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Abstract – 

The Architecture, Engineering, and Construction 
(AEC) sector faces increasing pressure for higher 
production rates amidst a growing shortage of skilled 
labor, driving the demand for advanced robotic 
applications to enhance precision, efficiency, and 
adaptability in complex environments. 

This paper introduces a software setup designed to 
ensure collision-free movements for multi-axis robots 
in AEC scenarios. Our approach leverages the 
NVIDIA cuRobo framework's robust capabilities, 
seamlessly integrated with Grasshopper for Rhino 3D 
software (GH), a tool widely recognized for its 
versatility in parametric design. 

The integration of these technologies allows for the 
efficient online generation of optimal path movements, 
avoiding collisions even in highly intricate settings 
and changing environments. This is achieved in a 
remarkably short timeframe, enhancing productivity 
and reducing downtime. NVIDIAs framework's 
GPU-driven architecture paired with our GH 
parametric and controlling setup is a significant 
advancement, validated through a case study 
involving a complex, tree-like structure constructed 
from timber sticks. Using a six-axis robotic arm, the 
study demonstrates the system's capability to 
navigate and manipulate within congested spaces 
efficiently. With this enhanced automation workflow, 
new possibilities emerge for robotic applications, 
from industrial automation to sophisticated 
construction projects. Our GH software also allows 
visualization and exchange with URDF-models and 
better planning of collision logic, which was 
previously only possible with ROS and Nvidia Isaac 
technology. 
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1 Introduction 
Collision-free path planning is one of the most 

complex challenges in robotics, particularly in the AEC 
industry, where multi-axis robots must navigate dynamic, 
congested, and constrained environments [1]. We define 
collision-free in this study as the ability of the system to 
generate paths that avoid both self-collisions and external 
obstacles while optimizing for smooth motion and 
execution speed. Traditional path planning methods, such 
as manual programming or basic algorithms, are time-
consuming and prone to errors, making them unsuitable 
for the intricate geometries and real-time adaptability 
required in construction scenarios. While advancements 
in sampling-based and grid-based algorithms have 
improved pathfinding capabilities, their integration into 
widely used design tools remains limited. Most existing 
solutions in platforms like Grasshopper for Rhino3D 
(GH) do not support real-time collision avoidance, 
leaving a critical gap in robotic automation workflows. 

This paper addresses this gap between computational 
robotic planning and architectural workflows, making 
robotic automation more accessible to AEC professionals 
by introducing a novel framework that integrates 
NVIDIA cuRobo [2], a GPU-accelerated motion 
planning library, with GH. By leveraging cuRobo’s 
advanced capabilities, the system enables real-time, 
collision-free path planning, even in dynamic 
environments. This streamlined approach eliminates 
many of the barriers associated with traditional methods, 
offering a robust solution for automating complex robotic 
tasks. The framework’s effectiveness is validated 
through a case study of a robotic timber structure 
assembly, demonstrating its ability to navigate full 
cluttered environments with precision and reliability. 
This advancement represents a significant step toward 
solving one of the core challenges of robotic automation 
in the AEC industry. 
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2 Background & Related Work 
The integration of multi-axis robots into the AEC 

industry has significantly advanced automated 
fabrication and assembly processes. A critical component 
of this integration is the development of efficient, 
collision-free path planning algorithms that can be 
seamlessly incorporated into architectural design 
software environments. 

Path planning for multi-axis robots involves 
computing trajectories that avoid obstacles, adhere to the 
robot’s kinematic constraints, and optimize performance 
metrics like speed and precision. Traditional methods 
often relied on manual programming, which is time-
consuming and susceptible to errors. Recent 
advancements have focused on automating this process 
to enhance efficiency and adaptability in complex 
architectural tasks. One of the most common algorithms 
comes from the group of Sampling-Based Algorithms, 
such as Rapidly-exploring Random Trees (RRT) and 
Probabilistic Roadmaps (PRM), that have been widely 
adopted for robotic path planning in software solutions 
[3]. These algorithms explore the robot’s configuration 
space by randomly sampling points and connecting them 
to construct feasible paths. For instance, RRT 
incrementally builds a tree by randomly sampling the 
configuration space, effectively handling high-
dimensional spaces typical of multi-axis robots. However, 
their direct application within design environments has 
been limited, necessitating the development of more 
accessible tools for architects and designers. In contrary 
to this, the Grid-Based Algorithms, such as the A* 
algorithm, operate on a discretized representation of the 
environment [4,5]. They evaluate possible paths based on 
cost functions to determine the most efficient route. In 
construction scenarios, an improved A* algorithm with a 
dynamic weight heuristic has been developed for global 
path planning, enhancing the robot’s ability to navigate 
complex sites. Our paper describes the implementation of 
NVIDIA-cuRobo Algorithm that falls into the category 
of Optimization-Based Algorithms. In recent years, 
optimization-based algorithms have gained prominence 
in robotic motion planning, particularly for complex 
tasks requiring smooth and efficient trajectories. These 
algorithms frame motion planning as an optimization 
problem, aiming to find the best path according to 
specific criteria, such as minimizing time, energy, or/and 
avoiding obstacles. 

To bridge the gap between advanced path planning 
algorithms and architectural design, several plugins have 
been developed to enable robot programming within 
design software. For instance, the Software RoboDK [6], 
which incorporates the PRM motion planner, integrates 
path planning software interfaces into computational 
design environments to automatically generate collision-
free paths within the robot's workspace. Another example 

is MoveIt [7], which integrates seamlessly with various 
computational platforms to facilitate motion planning, 
collision checking, and trajectory generation. Unlike 
RoboDK, which focuses on predefined paths within 
industrial environments, MoveIt is often used for more 
dynamic and adaptive scenarios, making it suitable for 
robotics applications that require real-time decision-
making or complex manipulations. 

Those two software solutions are commonly used in 
industries such as automotive manufacturing and 
aerospace, where fabrication setups often rely on highly 
predefined and controlled processes. Althought RoboDK 
has a GH plugin and MoveIt can be integrated within 
Compas-Fab [8| framework the collision-free path 
planning is not trivial and robust. ROS and its simulation 
platforms, Gazebo and PyBullet, are excellent for 
developing robotic systems similar to those presented in 
this paper. Their integration with NVIDIA Omniverse 
also makes them potential candidates for automatic 
collision-free path planning. However, these systems 
require specialized robotics and programming expertise, 
posing a barrier to adoption in the AEC industry. While 
no definitive study exists on the most widely used 
software in AEC robotic fabrication, the prevalence of 
Rhino and Grasshopper (GH) plugins across major 
robotic and software companies suggests its dominant 
role. GH’s visual programming capabilities lower the 
technical barrier, making it a crucial bridge between 
design and fabrication, particularly in parametric 
workflows with evolving design constraints. 

For GH, several plugins are available for robotic 
control and path planning, including HAL, KUKA|prc, 
Robot Components, Robots (by Visose), FU-Robot, and 
Machina [9] that makes it a serious tool for robotic 
control. However, despite their utility, none of these 
plugins currently support collision-free path planning, 
primarily due to the complex nature of the task and the 
substantial computational power required. Real-time, 
collision-free path planning remains a significant 
challenge within these design environments. The 
intricacy of architectural geometries, parametric setups, 
the presence of dynamic elements such as moving objects 
and actors, and the high level of customization required, 
demand more advanced solutions. These solutions must 
be capable of managing complex design constraints 
while providing immediate feedback to designers. 

3 cuRobo 
A notable advancement in the area of automatic 

collision-free path planning for robots is NVIDIA’s 
cuRobo, a GPU-accelerated library [2]. By leveraging the 
parallel processing capabilities of GPUs, cuRobo 
formulates motion planning as a global optimization 
problem, enabling the simultaneous evaluation of 
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multiple potential solutions. This parallelism allows 
cuRobo to solve complex motion generation tasks in 
approximately 50 milliseconds on average, achieving 
speeds up to 60 times faster than traditional trajectory 
optimization methods. It’s efficiency stems from 
combining straightforward optimization techniques with 
numerous parallel starting points, or “seeds.” It utilizes 
the L-BFGS method—a popular optimization algorithm 
for estimating step directions—alongside a novel parallel 
noisy line search strategy and a particle-based 
optimization solver. Additionally, the algorithm 
incorporates a parallel geometric planner capable of 
generating plans within 20 milliseconds and a collision-
free inverse kinematics (IK) solver that can process over 
7,000 queries per second. These capabilities make 
cuRobo a powerful tool for real-time robotic applications, 
including those in the AEC industry, where rapid and 
reliable motion planning is essential for tasks like 
automated fabrication and assembly. 

The software requires installation on a robust system 
equipped with a CUDA-capable NVIDIA GPU of Volta 
or newer architecture, operating on Ubuntu 20.04 or 
22.04, although it also works on Debian 11. A Python 
environment with version 3.10 is recommended, and the 
software depends on PyTorch version 1.15 or newer. 
These requirements, including the reliance on a Linux 
operating system and high-performance hardware, 
present significant barriers within the architectural and 
construction industries, where such setups are not 
commonly available. Additionally, the simulation 
environment, based on NVIDIA Isaac, a platform 
designed for developing and deploying robotics 
applications, further complicates testing different 
configurations due to its specialized requirements, such 
as loading Universal Robot Description Format (URDF) 
files, and the need for high-level technical expertise to 
adapt it to real-world scenarios. To address these 
challenges and use the paralleled speed and precision of 
this framework, we propose a novel setup that integrates 
high-performance computing with GH for AEC 
professionals. 

4 Grasshopper – cuRobo Setup 
The system setup integrates three interconnected 

software frameworks: cuRobo, Grasshopper and MQTT 
(Figure 1). cuRobo’s AI-powered system is equipped 
with a Python API. It operates by loading a configuration 
file tailored to a specific robotic setup, such as the 
Universal Robots UR10e and others, to enable seamless 
integration and control. It operates headless by just 
responding with the calculated results (joint values, 
environment, error messages etc.). Grasshopper in 
Rhino3D (GH) serves for the visual and parametric 
interaction of the environment (world and robot) with the 

user as well for the control of the real robotic system. 
MQTT-communication framework stands between the 
two systems that assures low-level, easy to implement 
exchange of data. While the MQTT-broker Mosquitto 
[10] is installed on Debian Workstation, MQTT-clients 
were implemented inside cuRobo python code and on 
GH side in form custom build MQTT components, both 
based on Paho-clients. 

 
Figure 1. Scheme of the system setup: Left – 
Debian GPU workstation with cuRobo, connected 
to a GH user computer via an MQTT connection 
and to the robot via cable. 

The backbone of the whole concept is cuRobo API 
that comprises interconnected modules designed for 
efficient and precise robotic motion planning. Key 
components include optimization solvers (curobo.opt) 
for refining trajectories, kinematics handling 
(curobo.cuda_robot_model) for forward and inverse 
computations, and collision detection (curobo.geom) for 
safe motion planning. Modules like curobo.graph enable 
geometric pathfinding, while curobo.rollout evaluates 
motion strategies by mapping actions to costs. High-level 
wrappers (curobo.wrap) simplify task programming, 
including collision-free reaching, and curobo.types 
standardizes data structures. The curobo.wrap.reacher 
module provides a high-level interface for programming 
tasks involving collision-free reaching. It simplifies the 
process of generating safe and efficient motion 
trajectories, enabling seamless implementation of 
reaching tasks within various robotics workflows. 
Robots are represented in URDF files, along with their 
collision spheres in an additional YAML file. Another 
configuration YAML file defines the entire additional 
setup, as well as the dimensions of the optional end-
effector. The world in cuRobo is also represented in this 
manner but can be programmatically reloaded after the 
system is initialized. This is important because the 
elements can change positions in a dynamic environment. 
Once initialized, the running program waits for a path 
creation command and returns either a successful path or 
a message explaining the reason for failure. Other 
commands update the world or read the collision spheres 
for improved visualization (Figure 2). 
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Figure 2. Rhino 3D / GH visualization of 1) 
Collision spheres of the robot; 2) Collision 
spheres of the attached stick; 3) World collision 
object of the cable connection of the robot. 

GH handles the visualization and control of the setup. 
Inside GH, we read the shared robot URDF file and 
display the output of the resulting joint positions 
calculated by cuRobo. Additionally, GH is used for world 
creation, which is reflected back to cuRobo. 
Visualization and path rehearsal (Figure 4 and 5) are 
crucial for ensuring safe execution, especially in complex 
design environments. We enable designers to preview 
paths, identify potential issues, and refine movements 
before execution. This prevents costly errors and 
enhances user confidence. Additionally, we can plan 
attaching elements to the end-effector and send this 
configuration back to cuRobo, which incorporates the 
attached element into collision-free path planning. After 
detaching, the new world is updated with the element’s 
new position. For this, a unique URDF reader for GH has 
been developed and incorporated (Figure 3). This makes 
it much easier to build novel robotic setups as well as 
collision sphere setups. 

The third part is the communication system, whose 
purpose is to simply incorporate subscription and 
publisher capabilities on both sides. MQTT can be 
optimal for secure and rapid communication between 
subscribers and publishers in the form of topics. It 
requires an MQTT broker, which most platforms provide, 
and clients are widely available. For the case study, we 
incorporated four request topics and five response topics. 
Depending on the network quality and data size, it will 
deliver an almost immediate response (see Latency 
chapter). 

 

 

The control inside GH consists in these three elements: 
Exchange procedures GH with cuRobo. Here we 

can send the world setup, this means all objects in the real 
or simulated world, from GH to cuRobo in a form of a 
list of elements with their dimensions and poses. Vice 
versa, we can pull the world from cuRobo to cross-check 
how it sees the world. Furthermore, we can also pull 
information about the collision spheres for cross-
checking the YAML file. This helps a lot also to identify 
the position of the robot from the cuRobo side. 

 
Figure 4. Representation of the real world 
translated in Curobo and visualized in Rhino3D / 
GH. 1) automated path options considering the 
world and self-collision; 2) world perception of 
Curobo; 3) Robot representation from URDF-file 
and cuRobo joint positions; 4) start position; 5) 
goal position 
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Figure 5. the original scenery 

Path queries from GH to cuRobo in form of sending 
the initial start position (joints) and the desired goal 
position (plane, position, and pose). This fires back an 
array of joint positions that can be previewed. Every 
query will generate a unique new collision-free path. It 
considers the environment and prevents self-collision. In 
addition to the path query, we can attach or detach objects 
to or from the end-effector, in the case of gripping an 
object or similar. In this case of attaching, the object is 
removed from the world, and additional collision spheres 
will be created in the volume of the object as a part of the 
robot. All subsequent movements of the robot take these 
new collision spheres into account. In the case of not 
finding a valid solution for the target pose, start or goal 
collision states, or other failings, we can provide GH with 
feedback from cuRobo. 

Robot control commands send the calculated new 
joints to the robot. Here, we can also add other commands, 
such as gripper control, depending on the robot being 
used. 

5 Latency 
The great advantage of cuRobo is its speed. In 

contrast to other motion planners described in the 
previous chapter, which often take several seconds to 
optimize a trajectory, cuRobo requires only 1/5–1/10 of 
a second. Black Coffee Robotics [11] compared 
RRTConnect-based MoveIt2 (MI) and cuRobo. In an 
obstacle-free environment, the results are similar 
(cuRobo/MI – 100%/96% success rate – 0.19 sec./0.17 
sec.). In an environment with obstacles, cuRobo 
outperformed MI in terms of reliability and trajectory 
quality (cuRobo/MI – 90.32%/62.50% success rate – 
0.69 sec./0.33 sec.). 

The response in a system with multiple elements, as 
described in this paper, is dependent on several factors, 
such as the computers used and the connection between 
them. In our setup, cuRobo runs on a Linux workstation 

with an Nvidia RTX A4000 GPU with 16GB RAM. The 
computers are connected over a VPN network with a 
minimum 200 Mb/s download speed using the MQTT 
framework. GH is running on a MacBook Pro (2021). 
The average path calculation measured in GH, from 
activating the toggle until receiving the joint positions, is 
approximately 200–250 ms (Figure 4). With such speed, 
an almost continuous flow preview of possible paths for 
moving elements is possible. 

 
Figure 6. Approximated processing time 1) Path 
calculation (Python API time measure); 2) MQTT 
transfer (Mqtt-explorer timestamp); 3) GH path 
creation (GH profiler).  

6 Case Study 
To test the automatic collision-free path planning 

with conventional path planning, we required a 
sufficiently complex structure that went beyond the 
typical simple stacking examples. For this purpose, we 
utilized an ongoing collaborative project with the 
University of Tokyo. The task involved constructing a 
wooden structure composed of identical modular 
elements measuring 18x18x300 mm. In this "classical 
path planning scenario," two robotic setups were 
established in Japan and Germany to test remote 
collaboration scenarios for robotically assembled 
structures. In each facility, a collaborative robotic arm 
(cobot - respectively UR10E and UR10) was installed in 
front of a wooden base on which to perform the assembly. 
Both setups’ gripper end effectors were the OnRobot 
RG6 finger gripper. The different tool mounting 
technology caused slight variations in the tool center 
points. Despite these small differences in the robots' end-
effector positions relative to their frames of reference, 
both setups had very similar reachable workspaces. 

In this modular construction system, the sticks are 
glued together along one of their long faces to form tree-
like structures. The simplicity of the assembly rules, 
paired with the complex architectural results they create, 
makes it an excellent platform for experimenting with 
robotic assemblies [11]. The outcome of the original tests 
was a twin structure in both locations together with the 
design and fabrication data that was exchanged through 
a synchronized JSON file stored on a shared Dropbox 
folder. The JSON file included geometrical information 
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that was used to build another twin structure [12]. 
We replicated the experiment of the structure 

assembly of the first 12 sticks, and instead of manually 
or parametrically constructing the path, we relied solely 
on the cuRobo path-planning capabilities. The 3D model 
was built in GH, and all sticks were positioned at the pick 
position. The assembly consisted of several parts where 
all movements and attaching/detaching were made by 
cuRobo: 

1. Movement from home to one of three offset 
gripping positions of the stick to be picked. 

2. Opening the gripper and a movement towards the 
picking position. 

3. Closing the gripper and a movement to the offset 
position. 

4. Virtual attaching the stick to the robot. 
5. Movement towards the offset placing position. 
6. Movement to the placing position. 
7. Opening the gripper and virtual detaching the stick 

from the robot. 
8. Movement to the offset position. 
9. Movement back to the home position. 

All movements had their preview state in the form of 
a curve to ensure that the movements were possible and 
within the desired area. As soon as a preview was 
validated as valid, it was sent to the robot for execution. 
The gripper openings and closings were controlled 
manually through the same GH controller. 

The movements were extremely accurate and 
immediately available. As we had the previews of the 
movements, we could execute the robot without fear of 
colliding with other objects, even with the stick in the 
gripper (Figure 5). Sometimes, it moved very near to 
objects, which made us nervous.  

After the fifth stick, a collision still happened. We 
forgot to account for the cable connection to the robot 
that was facing towards the sticks. The joint position of 
the shoulder squeezed the connector and disconnected it 
from the power. We had to release the joints manually 
and rotate the shoulder away. After we integrated the 
connector into the world (Figure 3), this unusual position 
never repeated. 

As we tested the cuRobo URDF file of a UR10e robot 
on a real UR10 robot, discrepancies in the calculated 
positions limited us to only 12 sticks. These 
discrepancies arose because the base of the UR10e is 15 
mm higher than that of the UR10, along with some minor 
differences in arm length and will be improved in the next 
tests. 

This specific case study demonstrated the technical 
capabilities of cuRobo in generating fast and precise 
collision-free paths, seamlessly integrating with 
Grasshopper for real-time visualization and robotic 
control. However, limitations emerged, such as 

discrepancies between simulated and real-world robot 
models, the need for manual adjustments to account for 
unmodeled elements like cables, and the lack of real-time 
dynamic obstacle handling. 

7 Conclusion and Discussion 
This study successfully integrates advanced AI-based 

software for collision-free path planning into an 
architectural workflow, offering significant potential for 
robotic automation in the AEC industry. By combining 
the NVIDIA cuRobo framework with Grasshopper in 
Rhino3D, the system eliminates the need for complex 
environments like NVIDIA SIM, streamlining the 
process and lowering adoption barriers. The case study 
demonstrates the framework’s precision and efficiency in 
generating accurate collision-free paths, enabling 
complex assembly tasks with minimal intervention. Real-
time visualization further empowers users to plan and 
execute robotic movements confidently. 

The system excels in speed, precision, and 
accessibility. The GPU-accelerated cuRobo framework 
outperforms traditional motion planners, generating 
results in near real-time. Its integration into Grasshopper 
ensures AEC professionals can work within familiar 
environments, enhancing usability. Additionally, the 
system’s ability to adapt to dynamic changes, such as 
object attachment and detachment, underscores its 
flexibility for construction applications. 

Despite these strengths, challenges remain. The dual-
hardware setup and the need for a CUDA-capable Linux 
system pose barriers for widespread adoption. 
Compatibility issues, as seen in the discrepancies 
between UR10e and UR10 hardware, highlight the need 
for precise configuration, and oversights in collision 
modelling, such as the robot’s cable connection, 
demonstrate the importance of comprehensive planning. 

Future research will focus on incorporating real-time 
scanning and dynamic feedback to handle variable 
environments, as well as developing intuitive control 
methods like voice or semantic commands. Expanding 
compatibility to include more robot models and releasing 
an open-source library is planned. 
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