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Abstract - 

The construction industry struggles with safety 
risk assessment complexities due to evolving work 
environments, diverse labor forces, time constraints, 

regulatory intricacies, and inconsistent practices. 
While previous studies have highlighted the potential 

of Artificial Intelligence (AI) in automating processes 
and enhancing safety assessment, a gap exists in the 
convergence between human analysts and language 

AI models. Therefore, this study assesses the 
alignment in identifying risk factors by human 
analysts and a Language Model (LM) in 

Occupational Safety and Health Administration 
(OSHA) accident reports. Furthermore, it: 1) 

categorizes error types, 2) establishes an acceptance 
threshold for LM-generated responses, and 3) 
evaluates inter-rater reliability in construction 

accident content analysis. The test results reveal 
significant convergence between human and machine 
responses and identify potential hallucination effects 

in generative AI, thus paving the way for improved 
safety risk assessments within the construction 

industry. 
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1 Introduction 

1.1 Motivation 

The construction industry presents a significant 
problem concerning workplace accidents, primarily due 

to its inherently high-risk nature. Despite considerable 

efforts over the past several years, the safety aspects of 
the construction industry have not witnessed 

enhancements at a level comparable to that observed in 
other industries. As a result, the industry still suffers with 
a substantial number of accidents [1]. In 2021, the 

construction industry accounted for a staggering 21% of 
all occupational fatalities in the United States, as reported 

by the Bureau of Labor Statistics [2]. 65.5% of these 
construction-related deaths are attributed to the "Focus 
Four" incidents, including falls, which accounted for 

35% of the fatalities, struck-by incidents at 17%, 

electrocutions at 7.6%, and caught incidents at 5.8% [3].   

Construction safety issues have seen a significant 
decline in injuries and fatalities after the implementation 

of OSHA’s rules and standards [4]. All employers are 
required to notify OSHA upon death, injury, or 
hospitalization. The accident report form is available on 

OSHA’s website. Employers may also contact a 
designated phone number to report accidents. The form 

contains structured data such as accident date, company 
name, and age/sex of injured person, as well as a 
narrative describing the accident. This accident narrative 

provides valuable information to better understand the 

context and sequence of events that led to the incident.  

However, investigation summary, due to its 
unstructured nature, and possible variations of 

descriptive context poses several challenges in analysis 
and interpretation. While quantitative data is generally 
straightforward to handle, the unstructured and 

descriptive nature of narratives in accident reports 
presents challenges for systematic analysis. Figure 1 

shows a section of OSHA Form 301 that requires 

investigation summary.  
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Figure 1. Segment for investigation summary 

details in OSHA’s Form 301 

Consequently, the manual analysis of these narratives 
is a time-consuming process, which ultimately translates 

into substantial labor. A previous study [5] introduced 
framework that facilitated the extraction of standard risk 
factors and outcome variables from OSHA accident 

reports, providing a comprehensive approach to 
addressing the limitations of accident data analysis. 
However, the analysis of such databases demands highly 

skilled labor, making it an expensive and time-
consuming administrative method [6]. Likewise, 

traditional content analysis has historically relied on 
human analysts, incorporating inter-rater reliability 
measures into the coding system. On the other hand, a 

class of neural networks known as Transformers [7] has 
significantly streamlined language classification tasks in 
recent years. However, before fully embracing their 

potential, it is important to assess their alignment with 
human coders, particularly in the realm of content 

analysis. 

1.2 Related Work 

Researchers have adopted numerous approaches to 

effectively handle and covert database into useful 
information [8]. However, one notable drawback of these 
methods is their lack of reliance on empirical data, 

coupled with a limited scope of application [9], [10]. In 
response to these limitations, a  unified attribute-based 
framework has been proposed [need a citation]. This 

framework enables the extraction of standard risk factors 
and outcome variables from naturally occurring accident 

reports, providing a comprehensive approach to 

addressing the shortcomings in accident data analysis [5]. 

Due to the high dimension of the injury report feature 
space and the diversity of construction situations, the 
available training data are naturally sparse. Therefore, 

manually analyzing tens of thousands of injury reports 
would have been required to put together a satisfactory 
training database and achieve efficient machine learning 

[11].  

Previously, a  study [12] has proposed an analytical 
method incorporating text mining and interpretable 
machine learning to discern factors influencing injury 

severity levels within traffic crash narratives. However, 
it suffered from a limitation in the text analysis since it 

was based on word frequency rather than meaningful 
semantics from the narrative. On the contrary, LMs have 
gained significant attention in recent years due to their 

ability to generate human-like text and perform a wide 
range of language-based tasks. In the construction 
industry, LMs have the potential to improve efficiency, 

accuracy, and communication in several different ways 
[13]. Regarding language representation models, 

different approaches have been developed in the past 
decade [14]. One major model is the autoregressive 
language model Generative Pre-trained Transformer 

(GPT).  Developed by OpenAI, GPT is trained on a large 
dataset of text and can generate human-like text. GPT 3.5 
has been fine-tuned for information retention during the 

conversation, making it suitable for activities that are 
solely reserved for human interaction [15]. A recent 

study used GPT to generate a construction schedule for a 
simple construction project and the outcome shows that 
it can generate a coherent schedule that follows a logical 

approach to fulfill requirements of the scope indicated 
[13]. Another study integrated GPT as an intervention to 
aid hazard recognition efforts in the curriculum of 

students pursuing a career in the construction industry. 
The results suggest that GPT can be leveraged to improve 

hazard recognition levels [15]. To the best of our 
knowledge, this study marks the first attempt to assess 
the alignment of Transformer models with human 

analysts in comprehensive understanding of accident 
data, offering a promising avenue for future research and 
applications in the field of accident analysis and 

prevention.  

1.3 Research Objective and Scope 

This study’s primary objective is to assess the 

alignment in identifying contributing risk factors in 
accidents as perceived by human analysts versus an LM. 

By undertaking this comparative analysis, the research 
objectives are threefold: (1) defining a threshold for 
accepting LM-generated responses (2) systematically 

categorizing error types into Type I and Type II, and (3) 
evaluating the inter-rater reliability between human 
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analysts and the LM in the context of content analysis 

within construction accidents. This study implements the 
proposed approach by analyzing 150 accident 
investigation summaries related to "Fall from Heights." 

These summaries are sourced from the official website of 

OSHA. 

2 Methodology 

Figure 2 is an illustration of the steps adopted in this 
study, which include a data collection process, manual 
analysis of narratives, the setup of LM for generating 

machine responses, and the integration of a suitable 
statistic within the comparison of LM’s responses against 

the manually identified contributing factors. 

 

  

 

Figure 2. Proposed research methodology 

2.1 Creating Database with Investigation 

Summaries 

Initiating the proposed framework involved 
retrieving accident report narratives, which constitute 

unstructured data available on OSHA's official website, 
followed by the utilization of simple and easily 
accessible Microsoft Office tools, such as Excel, to 

construct a database cataloging accident identification 
code (IDs) alongside their respective narratives. This 

ensures establishing an organized repository for 

subsequent content analysis. 

2.2 Manual Content Analysis 

Content analysis, critical to this research, involves 

identifying risk factors contributing to accidents within 
narratives. In the context of this study, a risk factor can 
be defined as a specific element, condition, or 

circumstance identified in accident reports that 
contributes to the occurrence or severity of accidents. 
These factors encompass various aspects such as 

environmental conditions, human behaviors, equipment 
usage, or any other variable that plays a role in the 

initiation or escalation of accidents. Recognizing these 
factors necessitates pattern recognition through manual 
labor—interpreting and inferring accident causes. We 

enlisted and trained a dedicated researcher for this 
analysis. The identified risk factors by the human analyst 
establish the ground truth for determining the acceptance 

threshold for LM-generated responses. 

2.3 LM Setup and Analysis 

In this phase, we integrated GPT with the collected 
data. The API key obtained from OpenAI facilitated 
interfacing Python, thereby, aiding to input prompts into 

the LM. The accuracy of information extraction depends 
on the prompt. Hence, a meticulously devised prompt 
must include desired outcomes in structured format, 

while excluding specific redundant details. We also 
consider fine-tuning the prompt for enhanced 

information retrieval. 

2.4 Comparative Analysis of Responses – 

Human versus Machine 

Upon receiving responses from the LM, we 
conducted a comparative analysis between contributing 

risk factors identified by the human analyst and the 
machine. A manual review of all accident reports was 

performed, comparing factors for each narrative. The 
researcher evaluating the comparative analysis considers 
the LM responses valid only when the LM's response 

aligns with the true cause leading to the accident. We 
treated the LM as an independent coder akin to the human 
analyst, and percent agreement was used to measure 

inter-coder reliability. Percent agreement simply 
represents number of agreements over total number of 

measures [16]. The formula for percent agreement is 
given below where A represents the number of 
agreements between the machine and the human analyst, 

and N is the total number of factors identified by both. 

𝑃𝐴o = 𝐴/𝑁 (1) 

STEP 1

Creating database with 
investigation 
summaries

STEP 2
Manual content analysis

STEP 3
Language Model Setup

STEP 4

Comparative analysis of 
human vs machine 
responses

STEP 5

Implement inter-rater 
reliability statistic

STEP 6

Categorization of error 
types

Determining 
threshold 

for 
accepting 
LM 

responses 
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2.5 Error Type Formulation and Implementing 

Inter-rater Reliability Statistic 

In the concluding phase, we categorize the types of 

errors that may occur. When comparing human versus 
machine responses, three scenarios are possible. The first 
involves complete agreement, where both human and 

machine responses are identical, resulting in 100% 
agreement. However, in other cases, Table 1 shows the 

errors that may occur and can be classified as follows: 

• Type I Errors: Occur when human responses 
include certain risk factors that are absent in the 

LM-generated responses. 

• Type II Errors: Occur when the LM-generated 
responses include certain factors that the human 

analyst does not include. 

Table 1. Formulation of Type I and Type II errors 

Machine 
Coding 

Manual Coding 

 Identified Not 

Identified 
Identified Pass Type II 

Error 

Not 
Identified 

Type I 
Error 

 
Pass 

3 Case Study 

The proposed methodology leveraged OSHA 

accident reports as the primary dataset. Four researchers 
were hired and trained for data collection and manual 
analysis, working 6 hours a day for four weeks. This 

entails a thorough manual review process, where the 
researchers sift through accident reports to identify 150 

cases resulting in fatal injuries specifically caused by 
falls from heights. Additionally, each researcher agrees 
on the contributing risk factors. In instances where 

discrepancies arise, the researchers conducted re-reviews 
to ensure accuracy until a  consensus was reached. 
Discussions are held to establish consistent terminology. 

This phase is crucial as the manual coding process aims 
to ensure consistency and establish the ground truth for 
the subsequent comparative analysis with machine-

generated responses. Upon examination, roof work 
emerges as a prevalent cause. After curating the relevant 

narratives, a database was constructed and integrated into 
Python for a comprehensive analysis using the LM. 
Subsequently, prompts were tailored to meet the specific 

requirements of this research. The fine-tuning phase is 
instrumental in determining the final prompt for 
utilization. The process of formulating the prompt 

involves a straightforward brute force method to refine 
the prompt after each response, aligning the output with 

our desired outcome. These prompts are generalizable 

across domains, contingent on the integration of the brute 
force method into the process.  This ensures that users 
can interact with the LM to extract meaningful 

information without requiring a background in NLP.  The 
following is the evolution of prompts with the 
corresponding LM responses, and the encountered 

challenges throughout this iterative process until the final 

prompt was decided. 

Prompt 1: Please give the risk factors associated 

with construction safety in the following narrative. 

LM response for prompt 1: In the given narrative, 
various risk attributes associated with construction 
safety are evident - Working at Height: The 
employee was on the roof, which is a high-risk 

location in construction due to the potential for falls 

and other hazards associated with elevated work. 

… seven more attributes with added explanations. 

Limitations of prompt 1: Overly detailed factors, 
redundant OSHA data, and lengthy hazard 

mitigation paragraphs in tested narratives. 

Prompt 2: Please give the risk factors associated 
with construction safety in the following narrative 

with no additional sentences and headers. 

LM response for prompt 2:  Working at Height: 

The employee was on the roof, which is a high-risk 
location in construction due to the potential for falls 

and other hazards associated with elevated work. 

… seven more attributes with added explanations. 

Limitations of prompt 2: Despite the request to 
remove descriptive attribute headers, they continue 

to be present in the responses. 

Prompt 3: Please give the risk factors associated 
with construction safety in the following narrative 
excluding date, time, company name, age with no 

additional sentences and remove any headers the 

attributes begin with. 

LM response for prompt 3:  

Working at height 

Ladder use 

Dizziness 

Brief rest 

Returning to work 

Fall from roof 

Severe head, neck, and back trauma 
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Since implementing the final prompt involves the 

generation of contributing risk factors without additional 
description, this prompt is applied to the entire dataset. In 
the concluding phase, a  comprehensive comparative 

analysis is conducted between LM-generated results and 
the manually identified contributing factors for each 
narrative. This qualitative analysis reveals distinct trends 

as follows: 

• Machine responses precisely align with human-
identified risk factors. 

• The machine identifies all essential accident-

contributing factors and introduces additional 
meaningful attributes, though not necessarily 
contributing to the accident. 

• LM responses fall short in identifying one or more 

key accident-contributing factors. 

4 Results and Discussion 

In Figure 3, 104 cases out of the 150 datasets 
demonstrated an exact match between human-analyzed 
factors and machine responses. Only 1 case exhibited a 

Type I error, while 45 cases showed Type II errors. 
Further, we computed percent agreement for both error 
types, resulting in 66.67% for Type I errors and an 

average of 28% for Type II errors. 

 

Figure 3. Distribution of alignment between 

manual versus machine check across the dataset 

Reliable coding is achieved when the percent 
agreement surpasses 70% [17]. Upon examination of the 

statistics, it becomes evident that human and machine 
alignment is robust for most cases in our dataset, boasting 

100% agreement. However, for error types, the 
percentage agreement falls below the 70% threshold. 
Consequently, based on the proposed methodology, it is 

reasonable to conclude that the inter-rater reliability 

threshold for human and LM is achieved at 70%. 

For Type II errors, a  deeper investigation into factors 
missing in human coding reveals that 86.67% of the 

omissions pertain to a broader description of the 

narrative, which human analysts do not consider as 
important risk factors contributing to the accident. 
However, the remaining 13.33% encompasses factors 

that are not present in the narrative. This suggests a  
tendency for the LM to introduce additional factors, 
indicative of a phenomenon referred to as the 

"hallucination effect" of generative AI. 

Example of Type II error that showcases hallucination 

effects of generative AI: 

Investigation Summary: On December 4, 2006, 
Employee #1 was working for a general contractor that 

specialized in the construction of single-family houses. 
He was on a scaffold, when he fell approximately 30 feet 

to the ground and was killed. 

LM Response:  

• Employee conducting work at a  height on a 
scaffold. 

• Scaffold did not provide sufficient fall protection 
measures. 

• Lack of proper safety equipment or personal 

protective gear. 

• Inadequate training or lack of knowledge on 
scaffold safety. 

• Failure to comply with safety regulations or 
standards. 

• Absence of safety inspection or assessment prior to 

work. 

• Potential negligence in ensuring scaffold stability. 

• Insufficient communication or coordination 

regarding safety precautions. 

For the above example, within LM responses, 

points 2 to 8 are absent in the original narrative. 

Example of Type II error that showcases descriptive 

factors that do not directly contribute to the accident: 

Investigation Summary: At approximately 9:00 a.m. on 
September 13, 2006, an employee was removing 

concrete forms along a floor opening, on the third floor 
of a building under construction. While working around 
the unguarded floor opening, the employee fell 

approximately 18 ft through the opening and landed on 
the first floor. The employee was not wearing fall 

protection. The employee was transported to a local 

trauma center, where he was pronounced dead on arrival. 

LM Response: 

• Employee removing concrete forms. 

• Unguarded floor opening. 

• Employee fell approximately 18 ft. 

• Employee landed on the first floor. 

• Employee not wearing fall protection. 

Exact 
69%

Type I
1%

Type II
30%
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• Employee transported to a local trauma center. 

• Employee pronounced dead on arrival. 

For the above example within LM responses, points 

3,4,6, and 7 are details of the accident that do not directly 

contribute to it.  

5 Conclusion 

The study comprehensively explores the alignment 
between human analysts and a LM, specifically a 
Transformer model, in identifying risk factors 

contributing to construction accidents. For the proposed 
methodology, we established an acceptance threshold for 
LM-generated responses, while systematically 

categorizing error types into Type I and Type II 
discrepancies for 150 OSHA accident investigation 

summaries. The comparative analysis between manual 
and machine responses revealed that 69% of the cases 
demonstrated an exact match between human-analyzed 

factors and LM responses with only 1% showing Type I 
errors and 30% exhibiting Type II errors. Additionally, 
the calculated percent agreement for Type I and Type II 

errors were 66.67% and 28%, respectively. While these 
percentages fall slightly below the 70% threshold 

suggested for reliable coding, the study underscores the 
considerable potential of collaborative human and LM 
analysis, particularly in categorizing error types and 

establishing thresholds. Furthermore, the ha llucination 
effect underscores the need for a nuanced interpretation 
of the results generated by the LM, especially in 

situations where extraneous factors are introduced. 
Potential ways to mitigate this effect could be refining 

prompt designs, adjusting model parameters, or 
incorporating additional validation steps in the AI-
assisted risk assessment process. Overall, this study 

showcases the practical significance of collaborative 
human and AI analysis in construction industry risk 
assessments. The findings lay the groundwork for 

refining methodologies that optimize both human 
judgment and machine capabilities, offering valuable 

insights for industries adopting AI in risk assessment. 
Theoretical contributions stem from the study's 
categorization of Type I and Type II errors, providing 

insights into human-AI collaboration dynamics across 
industries. Future research endeavors will concentrate on 
enhancing collaborative models, broadening the study's 

scope, and delving into prompt engineering techniques to 
refine prompt formulation, integral to advancing this 

collaborative process. 
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