nav algo-
rithm yields particularly interesting results. C-Nav is an
algorithm that incorporates the advanced social behavior
concept of “yielding.” Explicitly integrating the concept
of “empathy” from the related disciplines in social sci-
ences, it predicts actions several steps ahead and rewards
movements that reduce constraints on the actions of oth-
ers. Consequently, it enables construction machines to
pass each other in narrow passages, where only one ma-
chine can pass at a time.

3 Problem Formulation
3.1 Definition of the Velocity Obstacle Problem

According to Van Den Berg et al. [1], the velocity
obstacle (VO) problem is formulated as described below.
We consider an environment shared by n agents. Each
agent was modeled as a disk moving in a two-dimensional
plane. The following information is provided for agent A:

* Current position (p4): The agent’s current location
in the 2D plane

* Current velocity (v4): The agent’s current speed and
direction

* Radius (r4): The radius of the agent assumed to be a
two-dimensional circle

¢ Maximum velocity (v{**): The upper limit of the
agent’s speed
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* Preferred velocity (viref): The desired velocity in the

absence of obstacles, typically directed toward the

3 3 max
goal with magnitude v/}

The symbols pa, va, and ry are considered as external
states that are observable through environmental sensing.
By contrast, v{** and V}:ef are internal states that are not
directly observable by the other agents. With a time-step
interval 7, each agent selects a new velocity based on the

parameters at each time step.

3.2 ORCA Algorithm Details

The primary objective of ORCA is for each agent to se-
lect a velocity that ensures that there are no collisions with
other agents or obstacles in the subsequent time step. In
addition, as a secondary objective, the agent may choose a
velocity that is as close as possible to the preferred velocity
v;‘ref. ORCA was designed to satisfy these requirements.

The collision velocity range refers to the range of veloc-
ities based on two agents that may collide within a specific
timeframe. Selecting a velocity within this range intro-
duces arisk of collision. The collision avoidance set is the
set of velocities that avoids this range in the subsequent
time step. By selecting the velocity from this set, we guar-
anteed that no collisions would occur. Based on this idea,
each agent calculates the minimum necessary velocity ad-
justments to avoid collisions with all surrounding agents.
From the convex set of safe velocities obtained through

this process, Agent A selects the velocity closest to v;‘ref.

3.3 C-Nav Algorithm Details

In this section, we describe the setting of vl‘;‘ref, which is
a unique feature of C-Nav, according to the explanation of
Godoy et al. [5].

At each time step, the agent first simulates hypothetical
actions over several future steps for various possible ac-
tions it can take in the subsequent time step based on obser-
vations of the positions and velocities of the surrounding
agents. Examples of possible actions include movements
in eight directions based on the direction directly toward
the goal.

Each action is then scored according to its degree of goal
achievement and those of the surrounding agents. Herein,
the agent’s degree of goal achievement is defined as the
distance moved closer to the goal. The degree of goal
achievement for the surrounding agent j (more precisely,
the extent to which the agent’s action affects the agent’s
goal achievement) is given by the value P, ;

Pa,j — pymax _ ”vijplem _ Vr}ew”

ey

where yintent
J

J via a signal.

is assumed to be communicated by an agent
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Figure 2. Behavior in the Case of Optimal Reciprocal
Collision Avoidance

Consequently, the reward for each action is calculated
using the following equations:

Ry=(1-y) Ri+7-R; )
T—1 [ ViV (gi—pi)
RS — 20 ( llgi —p:ll ) 3
= G)
T-1
RC — =1 Zjecrank Pavj (4)

@ (T-1) k-ymax
where y is a parameter that balances the agent’s goal
achievement and the consideration of other agents. A
value of y closer to zero places more emphasis on the
agent’s goal achievement, whereas a value closer to one
places more emphasis on the consideration of other agents.
This 7y is known as the coordination factor.
Finally, the action with the highest R, value is selected
and passed to ORCA as v;‘r ¢ to determine the final velocity.

4 Observation and Analysis

In this section, we determine what needs to be improved
regarding the behavior of agent groups resulting from the
existing C-Nav algorithm based on observations of our
simulations.

4.1 C-Nav’s Superiority over ORCA in Narrow Pas-
sages

In this section, we explain how C-Nav overcomes the
challenges presented by ORCA and what concrete im-
provements it achieves in practice. In section 4.2, we
present examples of undesirable behaviors in which C-
Nav deviates from its intended principles, thereby clarify-
ing directions for further refinement.

First, in the case of a simple ORCA, the two agents are
set to move straight toward their respective goals; thus,
they both enter a narrow passage. Because they collide,
the leading agents of each line try to avoid each other by
moving to the left and right, as calculated by the ORCA
algorithm. However, because the narrow passage is ade-
quately broad for only one agent, they cannot pass each
other and become stuck in the passage (Figure 2).

We now explain the ideal avoidance behavior intended
to be used in the original paper [5] in the case of C-Nav. In
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Figure 3. Behavior in the Case of C-Nav
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Figure 4. Illustration of the Real-world Narrow Pas-
sage Scenarios

Figure 3, the red agent determines that proceeding straight
ahead would obstruct the blue agent, and will thus avoid
moving to the right. Meanwhile, the blue agent notices
that the red agent has moved to the right and proceeds
straight ahead, resulting in “passing each other” behavior.

These simulated behaviors correspond to real-world
movements observed at construction sites, as shown in
Figure 4, specifically as these pertain to the passing of
dump trucks heading to transport soil and those returning
from transportation.

4.2 Unintended Stacking Caused by C-Nav in Narrow
Passages

We also observed the behavior after modifying the width
of the narrow passage to allow the two agents to pass
through each other side-by-side. The ideal behavior in this
field is for the agents to shift to the left and right directions
and pass each other while maintaining their formation, as
shown in Figure 5. However, when we conducted repeated
trials under the same conditions, the following behavior
often occurred (Figure 6). In their efforts to predict several

I

Figure 5. Smooth Behavior Attained in the Case of
C-Nav
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Figure 6. Stacking in the Case of C-Nav

steps ahead of their current positions in cases of straight
motion trajectories, both the leading agents of the red and
blue groups obstruct each other and fail to achieve their
own goals; accordingly, they try to change their courses
by moving to the right or left. However, the directions
they chose to avoid were the same, resulting in a situation
where they blocked each other’s paths. In this case, the
two leading agents that are “hesitating” restrict the width
of the narrow passage, and the agents which follow can
only pass through one at a time, reducing the efficiency of
the crossing.

The fact that this inefficient behavior occurs often,
presents a challenge when considering applications to ac-
tual construction sites and indicates a lack of robustness
in the current algorithm. Therefore, modifications are
required to the algorithm to avoid these types of ineffi-
ciencies.

4.3 Analysis of the Cause of Stacking

4.3.1 Changes in Behavior When Switching to Se-
quential Turns

First, let us consider an analogy to human behavior. In
the narrow passage situation presented in Section 4.2.3,
it is common to experience congestion in reality because
the avoidance directions of oncoming individuals overlap.
The essential cause in this example is that “the choice of
avoidance direction is made simultaneously.” If you knew
(from your perspective) that another person would avoid
it, you would not avoid it. Believing that this phenomenon
also occurs in C-Nav, we modified the algorithm. We
changed the evaluation of the actions in each direction,
which was previously performed simultaneously based on
the desired velocities of each agent at the start of the for-
loop—to be performed sequentially. With this change,
each agent performs evaluations while recognizing the pre-
ferred velocities of surrounding agents.

However, even when this algorithm was used, avoidance
actions in the same direction occurred (Figure 7).
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Figure 7. Same-direction Avoidance in the Case of
Sequential Turns

Therefore, we concluded that this behavior was not due
to the order of turns.

4.3.2 Changes in Behavior When the Number of
Agents was Altered

We verified this by changing the number of agents and
their intervals.

First, in the one-on-one case, the results were as follows:
out of 1000 trials, the shortest and longest completion
times were 98 and 112. In other words, severe stacks, such
as those described in Section 4.2.3, did not occur.

In another case, the following trajectories were ob-
served: The red and blue lines represent the agents moving
upward and downward, respectively. If we focus on the
points where each agent first changes its direction of move-
ment, we can observe that both avoid the right side of the
screen. However, after several adjustments in direction,
these two agents eventually passed through (Figure 8).

Figure 8. Elimination of “Hesitation” Observed in
the 1 on 1 Case

Based on the results presented earlier, we can infer that
when there is sufficient space around oneself and the tar-
get agent that needs to be avoided, repeated directional
adjustments are made; as a result, stacking due to mutual
avoidance does not occur.

4.3.3 Specific Mechanism of Stacking in C-Nav and
Opportunities for Algorithm Improvement

Based on the results of Sections 4.3.1, and 4.3.2, it can
be inferred that the presence of the following agents influ-
ences the occurrence of stacks owing to mutual avoidance.
Reinterpreting the behavior based on this, the sequence is
as follows:

1. In Figure 6, both the red and blue agents first move
to the right side of the screen to avoid obstacles.
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2. The following agents proceeded straight into the
space that had opened up.

3. The leading red and blue agents, who had initially
avoided each other by moving to the right, lose the
freedom to readjust their direction of movement as in
the one-on-one case owing to the entry of the agents
that followed; these two agents are continually pushed
further to the right by these incoming agents.

It is considered that the stacks occurred because of the
aforementioned mechanism.

Considering the meaning of this behavior, it implies
that “even though the leading agents are trying to yield the
way to the opposing agents, the following agents attempt to
overtake and proceed.” This contradicts one of the major
themes of the C-Nav algorithm, which is “consideration
for others.”

Furthermore, this behavior was observed in cases where
the

1. coordination factor was increased

2. reward target was limited to only the nearest agent

3. agents were allowed to select low-speed actions or
stop at desired velocities

These observations indicate that with the current reward
function, it is difficult to restrict “overtaking.”

4.4 Proposed Improvements

As pointed out by Godoy etal. [5], an attempt to vary the
way rewards are given, depending on whether the agents
are moving in the same or opposite directions, is con-
sidered useful for constructing a more efficient algorithm.
Based on this, we will revisit the current method of assign-
ing rewards by focusing on the “direction of movement of
the agent being considered.”

The current method for assigning consideration rewards
is as follows:

Pu,j = pymax _ ”vljptent _ V?CW”

®)

In other words, this method values “not hindering the
movement of others.”

Based on our observations thus far (e.g., passing through
narrow passages in one-on-one situations), it has been
confirmed that this is effective for agents moving in oppo-
site directions. However, for agents moving in the same
direction—especially the agent immediately ahead who
is stalled—the possibility that one’s actions will directly
block the agent’s desired path is low. Consequently, dif-
ferences in the rewards for each of one’s actions were less
likely to occur. Moreover, as we have observed, blocking
the space necessary for avoidance actions between that
agent and agents facing it becomes a “hindrance” when
viewed over a longer number of time steps. Therefore, a
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more appropriate method for assigning rewards is required
to avoid this.

We can draw an analogy with human social behavior.
Suppose that at a place where only one person can pass—
such as an automatic door at a building entrance—a few
people from inside and another group from outside arrive
and stumble across each other. In this situation, the leader
of the group (coming from inside or outside) will step
aside by the door and yield the way to the other group. At
this time, the highest priority for the other members of the
group that is yielding (assuming everyone in this group
is considerate) is “not to step ahead of the person who is
yielding.”

Based on the above, a more desirable way of consider-
ation is to “ensure freedom of action for agents moving
in the opposite direction as in the existing method, but for
agents moving in the same direction, if that agent yields
the way or its movement stalls, to line up behind and wait.”

In the existing method case, the reward calculation is
performed for a specified number of agents in order from
those with the largest speed change, regardless of the dis-
tances from each other. However, this method of assigning
rewards depends on how the neighborhood is defined (e.g.,
the setting of the neighborhood radius); correspondingly,
robustness against the problem situation is not guaranteed.
In Godoy et al. [5], there is limited discussion on the order
of consideration. When introducing the movement of “lin-
ing up behind a stalled agent ahead,” it is more intuitive to
consider agents as targets for this reward concept in order
of increasing proximity to oneself.

Based on this, we propose changing the method for
assigning consideration rewards as follows.

Existing reward assignment methods

Without distinguishing the agents, we calculate P, ; for
each agent using Eq. 5, and estimate the average of a
specified number of agents in order from the ones with the
largest P, ; as a consideration reward.

Proposed method for reward assignment

We define whether the “flow directions are the same or
opposite” based on whether the inner product of one’s de-
sired velocity vector and that of the other agent is positive
or negative. In addition, we define an agent’s movement
as “slow” if its current speed is less than half its maximum
speed. In this case,

* For agents j moving in the opposite direction, calcu-
late P, ; using Eq. 5.
* For agents j moving in the same direction, calculate

P, using the following equation:

(pj—4.0xr;x vi]mem) - pi

@ x intent '
1(pj = 4.0 X rj x viment) — p,||

Py j=

Va
(6)

In this study, we refer to this method of providing rewards
as ”Q-Virtue,” inspired by the Japanese queuing culture
(the virtue of standing in line).

S Experiments

We conducted experiments to verify whether the pro-
posed changes in the reward rules led to a reduction in
stacking in narrow passages.

5.1 Evaluation Method

Using C-Nav as a comparison point, we evaluated the
C-Nav algorithm using the proposed reward allocation
method.

In this study, we focused on actions to determine
whether it is possible to avoid the phenomenon according
to which the movement completion time becomes consid-
erably longer than when ideal crossing occurs, owing to
stacks resulting from the existing C-Nav. Therefore, we
evaluated the method by performing 100 trials and compar-
ing the frequency distribution of the movement completion
time (the average time required for 10 agents to reach their
goals).

Regarding the parameters of C-Nav, we fixed them at the
following values, which showed the best performance in
the existing algorithm as a result of the experiments; coor-
dination factor (y) = 0.9, and number of agents considered
in reward = 1.

5.2 Results

For each scenario, we present the following for both the
existing C-Nav and the proposed assignment method:

1. A distribution plot with the average completion time
(in s) on the horizontal axis and the frequency on the
vertical axis

A sequence of representative snapshots of observed
behavior (the left image shows the initial state and
the right image shows the state after some time has
elapsed)

5.2.1 Narrow Passage Scenario

First, we consider a situation in which agents can pass
through two narrow passages simultaneously.
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Figure 9. Behavior in the Case of C-Nav
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Figure 10. Behavior in the Case of Q-Virtue
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Figure 11. Completion Times in the Case of C-Nav
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Figure 12. Completion Times in the Case of Q-Virtue

In contrast to the existing C-Nav method, where Fig-
ure 9 illustrates numerous instances of agents blocking
each other’s paths in narrow sections, the Q-Virtue demon-
strates movements where groups on the avoiding side align
in orderly rows, as shown in Figure 10. Additionally, vir-
tually no time was spent obstructing each other’s paths.
Consequently, compared with the existing C-Nav (Figure
11), the distribution of movement completion times for the
Q-Virtue (Figure 12) is skewed to the left. This shift led to
a decreased number of trials in which crossing completion
required a long time.
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Behavior causing stack

Figure 13. Illustration of the Real-world Situations
Associated With the Group Crossing Scenario

5.2.2 Group Crossing Scenario

We focus next on the crossing of two groups consist-
ing of multiple agents in a crowded situation and compare
the behaviors resulting from each method handled so far.
We verified whether Q-Virtue, which focuses on improv-
ing behavior in narrow passages, is also efficient in other
situations. These simulated behaviors correspond to the
real-world movements observed at construction sites, as

shown in Figure 13.
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Figure 14. Behavior in the Case of C-Nav
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Figure 15. Behavior in the Case of Q-Virtue
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Figure 16. Completion Times in the Case of C-Nav
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Figure 17. Completion Times in the Case of Q-Virtue

When comparing the existing C-Nav method (Figure
14) with the Q-Virtue (Figure 15), the latter exhibits for-
mations at an earlier stage, which consequently alleviates
crowding during crossings. Consequently, the distribution
of movement completion times for the Q-Virtue (Figure
17) is skewed to the left compared with the existing C-Nav
method (Figure 16). This shift leads to a decreased num-
ber of trials in which crossing completion requires a long
time.

5.3 Summary

In all situations, the distribution of the average move-
ment completion time shifted to a side with a smaller
length because of the Q-Virtue.

6 Conclusion and future work

The existing C-Nav yielded interesting results by de-
signing the algorithm to incorporate information related
to the “consideration for others,” generating yielding be-
haviors. However, it was found to be parameter-dependent,
especially concerning behaviors during crossings in nar-
row passages, revealing robustness issues as areas for im-
provement in practical applications. To elicit the unique
performance intended by C-Nav, which is “mutual yield-
ing,” we proposed the addition of auxiliary processes
and consequently achieved an improvement in robustness.
These findings provide new insights into refining veloc-
ity obstacle-based collision avoidance algorithms and can
help alleviate congestion and facilitate more efficient pas-
sage among agents in future automated construction sites.

In this study, we demonstrated that for C-Nav (and for
many other collision avoidance algorithms proposed as
improvements of ORCA), the action of “waiting behind”
is an important factor in achieving efficient movement.
However, discussions on methodologies to induce the be-
havior of “waiting behind” and the conditions under which
it becomes effective are still insufficient, and more detailed
analyses and improvements are required.

Due to limitations in research duration and equipment,
this study did not conduct experiments in actual construc-

tion sites. Future work will focus on testing the algorithm
in real environments to assess the impact of construction-
specific physical and social factors.
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