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Abstract – 

Crane accidents often result in severe injuries and 

fatalities, necessitating accurate analysis and 

responsibility prediction to prevent future incidents. 

However, the scarcity of crane accident-specific 

datasets and class imbalance pose challenges to 

developing robust predictive models. This study 

addresses these challenges by leveraging paraphrase-

based data augmentation methodology to expand a 

dataset of 480 natural language accident descriptions 

into a balanced dataset of 900 samples. Using 

Google’s Pegasus paraphrasing model, the 

augmented data improved model performance, as 

demonstrated by the F1 score increase from 0.29 to 

0.5583. Three pre-trained transformer BERT-based 

models were fine-tuned on the augmented dataset to 

evaluate their effectiveness in predicting responsible 

personnel. The results highlight the effectiveness of 

the paraphrasing technique and transformer-based 

models in addressing class imbalance and improving 

classification accuracy. This research demonstrates 

the potential of natural language text data in 

enhancing safety analysis and proposes future 

directions, such as exploring alternative data 

augmentation methods, leveraging large language 

models, and experimenting with domain-specific fine-

tuning.  
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1 Introduction 

Crane accidents frequently occur on construction 

sites and, due to their heavy nature, often result in severe 

injuries and fatalities. Previous studies indicate that these 

accidents are primarily caused by human errors and 

miscommunication  [1-3].  Forensic analysis after crane 

accidents plays a crucial role in identifying the sequence 

of events, root cause and pinpointing the responsible 

personnel. Identifying responsible personnel in crane 

accidents is critical for improving workplace safety and 

accurate liability assessment [4]. This research aims to 

support such processes by providing structured methods 

to analyze accident reports, making it easier to derive 

actionable insights for future safety improvements. This 

research output can potentially be used as an auxiliary 

tool to provide additional layer of verification and 

increase overall efficiency in experts’ decision-making 

process. The construction industry generates significant 

amounts of text-based data, such as incident reports, 

safety manuals, and communication logs. Text-based 

analysis has emerged as a powerful tool in safety 

domains, including construction and manufacturing, for 

identifying accident processes [5]. Unlike accident 

statistics that only provide predefined categories and 

post-incident outcomes [6], natural language-based 

accident reports capture richer information about 

conditions, causes, and injuries [7]. For instance, Ma and 

Chen analyzed 159 text-based reports to identify accident 

factors [8], while Kumi et al. classified construction 

accident types using Korean reports [9]. These studies 

demonstrate the potential of text-based analysis in 

uncovering critical insights from unstructured data. 

However, analyzing crane accident reports poses 

significant challenges. First, crane accident-specific 

datasets are scarce, limiting the ability to develop robust 

models. And this scarcity in labeled data can introduce 

overfitting during the model training [10]. Second, class 

imbalance in available datasets—where roles like "Crane 

Operator" are overrepresented while others like 

"Owner/User" are underrepresented—hampers the 

predictive accuracy of machine learning models.  

To address these challenges, this study investigates 

paraphrase-based data augmentation strategies [11-12] 

for identifying responsible personnel in crane accidents. 

Using 480 natural language accident descriptions, the 

dataset was augmented with Google’s Pegasus model 

[13], resulting in a balanced dataset of 900 samples. This 

augmentation ensures diverse yet semantically consistent 

training data, mitigating the impact of class imbalance. 
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Additionally, three pre-trained BERT-based models [14] 

were fine-tuned on the dataset to evaluate their 

performance in predicting responsible personnel. This 

approach aligns with findings by Devlin et al. (2019), 

which highlight that fine-tuning the entire model on task-

specific data, even with limited examples, can 

significantly enhance performance compared to using 

fixed embeddings [14]. 

2 Data 

2.1 Data Preprocessing 

The original dataset contains 710 crane accident 

records provided by CRL (Crane Risk Logic, Inc.), where 

each record includes surveys of the accident descriptions, 

primary responsible personnel, and more. After removing 

empty contents and where the target variable (responsible 

personnel) is not available, a total of 480 crane accident 

descriptions and their primary responsible personnel 

were extracted from the original dataset. In this study, we 

removed or substituted any sensitive information 

(including personnel names, specific locations, and 

company identifiers) to protect the privacy of all parties 

involved. Each crane accident description contains an 

average of 93 words, ranging from two to three lines to 

300 words. There are nine classes for the primary 

responsible personnel, with 'Crane Operator' being the 

most frequent class (100 records), while the 'Owner/User' 

class has the fewest (14 records) (Table 1). 

Table 1. Original data per class distribution (total 480) 

Class Name # of Data  

0 Crane Operator 100 

1 Rigger 96 

2 Lit Director 94 

3 Site Supervisor 58 

4 Manufacturer 39 

5 Other 27 

6 Mechanical/Maintenance Issue 27 

7 Signal Person 25 

8 Owner/User 14 

 

2.2 Input data Preparation  

2.2.1 Paraphrase 

Due to the imbalanced nature of the original data, this 

study adopted a paraphrasing technique for input dataset 

generation. The overall process of data augmentation is 

shown in Figure 1. A total of five datasets were used in 

this study. The first dataset contains only the original data, 

comprising 480 crane accident descriptions. The second 

dataset is augmented using Google's PEGASUS (Pre-

training with Extracted Gap-sentences for Abstractive 

Summarization) paraphrasing model [13] . This ensures 

that each class contains 100 balanced samples (Figure 2), 

resulting in a total of 900 samples for Dataset 2. The third 

dataset is also generated using paraphrasing; however, 

the test set was removed in advance before paraphrasing 

to prevent any potential data leakage during training. For 

fair comparison, the test dataset size was fixed at 63 

samples and remained the same across all three datasets. 

For the imbalanced original dataset, where the lowest 

class has only 14 samples, 50% of the smallest class's 

data count was used as the criterion for constructing the 

test set. As a result, 7 samples per class were selected, 

totalling 63 samples for the test set. Table 1 shows the 

original data distribution per class, and Table 2 data splits 

for each dataset.  

 

 

Figure 1. Data split process 

 

Table 2. Description of five dataset used and dataset size 

Dataset Is Test set 

used for 

paraphrasing? 

Is Test set 

balanced? 

Data size 

(train-

validation, 

test) 

1 No Yes (417, 63) 

2 No Yes (837,63) 

3 Yes Yes (837,63) 

4 No No (417, 63) 

5 Yes No (837,63) 

 

Figure 2. Data augmentation overview 

2.2.2 Hyperparameters 

The length of the paraphrased text was set to a 
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minimum of 80% and a maximum of 120% of the 

original target text. Top-p sampling was used as the 

sampling method, applied with a cumulative probability 

threshold (top_p=0.9) to ensure that words were sampled 

from the most probable token distribution while 

maintaining linguistic coherence [15]. Only the top 90% 

of cumulative probability words were considered, and the 

next word was selected based on normalized probabilities 

among these options. 

In our paraphrase generation task, the temperature 

parameter was set to 1.5 to control the randomness of 

token selection during sampling. A temperature value of 

1 results in a neutral probability distribution for next-

word selection, while values greater than 1 increase 

randomness by making the probability distribution more 

uniform. This adjustment enhances output diversity but 

may occasionally reduce coherence or grammatical 

accuracy [16]. 

 

2.2.3 Paraphrasing quality evaluation 

In this study, BLEU (Bilingual Evaluation 

Understudy) [17] and BERTScore [18] were used to 

evaluate the quality of paraphrasing. BLEU is a widely 

used evaluation metric in Natural Language Processing 

(NLP), which calculates a score based on n-gram 

overlaps through simple mathematical computations [17]. 

However, it fails to account for semantic meaning and 

diversity in paraphrased texts [19]. In contrast, 

BERTScore leverages embedding vectors to compare the 

contextual meaning of words, making it well-suited for 

evaluating semantic similarity [18]. Table 3 provides two 

paraphrase examples for the 'Owner/User' class. The 

second paraphrased example in Table 3 scored 0.1163 for 

BLEU and 0.9162 for BERTScore. For each paraphrased 

text, both BLEU and BERTScores were calculated. 

These examples demonstrate the trade-off between 

semantic similarity and diversity, as reflected in the 

scores. The resulting paraphrased sentences are 

compared to its original reference data. The BLEU scores 

are relatively low due to the diverse rephrasing of the 

original text, the BERTScores remain high (above 0.8), 

indicating that the semantic meaning of the text is well-

preserved. The average BLEU and BERTScore for 420 

paraphrased texts using all the original dataset (excluding 

‘Crane Operator’ class) scored 0.0689 and 0.9181 

respectively. This is Calculated to see how diverse the 

paraphrased result is (lower BLEU) in terms of sentence 

structure and words choices but still have strong semantic 

similarity with high BERTScore.  

 

 

Table 3. Example of two paraphrasing result of ‘Owner/User’ class with its BLEU, BERTScore 

Natural Language Crane Accident Description (‘Owner/User’ class) BLEU BERTScore 

Original: A crew was dispatched to an off shore platform to perform prep work for a 

move to another site.  A pedestal crane on site was being used to lift various heavy 

mechanical equipment onto the deck of the platform.  During one lift the load was raised 

and beginning to swing when the load line broke dropping the load and killing a worker. 

- - 

Paraphrased 1: There was work done ahead of a move to the off shore platform. with a 

team. Heavy mechanical equipment was loaded onto a crane to be put onto adeck the 

platform. While it was a light Lifting at a construction project one lift had a load line 

break resulting in a dead worker when it swung. 

1.9561E-

78 
0.8919 

Paraphrased 2: A crew was sent to an off shore platform so they could help relocate 

some structures. It was a very cumbersome lift using a pedestal crane to get heavy 

mechanical equipment from one location to another. A worker was killed as the loaded 

load was cut back as it swung by a malfunctioning load line. 

0.1163 0.9162 

3 Methodology 

3.1 Transformers 

This study utilized Transformer models, particularly 

BERT (Bidirectional Encoder Representations from 

Transformers)-based models, due to its proven 

effectiveness in NLP tasks [14]. Three types of BERT-

based models were used: BERT, RoBERTa (Robustly 

Optimized BERT Pretraining Approach), and 

DistilBERT (Distilled Bidirectional Encoder 

Representations from Transformers). The BERT model, 

developed by Google, was used as the baseline for 
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comparison due to its effectiveness in NLP tasks, 

leveraging bidirectional context to learn semantic 

meaning [14]. The RoBERTa model, developed by 

Facebook AI, is an enhanced version of BERT that was 

trained for a longer duration on larger datasets with 

improved pretraining techniques [20]. Meanwhile, 

DistilBERT is a lightweight model that is 40% smaller 

than BERT but generally achieves competitive 

performance with reduced computational costs [21]. 

Each model takes input_ids, which are tokenized text 

data mapped to integer sequences, along with 

supplementary information, such as attention_masks, as 

input. These inputs are passed through the encoder of the 

transformer model, which generates high-level vector 

embeddings containing contextual information about the 

input text using self-attention layers. The self-attention 

mechanism allows tokens to capture their contextual 

relationships within the text. For the classification task, a 

classifier is attached to the final layers of the models [22]. 

While the encoder component is pretrained, the classifier 

is initialized randomly. During training, the parameters 

of both the encoder and classifier are updated to fine-tune 

the model for the specific task. 

3.2 Grid Search 

Grid search was conducted to tune hyperparameters, 

including learning rate, batch size, and the number of 

epochs. Table 4 summarizes the combinations chosen for 

each model, for the following hyperparameter ranges 

explored: learning rate [1e-5, 2e-5, 3e-5], batch size [8, 

16], and epochs [5, 10, 15]. 

3.3 Metrics 

Precision, recall, and F1 scores were calculated as 

evaluation metrics for datasets 1, 2, and 3. F1 score, being 

the harmonic mean of precision and recall, offers a 

balanced measure of classification performance. The 

weighted F1 score is used for imbalanced datasets 4 and 

5. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹1 𝑆𝑐𝑜𝑟𝑒 = ∑ 𝑤𝑖

𝑁

𝑖=1

× 𝐹1 𝑆𝑐𝑜𝑟𝑒𝑖  (4)

𝑤ℎ𝑒𝑟𝑒 𝑤𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑖

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

 

 

3.4 Input data augmentation: Paraphrasing 

technique 

This study conducted two experiments to validate the 

effectiveness of paraphrasing in augmenting an 

imbalanced dataset under varying distribution conditions.  

3.4.1 Experiment 1: Balanced distribution 

For Experiment 1, Datasets 1,2 and 3 are used. 

Dataset 1 is the original imbalanced dataset containing 

total of 480 crane accident descriptions. Dataset 2 is 

augmented using paraphrasing; however, the 63 test is 

excluded in paraphrasing. Dataset 3 is augmented with 

all the data used for paraphrasing. Thus, after data 

augmentation using paraphrasing for dataset 2 and 3, is 

balanced with each containing 100 data per class.  

3.4.2 Experiment 2: Original skewed distribution  

For Experiment 2, Datasets 4 and 5 were used. 

Dataset 4 contains an imbalanced test set with 63 samples. 

The test set reflects the original dataset's imbalanced 

nature by using the stratify option in the train_test_split 

function to preserve the same class distribution as the 

original data. The remaining data was used for training 

and validation purposes. Dataset 5 also contains an 

imbalanced test set; however, the training and validation 

data were augmented. This augmentation was performed 

using the training and validation data from Dataset 4, 

excluding the test set, to create a larger and more diverse 

dataset for model training. 

4 Result 

Table 4 shows the performance of the prediction 

models on five input datasets for three different BERT-

based models. For the original imbalanced data (Dataset 

1) with a balanced test set, the best performance was 

achieved with DistilBERT, scoring 0.2898. With the 

addition of paraphrasing (Dataset 2), the performance 

improved across all three models, with RoBERTa 

showing the most significant improvement, increasing 

from 0.2544 to 0.3261. The results for Dataset 3 showed 

further improvement, with DistilBERT achieving the 

highest score of 0.5583. The confusion matrix in Figure 

3 revealed that the model performed well in identifying 

major classes such as 'Crane Operator (class 0),' with 

high true positive rates, however failed with 

underrepresented classes (class 4-8). The confusion 

matrix for dataset 2 (Figure 4), shows improvement 

compared to dataset 1(Figure 3).  

The precision of the base BERT model showed only 

a slight increase from 0.2672 to 0.2677 after data 

augmentation. However, the recall improved from 
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0.2857 to 0.3333, suggesting that the augmentation 

enriched the positive examples in this class, enabling the 

model to generalize better and reduce false positive 

predictions. In contrast, the DistilBERT model 

experienced a decline in precision from 0.3714 to 0.3089 

when trained on the augmented dataset. This result 

indicates that lightweight models like DistilBERT may 

have a lower capacity to generalize effectively when 

exposed to more diverse data. 

However, as indicated in Figure 5, there is evidence 

of overfitting, as lower-data-count classes were classified 

almost perfectly in the test set. This is likely because of a 

certain degree of data leakage, given that the training 

dataset includes paraphrased samples derived from the 

entire dataset, thus introducing contexts similar to those 

in the test data. Further experiments are needed to address 

these issues, as all models exhibited high performance 

(F1 scores above 0.6) during the validation process. 

Future research should explore alternative methodologies 

to enhance dataset quality by determining the most 

effective data augmentation strategies and their impact 

on model performance. 

 

Table 4. Result of 5 datasets with each three BERT based transformer models 

 

      Figure 3. Confusion matrix for best test result using 

data 1 (DistilBERT) 

                                                                                        

Figure 4. Confusion matrix for best test result using data2 

(RoBERTa) 

 

Data Model Precision Recall F1 Best Hyperparameters 

(learning rate, batch size, epochs) 

1 BERT 0.2672 0.2857 0.2159 (2e-5, 8, 10) 
 RoBERTa 0.2849 0.3175 0.2544 (3e-5, 16, 10) 
 DistilBERT 0.3714 0.3492 0.2898 (2e-5, 8, 15) 

2 BERT 0.2677 0.3333 0.2502 (2e-5, 8, 10) 
 RoBERTa 0.3687 0.3651 0.3261 (3e-5, 16, 10) 
 DistilBERT 0.3089 0.3651 0.2979 (3e-5, 8, 10) 

3 BERT 0.5897 0.5556 0.5423 (2e-5, 8, 10) 
 RoBERTa 0.6713 0.4603 0.4473 (2e-5, 8, 15) 
 DistilBERT 0.5597 0.5873 0.5583 (3e-5, 8, 15) 

Data Model Precision Recall Weighted F1 Best Hyperparameters 

(learning rate, batch size, epochs) 
4 BERT 0.2810 0.2507 0.2445 (3e-5, 8, 5) 
 RoBERTa 0.3439 0.2715 0.2804 (2e-5, 8, 15) 
 DistilBERT 0.2856 0.2532 0.2484 (2e-5, 16, 10) 

5 BERT 0.3726 0.2910 0.2974 (2e-5, 8, 15) 
 RoBERTa 0.3183 0.2625 0.2816 (3e-5, 16, 15) 
 DistilBERT 0.2761 0.2454 0.2500 (3e-5, 16, 10) 
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Figure 5. Confusion matrix for best test result using data 

3 (DistilBERT)  

5 Limitations and Future Work. 

Different sentence-level augmentation techniques 

can be further investigated. Using large language models 

like Open AI API [23] for generating similar text could 

also be a potential research methodology. This study 

focused solely on identifying responsible personnel, but 

its scope can be expanded to explore other aspects of the 

crane accident dataset, such as predicting accident-

related damages in terms of property and equipment and 

analyzing root causes of the accidents. 

6 Conclusion 

In this study, we addressed the challenge of class 

imbalance in a 9-class classification task for identifying 

responsible personnel in crane accidents by leveraging 

paraphrasing techniques for data augmentation. The 

results across Data 1, 2, and 3 demonstrate that increasing 

the dataset size through augmentation significantly 

improved performance. The F1 score of the best-

performing model increased from 0.29 (Data 1) to 0.3261 

(Data 2) and further to 0.5583 (Data 3). 

Through our experiments, we evaluated the 

effectiveness of paraphrased data in improving the 

performance of transformer-based models, showcasing 

the potential utility of widely used paraphrasing tools.  

However, this paraphrase-based data augmentation 

approach has certain limitations. The results may vary 

depending on the specific settings and methods used to 

generate the augmented dataset. For future studies, 

alternative methodologies, such as utilizing large 

language models for data augmentation, could be 

explored. Furthermore, experimenting with different 

hyperparameter settings may yield additional 

performance improvements. 
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