
GPU-Accelerated Collision-Free Path Planning for Multi-
Axis Robots in Construction Automation

Ilija Vukorep1 Rolf Starke1 Arastoo Khajehee2 Nicolas Rogeau2 Yasushi Ikeda2

1Faculty of Architecture, Civil Engineering and Urban Planning, BTU Cottbus-Senftenberg, Germany
2Department of Architecture, Graduate School of Engineering, The University of Tokyo, Japan

 ilija.vukorep@b-tu.de, rolf.starke@b-tu.de, arastoo@arch1.t.u-tokyo.ac.jp, nicolas@arch1.t.u-tokyo.ac.jp,
yasushi@arch1.t.u-tokyo.ac.jp

Abstract –

The Architecture, Engineering, and Construction
(AEC) sector faces increasing pressure for higher
production rates amidst a growing shortage of skilled
labor, driving the demand for advanced robotic
applications to enhance precision, efficiency, and
adaptability in complex environments.

This paper introduces a software setup designed to
ensure collision-free movements for multi-axis robots
in AEC scenarios. Our approach leverages the
NVIDIA cuRobo framework's robust capabilities,
seamlessly integrated with Grasshopper for Rhino 3D
software (GH), a tool widely recognized for its
versatility in parametric design.

The integration of these technologies allows for the
efficient online generation of optimal path movements,
avoiding collisions even in highly intricate settings
and changing environments. This is achieved in a
remarkably short timeframe, enhancing productivity
and reducing downtime. NVIDIAs framework's
GPU-driven architecture paired with our GH
parametric and controlling setup is a significant
advancement, validated through a case study
involving a complex, tree-like structure constructed
from timber sticks. Using a six-axis robotic arm, the
study demonstrates the system's capability to
navigate and manipulate within congested spaces
efficiently. With this enhanced automation workflow,
new possibilities emerge for robotic applications,
from industrial automation to sophisticated
construction projects. Our GH software also allows
visualization and exchange with URDF-models and
better planning of collision logic, which was
previously only possible with ROS and Nvidia Isaac
technology.

Keywords –
collision-free path planning, multi-axis robots, AI
robotic automation, parametric design

1 Introduction
Collision-free path planning is one of the most

complex challenges in robotics, particularly in the AEC
industry, where multi-axis robots must navigate dynamic,
congested, and constrained environments [1]. We define
collision-free in this study as the ability of the system to
generate paths that avoid both self-collisions and external
obstacles while optimizing for smooth motion and
execution speed. Traditional path planning methods, such
as manual programming or basic algorithms, are time-
consuming and prone to errors, making them unsuitable
for the intricate geometries and real-time adaptability
required in construction scenarios. While advancements
in sampling-based and grid-based algorithms have
improved pathfinding capabilities, their integration into
widely used design tools remains limited. Most existing
solutions in platforms like Grasshopper for Rhino3D
(GH) do not support real-time collision avoidance,
leaving a critical gap in robotic automation workflows.

This paper addresses this gap between computational
robotic planning and architectural workflows, making
robotic automation more accessible to AEC professionals
by introducing a novel framework that integrates
NVIDIA cuRobo [2], a GPU-accelerated motion
planning library, with GH. By leveraging cuRobo’s
advanced capabilities, the system enables real-time,
collision-free path planning, even in dynamic
environments. This streamlined approach eliminates
many of the barriers associated with traditional methods,
offering a robust solution for automating complex robotic
tasks. The framework’s effectiveness is validated
through a case study of a robotic timber structure
assembly, demonstrating its ability to navigate full
cluttered environments with precision and reliability.
This advancement represents a significant step toward
solving one of the core challenges of robotic automation
in the AEC industry.

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

421

mailto:ilija.vukorep@b-tu.de
mailto:rolf.starke@b-tu.deu
mailto:arastoo@arch1.t.u-tokyo.ac.jp
mailto:nicolas@arch1.t.u-tokyo.ac.jp

2 Background & Related Work
The integration of multi-axis robots into the AEC

industry has significantly advanced automated
fabrication and assembly processes. A critical component
of this integration is the development of efficient,
collision-free path planning algorithms that can be
seamlessly incorporated into architectural design
software environments.

Path planning for multi-axis robots involves
computing trajectories that avoid obstacles, adhere to the
robot’s kinematic constraints, and optimize performance
metrics like speed and precision. Traditional methods
often relied on manual programming, which is time-
consuming and susceptible to errors. Recent
advancements have focused on automating this process
to enhance efficiency and adaptability in complex
architectural tasks. One of the most common algorithms
comes from the group of Sampling-Based Algorithms,
such as Rapidly-exploring Random Trees (RRT) and
Probabilistic Roadmaps (PRM), that have been widely
adopted for robotic path planning in software solutions
[3]. These algorithms explore the robot’s configuration
space by randomly sampling points and connecting them
to construct feasible paths. For instance, RRT
incrementally builds a tree by randomly sampling the
configuration space, effectively handling high-
dimensional spaces typical of multi-axis robots. However,
their direct application within design environments has
been limited, necessitating the development of more
accessible tools for architects and designers. In contrary
to this, the Grid-Based Algorithms, such as the A*
algorithm, operate on a discretized representation of the
environment [4,5]. They evaluate possible paths based on
cost functions to determine the most efficient route. In
construction scenarios, an improved A* algorithm with a
dynamic weight heuristic has been developed for global
path planning, enhancing the robot’s ability to navigate
complex sites. Our paper describes the implementation of
NVIDIA-cuRobo Algorithm that falls into the category
of Optimization-Based Algorithms. In recent years,
optimization-based algorithms have gained prominence
in robotic motion planning, particularly for complex
tasks requiring smooth and efficient trajectories. These
algorithms frame motion planning as an optimization
problem, aiming to find the best path according to
specific criteria, such as minimizing time, energy, or/and
avoiding obstacles.

To bridge the gap between advanced path planning
algorithms and architectural design, several plugins have
been developed to enable robot programming within
design software. For instance, the Software RoboDK [6],
which incorporates the PRM motion planner, integrates
path planning software interfaces into computational
design environments to automatically generate collision-
free paths within the robot's workspace. Another example

is MoveIt [7], which integrates seamlessly with various
computational platforms to facilitate motion planning,
collision checking, and trajectory generation. Unlike
RoboDK, which focuses on predefined paths within
industrial environments, MoveIt is often used for more
dynamic and adaptive scenarios, making it suitable for
robotics applications that require real-time decision-
making or complex manipulations.

Those two software solutions are commonly used in
industries such as automotive manufacturing and
aerospace, where fabrication setups often rely on highly
predefined and controlled processes. Althought RoboDK
has a GH plugin and MoveIt can be integrated within
Compas-Fab [8| framework the collision-free path
planning is not trivial and robust. ROS and its simulation
platforms, Gazebo and PyBullet, are excellent for
developing robotic systems similar to those presented in
this paper. Their integration with NVIDIA Omniverse
also makes them potential candidates for automatic
collision-free path planning. However, these systems
require specialized robotics and programming expertise,
posing a barrier to adoption in the AEC industry. While
no definitive study exists on the most widely used
software in AEC robotic fabrication, the prevalence of
Rhino and Grasshopper (GH) plugins across major
robotic and software companies suggests its dominant
role. GH’s visual programming capabilities lower the
technical barrier, making it a crucial bridge between
design and fabrication, particularly in parametric
workflows with evolving design constraints.

For GH, several plugins are available for robotic
control and path planning, including HAL, KUKA|prc,
Robot Components, Robots (by Visose), FU-Robot, and
Machina [9] that makes it a serious tool for robotic
control. However, despite their utility, none of these
plugins currently support collision-free path planning,
primarily due to the complex nature of the task and the
substantial computational power required. Real-time,
collision-free path planning remains a significant
challenge within these design environments. The
intricacy of architectural geometries, parametric setups,
the presence of dynamic elements such as moving objects
and actors, and the high level of customization required,
demand more advanced solutions. These solutions must
be capable of managing complex design constraints
while providing immediate feedback to designers.

3 cuRobo
A notable advancement in the area of automatic

collision-free path planning for robots is NVIDIA’s
cuRobo, a GPU-accelerated library [2]. By leveraging the
parallel processing capabilities of GPUs, cuRobo
formulates motion planning as a global optimization
problem, enabling the simultaneous evaluation of

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

422

multiple potential solutions. This parallelism allows
cuRobo to solve complex motion generation tasks in
approximately 50 milliseconds on average, achieving
speeds up to 60 times faster than traditional trajectory
optimization methods. It’s efficiency stems from
combining straightforward optimization techniques with
numerous parallel starting points, or “seeds.” It utilizes
the L-BFGS method—a popular optimization algorithm
for estimating step directions—alongside a novel parallel
noisy line search strategy and a particle-based
optimization solver. Additionally, the algorithm
incorporates a parallel geometric planner capable of
generating plans within 20 milliseconds and a collision-
free inverse kinematics (IK) solver that can process over
7,000 queries per second. These capabilities make
cuRobo a powerful tool for real-time robotic applications,
including those in the AEC industry, where rapid and
reliable motion planning is essential for tasks like
automated fabrication and assembly.

The software requires installation on a robust system
equipped with a CUDA-capable NVIDIA GPU of Volta
or newer architecture, operating on Ubuntu 20.04 or
22.04, although it also works on Debian 11. A Python
environment with version 3.10 is recommended, and the
software depends on PyTorch version 1.15 or newer.
These requirements, including the reliance on a Linux
operating system and high-performance hardware,
present significant barriers within the architectural and
construction industries, where such setups are not
commonly available. Additionally, the simulation
environment, based on NVIDIA Isaac, a platform
designed for developing and deploying robotics
applications, further complicates testing different
configurations due to its specialized requirements, such
as loading Universal Robot Description Format (URDF)
files, and the need for high-level technical expertise to
adapt it to real-world scenarios. To address these
challenges and use the paralleled speed and precision of
this framework, we propose a novel setup that integrates
high-performance computing with GH for AEC
professionals.

4 Grasshopper – cuRobo Setup
The system setup integrates three interconnected

software frameworks: cuRobo, Grasshopper and MQTT
(Figure 1). cuRobo’s AI-powered system is equipped
with a Python API. It operates by loading a configuration
file tailored to a specific robotic setup, such as the
Universal Robots UR10e and others, to enable seamless
integration and control. It operates headless by just
responding with the calculated results (joint values,
environment, error messages etc.). Grasshopper in
Rhino3D (GH) serves for the visual and parametric
interaction of the environment (world and robot) with the

user as well for the control of the real robotic system.
MQTT-communication framework stands between the
two systems that assures low-level, easy to implement
exchange of data. While the MQTT-broker Mosquitto
[10] is installed on Debian Workstation, MQTT-clients
were implemented inside cuRobo python code and on
GH side in form custom build MQTT components, both
based on Paho-clients.

Figure 1. Scheme of the system setup: Left –
Debian GPU workstation with cuRobo, connected
to a GH user computer via an MQTT connection
and to the robot via cable.

The backbone of the whole concept is cuRobo API
that comprises interconnected modules designed for
efficient and precise robotic motion planning. Key
components include optimization solvers (curobo.opt)
for refining trajectories, kinematics handling
(curobo.cuda_robot_model) for forward and inverse
computations, and collision detection (curobo.geom) for
safe motion planning. Modules like curobo.graph enable
geometric pathfinding, while curobo.rollout evaluates
motion strategies by mapping actions to costs. High-level
wrappers (curobo.wrap) simplify task programming,
including collision-free reaching, and curobo.types
standardizes data structures. The curobo.wrap.reacher
module provides a high-level interface for programming
tasks involving collision-free reaching. It simplifies the
process of generating safe and efficient motion
trajectories, enabling seamless implementation of
reaching tasks within various robotics workflows.
Robots are represented in URDF files, along with their
collision spheres in an additional YAML file. Another
configuration YAML file defines the entire additional
setup, as well as the dimensions of the optional end-
effector. The world in cuRobo is also represented in this
manner but can be programmatically reloaded after the
system is initialized. This is important because the
elements can change positions in a dynamic environment.
Once initialized, the running program waits for a path
creation command and returns either a successful path or
a message explaining the reason for failure. Other
commands update the world or read the collision spheres
for improved visualization (Figure 2).

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

423

Figure 2. Rhino 3D / GH visualization of 1)
Collision spheres of the robot; 2) Collision
spheres of the attached stick; 3) World collision
object of the cable connection of the robot.

GH handles the visualization and control of the setup.
Inside GH, we read the shared robot URDF file and
display the output of the resulting joint positions
calculated by cuRobo. Additionally, GH is used for world
creation, which is reflected back to cuRobo.
Visualization and path rehearsal (Figure 4 and 5) are
crucial for ensuring safe execution, especially in complex
design environments. We enable designers to preview
paths, identify potential issues, and refine movements
before execution. This prevents costly errors and
enhances user confidence. Additionally, we can plan
attaching elements to the end-effector and send this
configuration back to cuRobo, which incorporates the
attached element into collision-free path planning. After
detaching, the new world is updated with the element’s
new position. For this, a unique URDF reader for GH has
been developed and incorporated (Figure 3). This makes
it much easier to build novel robotic setups as well as
collision sphere setups.

The third part is the communication system, whose
purpose is to simply incorporate subscription and
publisher capabilities on both sides. MQTT can be
optimal for secure and rapid communication between
subscribers and publishers in the form of topics. It
requires an MQTT broker, which most platforms provide,
and clients are widely available. For the case study, we
incorporated four request topics and five response topics.
Depending on the network quality and data size, it will
deliver an almost immediate response (see Latency
chapter).

The control inside GH consists in these three elements:
Exchange procedures GH with cuRobo. Here we

can send the world setup, this means all objects in the real
or simulated world, from GH to cuRobo in a form of a
list of elements with their dimensions and poses. Vice
versa, we can pull the world from cuRobo to cross-check
how it sees the world. Furthermore, we can also pull
information about the collision spheres for cross-
checking the YAML file. This helps a lot also to identify
the position of the robot from the cuRobo side.

Figure 4. Representation of the real world
translated in Curobo and visualized in Rhino3D /
GH. 1) automated path options considering the
world and self-collision; 2) world perception of
Curobo; 3) Robot representation from URDF-file
and cuRobo joint positions; 4) start position; 5)
goal position

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

424

Figure 5. the original scenery

Path queries from GH to cuRobo in form of sending
the initial start position (joints) and the desired goal
position (plane, position, and pose). This fires back an
array of joint positions that can be previewed. Every
query will generate a unique new collision-free path. It
considers the environment and prevents self-collision. In
addition to the path query, we can attach or detach objects
to or from the end-effector, in the case of gripping an
object or similar. In this case of attaching, the object is
removed from the world, and additional collision spheres
will be created in the volume of the object as a part of the
robot. All subsequent movements of the robot take these
new collision spheres into account. In the case of not
finding a valid solution for the target pose, start or goal
collision states, or other failings, we can provide GH with
feedback from cuRobo.

Robot control commands send the calculated new
joints to the robot. Here, we can also add other commands,
such as gripper control, depending on the robot being
used.

5 Latency
The great advantage of cuRobo is its speed. In

contrast to other motion planners described in the
previous chapter, which often take several seconds to
optimize a trajectory, cuRobo requires only 1/5–1/10 of
a second. Black Coffee Robotics [11] compared
RRTConnect-based MoveIt2 (MI) and cuRobo. In an
obstacle-free environment, the results are similar
(cuRobo/MI – 100%/96% success rate – 0.19 sec./0.17
sec.). In an environment with obstacles, cuRobo
outperformed MI in terms of reliability and trajectory
quality (cuRobo/MI – 90.32%/62.50% success rate –
0.69 sec./0.33 sec.).

The response in a system with multiple elements, as
described in this paper, is dependent on several factors,
such as the computers used and the connection between
them. In our setup, cuRobo runs on a Linux workstation

with an Nvidia RTX A4000 GPU with 16GB RAM. The
computers are connected over a VPN network with a
minimum 200 Mb/s download speed using the MQTT
framework. GH is running on a MacBook Pro (2021).
The average path calculation measured in GH, from
activating the toggle until receiving the joint positions, is
approximately 200–250 ms (Figure 4). With such speed,
an almost continuous flow preview of possible paths for
moving elements is possible.

Figure 6. Approximated processing time 1) Path
calculation (Python API time measure); 2) MQTT
transfer (Mqtt-explorer timestamp); 3) GH path
creation (GH profiler).

6 Case Study
To test the automatic collision-free path planning

with conventional path planning, we required a
sufficiently complex structure that went beyond the
typical simple stacking examples. For this purpose, we
utilized an ongoing collaborative project with the
University of Tokyo. The task involved constructing a
wooden structure composed of identical modular
elements measuring 18x18x300 mm. In this "classical
path planning scenario," two robotic setups were
established in Japan and Germany to test remote
collaboration scenarios for robotically assembled
structures. In each facility, a collaborative robotic arm
(cobot - respectively UR10E and UR10) was installed in
front of a wooden base on which to perform the assembly.
Both setups’ gripper end effectors were the OnRobot
RG6 finger gripper. The different tool mounting
technology caused slight variations in the tool center
points. Despite these small differences in the robots' end-
effector positions relative to their frames of reference,
both setups had very similar reachable workspaces.

In this modular construction system, the sticks are
glued together along one of their long faces to form tree-
like structures. The simplicity of the assembly rules,
paired with the complex architectural results they create,
makes it an excellent platform for experimenting with
robotic assemblies [11]. The outcome of the original tests
was a twin structure in both locations together with the
design and fabrication data that was exchanged through
a synchronized JSON file stored on a shared Dropbox
folder. The JSON file included geometrical information

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

425

that was used to build another twin structure [12].
We replicated the experiment of the structure

assembly of the first 12 sticks, and instead of manually
or parametrically constructing the path, we relied solely
on the cuRobo path-planning capabilities. The 3D model
was built in GH, and all sticks were positioned at the pick
position. The assembly consisted of several parts where
all movements and attaching/detaching were made by
cuRobo:

1. Movement from home to one of three offset
gripping positions of the stick to be picked.

2. Opening the gripper and a movement towards the
picking position.

3. Closing the gripper and a movement to the offset
position.

4. Virtual attaching the stick to the robot.
5. Movement towards the offset placing position.
6. Movement to the placing position.
7. Opening the gripper and virtual detaching the stick

from the robot.
8. Movement to the offset position.
9. Movement back to the home position.

All movements had their preview state in the form of
a curve to ensure that the movements were possible and
within the desired area. As soon as a preview was
validated as valid, it was sent to the robot for execution.
The gripper openings and closings were controlled
manually through the same GH controller.

The movements were extremely accurate and
immediately available. As we had the previews of the
movements, we could execute the robot without fear of
colliding with other objects, even with the stick in the
gripper (Figure 5). Sometimes, it moved very near to
objects, which made us nervous.

After the fifth stick, a collision still happened. We
forgot to account for the cable connection to the robot
that was facing towards the sticks. The joint position of
the shoulder squeezed the connector and disconnected it
from the power. We had to release the joints manually
and rotate the shoulder away. After we integrated the
connector into the world (Figure 3), this unusual position
never repeated.

As we tested the cuRobo URDF file of a UR10e robot
on a real UR10 robot, discrepancies in the calculated
positions limited us to only 12 sticks. These
discrepancies arose because the base of the UR10e is 15
mm higher than that of the UR10, along with some minor
differences in arm length and will be improved in the next
tests.

This specific case study demonstrated the technical
capabilities of cuRobo in generating fast and precise
collision-free paths, seamlessly integrating with
Grasshopper for real-time visualization and robotic
control. However, limitations emerged, such as

discrepancies between simulated and real-world robot
models, the need for manual adjustments to account for
unmodeled elements like cables, and the lack of real-time
dynamic obstacle handling.

7 Conclusion and Discussion
This study successfully integrates advanced AI-based

software for collision-free path planning into an
architectural workflow, offering significant potential for
robotic automation in the AEC industry. By combining
the NVIDIA cuRobo framework with Grasshopper in
Rhino3D, the system eliminates the need for complex
environments like NVIDIA SIM, streamlining the
process and lowering adoption barriers. The case study
demonstrates the framework’s precision and efficiency in
generating accurate collision-free paths, enabling
complex assembly tasks with minimal intervention. Real-
time visualization further empowers users to plan and
execute robotic movements confidently.

The system excels in speed, precision, and
accessibility. The GPU-accelerated cuRobo framework
outperforms traditional motion planners, generating
results in near real-time. Its integration into Grasshopper
ensures AEC professionals can work within familiar
environments, enhancing usability. Additionally, the
system’s ability to adapt to dynamic changes, such as
object attachment and detachment, underscores its
flexibility for construction applications.

Despite these strengths, challenges remain. The dual-
hardware setup and the need for a CUDA-capable Linux
system pose barriers for widespread adoption.
Compatibility issues, as seen in the discrepancies
between UR10e and UR10 hardware, highlight the need
for precise configuration, and oversights in collision
modelling, such as the robot’s cable connection,
demonstrate the importance of comprehensive planning.

Future research will focus on incorporating real-time
scanning and dynamic feedback to handle variable
environments, as well as developing intuitive control
methods like voice or semantic commands. Expanding
compatibility to include more robot models and releasing
an open-source library is planned.

Acknowledgments
We gratefully acknowledge the funding of the project

by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – 519047184.

References
[1] Latombe, J.-C., Robot Motion Planning. Springer

US, Boston, MA., 1991
[2] Sundaralingam, B., Hari, S.K.S., Fishman, A.,

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

426

Garrett, C., Wyk, K.V., Blukis, V., Millane, A.,
Oleynikova, H., Handa, A., Ramos, F., Ratliff, N.,
Fox, D., cuRobo: Parallelized Collision-Free
Minimum-Jerk Robot Motion Generation, 2023

[3] Cui, C., Wang, Z., Sui, J., Zhang, Y., Guo, C., An
improved RRT behavioral planning method for
robots based on PTM algorithm. Sci Rep 14, 21776,
2024

[4] Ye, X., Guo, H., Guo, Z., Luo, Z., A construction
robot path planning method based on safe space and
worker trajectory prediction. ISARC Proceedings
2024 Proceedings of the 41st ISARC, Lille, France,
pages 227–235, 2024

[5] Liu, L., Wang, X., Yang, X., Liu, H., Li, J., Wang,
P., Path planning techniques for mobile robots:
Review and prospect. Expert Systems with
Applications 227, 120254, 2023

[6] Collision-Free Motion Planner - RoboDK
Documentation [WWW Document], n.d. URL
https://robodk.com/doc/en/Collision-Avoidance-
Collision-Free-Motion-Planner.html (accessed
10.24.24).

[7] Motion Planning — MoveIt Documentation:
Rolling documentation [WWW Document], n.d.
URL https://moveit.picknik.ai/main/doc/concepts/
motion_planning.html (accessed 12.25.24).

[8] Planning scene and collision objects — COMPAS
FAB [WWW Document], n.d. URL
https://compas.dev/compas_fab/latest/examples/03
_backends_ros/05_collision_objects.html
(accessed 12.25.24).

[9] Foo4Rhino [WWW Document], n.d. . Food4Rhino.
URL https://www.food4rhino.com/en/browse
(accessed 12.18.24).

[10] Eclipse Mosquitto [WWW Document], 2018. .
Eclipse Mosquitto. URL https://mosquitto.org/
(accessed 12.25.24).

[11] Kaneko, T., Khajehee, A. & Ikeda, Y. Heuristic
Fabrication: An Interactive Robotic Building
System for Enhancing Human Participation in
Timber Structures. (2024).

[12] Khajehee, A., Rogeau, N., Abdelaziz, M., Kotov, A.,
Starke, R. Vukorep, I. & Ikeda, Y. Collaborative
Exploration of Complex Design Spaces: Integrating
constraints from two remote robotic setups.
Proceedings of CAADRIA, Tokyo, Japan (2025)
(In Press)

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

427

https://robodk.com/doc/en/Collision-Avoidance-Collision-Free-Motion-Planner.html
https://robodk.com/doc/en/Collision-Avoidance-Collision-Free-Motion-Planner.html
https://compas.dev/compas_fab/latest/examples/03_backends_ros/05_collision_objects.html
https://compas.dev/compas_fab/latest/examples/03_backends_ros/05_collision_objects.html
https://www.food4rhino.com/en/browse
https://mosquitto.org/

