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Abstract  

Occupational accidents in the European Union 

continue to pose a significant threat to construction 

workers, with skill-based errors contributing 

substantially to these incidents. Virtual training gains 

prominence in improving skills, but evaluating 

trainee performance based on safety behavior is 

challenging to quantify. This paper introduces a 

pioneering worker-centric simulation that assesses 

the hazardous energy that a worker may be exposed 

to while navigating a construction site. The result of 

the simulation is a Safety Graph, aiding in 

determining the safest routes for workers. The graph 

is generated based on a known construction site 

geometry, with each node representing a one-square-

meter area. The simulation developed in the game 

engine Unity calculates hazardous energy associated 

with falls and trips that a worker is exposed to when 

moving between nodes. The evaluation demonstrates 

a 97% accuracy in estimating hazardous energy. A 

practical application in virtual training demonstrates 

how the approach allows for quantifying the safety 

performances of workers. The study, however, 

reveals minor shortcomings in the simulation, such as 

considering an energy threshold or incorporating 

more hazard types. The results also indicate further 

applications of the Safety Graph, hinting at its 

potential in hazard detection or forwarding the safest 

paths to construction workers using smart glasses. 
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1 Introduction 

Occupational accidents remain high in the European 

Union (EU). Approximately 6% of construction workers 

in the EU face accidents each year [1]. These numbers 

indicate that, on average, a construction worker 

undergoes 2.4 accidents in a 40-year career. While 

various factors contribute to the occurrence of incidents 

within the construction industry, it is noteworthy that a 

significant proportion of these incidents are attributed to 

skill-based errors made by workers [2]. 

Efficient training is a crucial method to improve the 

skills of the workforce, with virtual training methods 

gaining more interest over the last years. Several studies 

propose virtual training to improve hazard identification 

[3], train tool handling [4], or collaboration with 

equipment based on real-world location data [5]. 

However, the assessment of the trainees in virtual 

training experiences is challenging. While some studies 

rely on manual and subjective evaluation methods [6], 

others analyze collected data [7–9]. Nevertheless, it is 

challenging to compare the performance of trainees and 

assess the collected data in a meaningful manner [6,8]. 

For instance, three workers navigate a construction 

site: Worker A chooses a safe but longer path, Worker B 

takes the shorter path with several minor hazards on the 

way, and Worker C chooses a path with one high-energy 

hazard that would most likely result in a fatal accident. 

While subjective evaluation may somewhat evaluate the 

paths and conclude that Worker A performed the best, an 

objective data-driven assessment is quantifiable and 

unbiased. Nevertheless, we would not know if any 

worker chose the safest available path. To facilitate such 

assessment, path planning algorithms may allow safety 

trainers to compare a worker's chosen route with the 

optimal route. Such optimal routes can be determined 

using path-planning algorithms. 

Path planning is widely adopted in various industries. 

With the emergence of robots and autonomous vehicles, 

path planning has also become more relevant in 

construction. Path planning algorithms can utilize graph 

theory to find a feasible or optimal route from a starting 

point to a target. Graph theory is a mathematical 

approach to model relationships between entities. A 

graph comprises a set of nodes and a set of edges 

connecting these nodes [10]. Nodes and edges can 

represent a wide range of entities and relationships in 

various fields. Among others, graph theory has been 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

505

mailto:kilsp@dtu.dk
mailto:teizerj@dtu.dk


applied to solve assignment problems, transportation 

problems, knowledge representation, or path planning 

[10]. To find the optimal route, the edges of the graph, 

whether directed or undirected, connect the nodes with 

associated costs. The cost indicates the expenses 

occurring when using this specific edge. While there is 

no constraint as to what such cost may represent, standard 

measures are the traveling time or distance [10]. The path 

producing the lowest cost represents the optimal path. 

In construction, various studies investigated path 

planning problems. Several studies plan operation paths 

for construction vehicles [11–13]. Other studies 

determine optimal routes for crane operations [14] using 

Building Information Modelling (BIM) [15,16]. Notably, 

Hu and Fang include safety aspects [15], while the other 

studies purely focus on productivity aspects. Fewer 

studies address workers' path planning. Cheng et al. 

determine paths using workers' trajectory data [11]. 

Wang and Qin determine safe paths by assessing fall 

hazards using BIM models [17]. It is noteworthy that all 

these studies determine path planning using 

environmental conditions without addressing decisions 

made by the humans involved when operating. Kim et al. 

address this shortcoming by integrating deep 

reinforcement learning to mimic workers' decision-

making processes [18]. 

Building upon the existing literature, the absence of a 

worker-centric path-finding approach that focuses 

explicitly on determining the safest paths becomes 

evident. No previous approach provided a graph that 

allows for an objective assessment of chosen paths. Such 

a solution, however, could be integrated into virtual 

training, as indicated above, but it also allows for the 

comparison of safety behavior in real-world settings. 

Hence, the objective of this research is to create a worker-

centric algorithm to generate a Safety Graph based on the 

known geometry of a construction site. The generated 

graph facilitates the risks for a worker to travel between 

locations within the construction site using the hazardous 

energy of two of the four most common accidents in the 

EU [1], namely falls and trips. This Safety Graph 

contains valuable information and can function as input 

to determine the safest routes for construction workers 

when navigating through construction sites.  

The path planning simulation will be integrated into a 

virtual training environment to ease the evaluation of 

trainees' performances. A brief experiment will showcase 

this application at the end of this paper. A different 

practical application of the Safety Graph could forward 

the safest path to a construction worker wearing smart 

glasses and help them navigate the actual construction 

site. By the end of this paper, readers will gain insights 

into a cutting-edge approach that combines graph theory, 

safety assessment, and path planning, which could be 

used for several practical applications.   

2 Research Method 

This study employed a mixed research approach to create 

and assess the proposed simulation. First, a 

comprehensive literature review investigated worker-

centric path planning in construction. Subsequently, a 

research gap was identified, and the requirements and 

goals to address this gap were specified. Based on the 

requirements, a simulation was developed using the 

Unity game engine. This simulation generates a Safety 

Graph facilitating hazardous energies for a worker. 

The simulation was evaluated in an artificial testing 

environment with fall and trip hazards to validate the 

approach. Based on the evaluation, the authors could 

refine the algorithm. To validate the accuracy of the 

simulation, the authors compared the results from the 

simulation to a manually created validation graph. 

Finally, the resulting graph was integrated into a virtual 

training environment to demonstrate one application of 

such a Safety Graph.  

3 Simulation Generating the Graph 

The Safety Graph assesses the potential hazards faced by 

human workers while navigating a construction site. This 

paper presents an algorithm embedded in a simulation 

framework designed to create such a graph. The 

following section first overviews the Safety Graph before 

describing the algorithm for creating the graph. 

3.1 Algorithm Creating the Safety Graph 

As described before, a graph consists of nodes and edges. 

To generate the nodes, we distributed the construction 

site into one-meter squares. Each square represents one 

node in the Safety Graph, and adjacent nodes, which a 

worker can reach, are connected by edges (see  Figure 1a). 

Each edge has a cost, representing the hazardous energy 

a worker faces when traveling from one node to another. 

While this cost should encompass all potential hazards 

like falling, tripping, being struck by objects, or 

electrocution, this work only integrates falls and trips as 

they account for more than 40 percent of accidents in 

construction [1]. Wang and Qin have considered fall 

hazards in path planning [17], but no previous work 

included trip hazards in path planning for workers. The 

novelty of this work lies in generating the Safety Graph 

by simulating the hazardous energy impact on the worker 

for each possible movement in the construction site. The 

resulting graph can then function as the base for finding 

the safest route in the graph (see the blue graph in Figure 

1) using search algorithms like Dijkstra [19]. While 

Figure 1 depicts the shortest path between a particular 

start and end node, it is crucial to note that graphs enable 

finding the shortest path for any combination of start and 

end nodes [10]. 
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Figure 1. (a) Brief example of a Safety Graph and 

(b) updating after changes in the construction site. 

The benefits of having such a graph are twofold. First, in 

a static environment, the algorithm runs once. After that, 

path planning algorithms can efficiently use the graph to 

identify optimal routes and do not require continuously 

re-evaluating the site layout. Second, in dynamic 

environments like construction sites, our graph-based 

approach allows for updating specific areas of the map 

without repeating the entire simulation. Figure 1b 

illustrates the concept: The construction site has changed 

as, for instance, an object was moved by machinery. Now, 

the simulations must only update edges connected to this 

node (highlighted in red in Figure 1b). The update of the 

node and connecting edges also changes the optimal path 

from the starting node to the target (see blue edges in 

Figure 1b). 

This section has described the concept of the Safety 

Graph and the motivation behind creating it. The 

following parts will delve into how our algorithm 

generates this graph and how the Unity simulation we 

developed calculates the costs associated with the edges. 

3.2 Simulation Development in Unity 

The described Safety Graph is generated using the 

algorithm implemented in a Unity simulation. The 

developed algorithm simulates each possible motion of a 

worker from one node to an adjacent node and measures 

the hazardous energy impact on the worker during this 

motion. For instance, if a worker jumps one meter down 

during this motion, the hazardous energy of this jump 

will be considered the cost of this particular movement. 

Similarly, the energy can be determined for other kinds 

of hazards such as trips, electrocution, struck-by, or 

caught-in-between. 

The underlying idea of utilizing hazard energy as the 

edge cost goes back to the findings that the energy of a 

hazard correlates with the result of an accident [20]. 

According to Hallowell et al., hazards between 500 Joule 

and 1,500 Joule are likely to result in medical treatment, 

while hazards with more than 1,500 Joule most likely 

cause a severe injury or fatality [21]. The energy intensity 

would provide more insight, but it would be more 

challenging to obtain [21]. Thus, in this work, we 

compute the hazardous energy that a human worker is 

exposed to when traveling from one location in the 

construction site to adjacent locations. 

To determine the hazardous energy, we developed a 

simulation framework in the game engine Unity. As 

Unity facilitates real-world physics, the hazardous 

energy can be calculated. While the authors expect this 

algorithm to be generally feasible, obtaining the 

hazardous energy through the game engine is only one 

proposed approach. Other methods may utilize camera 

footage from a site to detect hazards and corresponding 

safety potential. Nevertheless, this approach has several 

advantages: It not only includes the safety aspect but also 

allows for the determination of other parameters, such as 

accessibility for agents or expected time of traveling. 

Listing 1 shows the algorithm to create the Safety 

Graph. The algorithm first distributes the construction 

site in nodes, adds the agent, and instantiates an empty 

set of edges (lines 1-3). Then, for each of the nodes, the 

agent is moved to the neighboring squares. If the motion 

is possible (no obstacles), the energy potential is 

calculated, and an edge is added to the graph (lines 5-13). 

Eventually, the algorithm returns the completed graph in 

line 14. The following section will first describe the setup 

of the Unity scene before illustrating the underlying 

concept of calculating the hazardous energy. 

Listing 1. Algorithm generating the Safety Graph. 

1 

 2 
 3 

 4 

 5 
 6 

 7 

 8 
 9 

10 

11 
12 

13 

14 

Function CreateSafetyGraph 

   nodes = SegrateSite() 
   edges = empty collection 

   agent = CreateAgent() 

   For each node in nodes: 
      If edge = SimMotion(agent, node, 1, 0) is not null 

         Then add edge to edges 

      If edge = SimMotion(agent, node, -1, 0) is not null 
         Then add edge to edges 

      If edge = SimMotion(agent, node, 0, 1) is not null 

         Then add edge to edges 
      If edge = SimMotion(agent, node, 0, -1) is not null 

         Then add edge to edges 

   Return Graph G with nodes and edges 

The simulation undergoes testing in an artificial 

environment, depicted in Figure 2. This setting comprises 

several objects that could cause a trip, such as cement 

bags, a fuel canister, stairs, and a rebar laying area. The 

objects in the scene were added from different Unity 

assets. Moreover, the scene features elevated areas from 

where the worker may fall to a lower level, with some 

sections safeguarded by guardrails while others remain 

unprotected. To ensure a thorough evaluation of the 

algorithm, the authors included several configurations to 

ensure that the environment is functioning for testing 

purposes. The algorithm is implemented in Unity, and all 

related scripts and results are available in a data 

repository [22]. 
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Figure 2. (a) Construction scene in Unity and (b) segregated into nodes (in blue). 

3.3 Hazardous Energy Simulation 

The proposed algorithm initializes the Graph 𝐺, utilizes 

the geometry of the environment, segregates it into one-

meter squares, places a node at each center point (see blue 

dots in Figure 2b), and adds the nodes to 𝐺 . After 

generating the nodes, the algorithm iterates through the 

nodes and assesses the hazardous energy associated with 

traveling from each node to its adjacent tiles. As 

indicated in Listing 1, the simulation of the motions 

occurs four times for each node. Figure 3 illustrates the 

process for simulating one motion, and the following 

paragraphs will describe each of the steps. 

 

Figure 3. Flow chart for risk assessment of one 

individual movement of the agent. 

The simulation of an individual motion to a neighboring 

node begins with placing the avatar on the current node 

𝑛. To ensure the correct vertical placement,  we cast a ray 

downwards from a 100m offset using Unity's RayCastHit 

structure. Then, we place the agent in the position of the 

first hit. 

After placing the avatar, the simulation waits for 100 

milliseconds to ensure that the avatar is placed correctly. 

Then, the algorithm queries the neighboring node 𝑛𝑎𝑑𝑗  

from 𝐺 , and moves the agent towards 𝑛𝑎𝑑𝑗  using the 

method Rigidbody.MovePosition in Unity. This method 

moves the agent, but only if the path is free. After moving 

the agent, the simulation stops for 200ms to evaluate the 

impact of the motions. For instance, if the worker moves 

from an unprotected leading edge, the simulation needs 

to wait until the agent touches the ground. The vertical 

gravity in Unity is set to -300 to accelerate the simulation. 

In case of colliding objects during the movement 

from 𝑛 to 𝑛𝑎𝑑𝑗, the motion will fail, and the simulation 

continues with the next neighboring node. However, if 

the motion is successful, our algorithm adds an edge 𝑒 to 

the 𝐺  and calculates the hazardous energy 𝐸𝐻𝑎𝑧𝑎𝑟𝑑𝑜𝑢𝑠 

during the motion as the cost of 𝑒. 

The energy for the fall hazards is computed with 

Equation 1 where 𝑚  corresponds to the mass of the 

worker, 𝑔 represents the gravity, and ∆ℎ corresponds to 

the difference in height before and after moving the agent.  

𝐸𝐹𝑎𝑙𝑙 = 𝑚 𝑥 𝑔 𝑥 ∆ℎ (1) 

𝐸𝑇𝑟𝑖𝑝 =
1

2
𝑚𝑣2 =

78𝑘𝑔 ∗ 10𝑘𝑚2

2ℎ2
≈ 300𝐽 

(2) 

𝐸𝐻𝑎𝑧𝑎𝑟𝑑𝑜𝑢𝑠 = 𝐸𝐹𝑎𝑙𝑙+ 𝐸𝑇𝑟𝑖𝑝 (3) 

Equation 2 regulates the hazardous energy for trips, 

assuming a constant value of 300 Joule. This value 

corresponds to the kinetic energy of an average human, 

assuming a mass of 78kg and a velocity of 10km/h. The 

velocity is selected rather high, integrating a safety factor.  

The trip hazard is detected using a collider object at the 

bottom of the worker (see Figure 4). When this object 

collides with any other object while moving the avatar, 

the trip hazard energy is added to the cost of 𝑒. 
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Figure 4. The concept for detecting tripping 

hazards with (a) a safe path without hazards and 

(b) a tripping hazard being present. 

Figure 5 illustrates the simulation for one node, repeating 

the previously demonstrated simulation for each adjacent 

node. There is no edge between node A and B, as the 

avatar cannot reach B from A. Moving to D is associated 

with no risk as there are neither objects causing trips nor 

an elevation. When moving to C, a trip hazard is detected, 

and the cost of the motion is set to 300 Joule. Lastly, 

moving to E includes a potential fall of 0.6m (hazardous 

energy of 400 Joule). 

 

Figure 5. Generating the edges for one node 

(assuming no diagonal movement is possible). 

4 Results and Discussion 

The simulation was executed, and the resulting graph was 

exported into a JSON file for further processing. To 

validate the approach, the graph was first evaluated 

regarding its accuracy and then applied in a training 

scenario with four trainees to find the safest path. Figure 

6 depicts the resulting graph highlighting additional 

information, which the following sections describe and 

discuss in detail. 

 

Figure 6. The safety graph includes the hazardous energy from the simulation, critical areas, and the paths 

taken by the trainees when applying the concept within a virtual training environment. 
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4.1 Accuracy Evaluation 

The simulation's accuracy was evaluated by manually 

assessing each of the worker's motions. We categorized 

each of the 1024 edges into one of the five categories 

shown in Table 1 and created a validation graph 

(available at [22]). The categories were selected to make 

sure to detect both falls and trips without losing too much 

accuracy. Then, we converted the results from the 

simulation into the same categories based on the 

hazardous energy. This method allows for the evaluation 

of the simulation without calculating the exact expected 

hazardous energy for each of the edges. Still, we 

manually assessed the exact calculation of the hazardous 

energy using the area with differently elevated spots 

shown in Figure 6d.  

Table 1. Categorized edges in the validation set. 

Cate-

gory 

Category description Simulated 

hazardous  

energy [J] 

0 No hazard Not accessible 

1 Fall(Δh < 0,4m) 0 < cost < 300 

2 Trip cost = 300 

3 Fall(0,4m > Δh > 1m) or 

 [Fall(Δh < 0.4m)&Trip] 

300 < cost < 785 

 

4 Fall(1m < Δh < 2m) or 

[Fall(1m < Δh 1.6m)&Trip] 

785 < cost < 1500 

5 High energy hazard cost > 1500 

Using the Python package NetworkX, we compared the 

edges from the validation graph with the simulation 

graph. Figure 6a highlights the incorrect simulated edges 

in red. The comparison of the graphs suggests that the 

simulation estimates for 97% of the edges the hazardous 

energy correct. 28 connections are incorrect, of which 25 

relate to an underestimate of the hazardous energy and 3 

to an overestimate. In 20 cases, the simulation did not 

detect the expected trip hazard. All these cases occurred 

in the rebar laying area shown in Figure 6f. Here, the 

surface is uneven but not uneven enough for the 

simulation to detect the trip hazard. Similarly, in this area, 

the simulation detected a trip in five cases, while 

hazardous energy was expected due to a fall hazard.  

Four errors relate to the cement bags in the middle of 

the scene (Figure 6c), where the surface is also uneven. 

The hazardous energy while walking on this pile could 

be considered as a trip or a fall. Nevertheless, it is 

improbable that a worker would walk up there.  

4.2 Safe Path-Planning in Virtual Training 

The second step in the validation represents a short case 

study by integrating the results into a virtual training 

environment. Four researchers were asked to choose a 

safe path to navigate from a starting node to a target node 

in the virtual training environment, as shown in Figure 2. 

They navigated an avatar in a desktop-based first-person 

view using a keyboard and mouse (Figure 7). During the 

training, a Unity script records the trajectory, which we 

superimpose with the Safety Graph. Figure 6a illustrates 

the chosen paths of the four trainees and the optimal path 

determined with the Dijkstra algorithm using NetworkX. 

 

Figure 7. The trainee navigates in a desktop-based 

first-person view using a keyboard and mouse. 

Table 2 summarizes the results and suggests that Trainee 

4 chose the shortest but most hazardous path. Trainee 4 

did not take the stairs but instead jumped down at an 

unsecured area (Figure 6e) and later crossed the elevated 

area in  Figure 6c. The paths of Trainees 1,2 and 3 result 

in a similar hazardous energy. However, Trainee 3 chose 

a shorter path than Trainees 1 and 2. Trainee 3 jumps 

down at the missing guardrail while Trainees 1 and 3 take 

the stairs. This situation reveals a shortcoming of our 

approach. As we aggregate the hazardous energies for 

each edge, several minor hazards may lead to a worse 

route than a path with one severe hazard, like Trainee 3. 

Future improvements should weigh higher energy 

hazards more than low energy hazards. Another approach 

would be the removal of edges higher than a certain 

energy threshold, as the likelihood of an injury is too high. 

Table 2. Comparison of the paths of the four trainees. 

Trainee Hazardous 

Energy 

[Joule] 

Distance  

[number of 

edges] 

Duration 

[seconds] 

Trainee 1 1,549 41 24 

Trainee 2 1,562 37 25 

Trainee 3 1,469 22 23 

Trainee 4 2,225 11 10 

Optimal 1,045 32 - 

Another observation relating to the tripping hazards is 

that Trainees 1 and 2 chose the stairs but later exposed 

themselves to hazardous energy relating to tripping. In 

our study, the hazardous energy for tripping hazards is 

assumed to have a static value. This value should be 

reconsidered, as a trip close to another hazard could result 

in a more severe injury. For instance, if the tripping 

object is at a location where a worker could fall, this edge 

should be considered with a higher risk. 
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4.3 Summary 

The simulation generally estimates the risk correctly. 

Further improvements, however, must address uneven 

surfaces, classify high-energy hazards as unreachable, 

and consider the secondary impact of detected tripping 

hazards. In addition, moving elements have not been 

considered in the current implementation. A potential 

approach to facilitate dynamic elements is to update the 

parts of the graph where the changes occurred, as 

demonstrated in Figure 1.  

By connecting the simulation to other data sources, such 

as a digital twin, the location of other hazard types could 

be integrated [23]. For instance, detecting hazard zones 

for struck-by hazards [24] would allow the Safety Graph 

to remove the components within such zones. The 

simulation would only require the geometry of the 

construction site from the digital twin. For instance, a 

BIM model or a point cloud collected by a laser scanner 

should be sufficient when converted into a mesh. 

However, further research must validate this expectation.  

Additionally, the edges could be accessible to some 

workers depending on their role. For instance, while the 

rebar layer should access the area highlighted in Figure 

6f, the electrician must not go there. Another approach to 

declaring such hazard zones and integrating them is the 

detection based on the actual worker's path [25]. 

Integrating the trajectory would also allow us to compare 

how often the workers choose the safe path and help 

identify tailored training for workers [26]. 

5 Conclusion and Outlook 

While existing studies have explored path planning for 

construction vehicles and crane operations, few studies 

focus on workers. A primary contribution of our work is 

the introduction of a worker-centric path-finding 

approach, creating a Safety Graph. 

By representing the construction site as a graph of 

nodes and edges and assigning costs to edges based on 

hazardous energy simulations, this research provides a 

systematic and structured approach to safety evaluation. 

This novel application of graph theory contributes to a 

more objective, quantifiable, and data-driven safety 

analysis and eventually allows for evaluating the safety 

performance of workers in safety training. 

The evaluation of the simulation accuracy, involving 

the categorization and comparison of edges, adds a layer 

of robustness to this work. Applying the concept in a 

virtual training scenario highlights the potential benefits 

of the approach. Lastly, the study indicates that the Safety 

Graph can demonstrate additional benefits in other 

applications, such as hazard detection. 

Future research can expand the capabilities of the 

agent by allowing a broader range of motions, thus 

enhancing the simulation's realism. Additionally, 

incorporating more types of hazards and consideration of 

secondary impacts could further refine the graph's ability 

to assess hazards in dynamic construction environments 

accurately. Including other agents and dynamic hazards 

such as a compactor or forklift represents another 

challenge that future research should investigate. An in-

depth study within a virtual training environment is 

recommended to comprehensively evaluate the impact of 

this approach on evaluating workers' safety performance. 

Here, interviews with the trainees could reveal interesting 

findings on why they chose different routes.  

This exploration can contribute to the development of 

advanced methods for next-generation construction 

safety training, providing active and personalized 

feedback to trainees. 

Furthermore, testing the proposed approach in a real-

world setting, such as forwarding optimal routes to 

construction workers through an augmented reality (AR) 

headset, presents an exciting opportunity to validate the 

practicality and effectiveness of the Safety Graph. Such 

tests would also allow us to investigate the sufficiency of 

informing workers about the location of hazards or if 

other measures need to be implemented, e.g., stopping 

machines or blocking paths. 
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