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Abstract -
While 3D Light Detection and Ranging (LiDAR) sensor

technology is becoming more advanced and cheaper every
day, the growth of digitalization in the Architecture, Engi-
neering and Construction (AEC) industry contributes to the
fact that 3D building information models (BIM models) are
now available for a large part of the built environment. These
two facts open the question of how 3D models can support 3D
LiDAR long-term Simultaneous Localization and Mapping
(SLAM) in indoor, Global Positioning System (GPS)-denied
environments. This paper proposes a methodology that lever-
ages BIM models to create an updated map of indoor environ-
ments with sequential LiDAR measurements. Session data
(pose graph-based map and descriptors) are initially gener-
ated from BIM models. Then, real-world data is aligned with
the session data from the model using multi-session anchor-
ing while minimizing the drift on the real-world data. Finally,
the new elements not present in the BIM model are identi-
fied, grouped, and reconstructed in a surface representation,
allowing a better visualization next to the BIM model. The
framework enables the creation of a coherent map aligned
with the BIM model that does not require prior knowledge of
the initial pose of the robot, and it does not need to be inside
the map.

Keywords -
BIM, Multi-Session SLAM, Pose-Graph Optimization,

Localization, Mapping, 3D LiDAR.

1 Introduction
The ability to align, compare, and manage data acquired

at different times that could be spaced apart by long peri-
ods, also known as long-term map management, is crucial
in real-world robotic applications.

Since the real world is permanently evolving and chang-
ing, long-term map management is essential for au-
tonomous robot navigation and users who want to use
the map to understand the current situation and its evo-
lution. In particular, in an emergency, an up-to-date map
can serve first responders to increase situational awareness
and support decision-making to save lives efficiently and
safely [1].

Maps are usually created with mobile robots equipped
with sensors and leveraging SLAM algorithms to enable
fast and automated workflows. However, these maps are
commonly disconnected from any preliminary informa-
tion, creating a map that may suffer from significant drift
and does not allow change detection or comparison with
a prior map. However, these maps are commonly discon-
nected from any preliminary information, creating a map
that may suffer from significant drift and does not allow
change detection or comparison with a prior map.

Nonetheless, a georeferenced BIM model is available
for most contemporary buildings and can be used as a
reference map to enable accurate LiDAR localization and
mapping.

In addition, the robot’s pose in the coordinate system of
the BIM model could be retrieved with a localization algo-
rithm [2]. Given this pose, the BIM model could support
autonomous robotic tasks. For example, path planning,
object inspection [3] or maintenance and repair [4].

As will be discussed in Section 2, several researchers
have investigated the use of Building Information Model-
ing (BIM) for robot localization [2]. However, only a few
aim to create an accurate, updated map aligned with the
information from the BIM model.

Furthermore, most of them also require a perfect esti-
mation of the robot’s initial position, which must be inside
the prior map. On top of that, almost no method consid-
ers discrepancies between the reference BIM model and
the real world (Scan-BIM deviations). While we allow
Scan-BIM deviations, we also assume that the model still
represents a reliable map suitable for localization, i.e., the
BIM contains enough features that coincide geometrically
with the real world.

To address this challenge, we propose a novel framework
that allows the improvement of a map created with mobile
3D LiDAR data. The map is corrected as it is aligned with
a BIM model, allowing a better understanding of the scene
and change detection for long-term map management.

First, we create session data from BIM models. Session
data (SD) represent data collected from the exact location
at various periods. These data are very convenient for
performing offline operations between sessions, e.g., inter-
session alignment [5] or place recognition [6].
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A proposed ground-truth multi-session anchoring uses
these Session Data (SD) to align and rectify another query
SD with a reference BIM model.

Finally, the aligned data is compared against the
BIM model, and positive differences are represented as
reconstructed surfaces, enabling a better understanding of
the current environment.

Overall, the proposed technique aims to contribute to
accurately mapping indoor GPS-denied environments and
posterior long-term map management.

The remainder of this paper is organized as follows.
Section 2 describes related work on BIM-based LiDAR lo-
calization and mapping. Section 3 introduces our modular
BIM-SLAM framework, which is divided into three main
steps: 1. Generation of SD from BIM models, 2. Align-
ment of new session data with the reference BIM model
and 3. Positive change detection and segmentation of new
elements. Section 4 presents the experimental settings and
implementation details. Finally, section 6 summarizes our
contributions and concludes our work.

2 Related research
Besides having the potential to support robot localiza-

tion, a 3D BIM model can be used as a prior map to create
accurate, updated 3D maps and allow fast autonomous
navigation.

This section will overview state-of-the-art methods,
which used prior building information, i.e., BIM models
or floor plans, to support robot localization and also meth-
ods that support mapping.

2.1 BIM-based 2D LiDAR localization and mapping

Follini et al.[7] demonstrate how the standard Adaptive
Monte Carlo Localization (AMCL) algorithm may be used
to obtain the transformation matrix between the robot’s
reference system and a map that was extracted from the
BIM model.

The same algorithm was used by [8], [4], and [3] to lo-
calize a wheeled robot in an Occupancy Grid Map (OGM)
generated from the BIM model. The main difference be-
tween these approaches relies on how they create the OGM
from the BIM model.

Hendrikx et al. [9] proposed an approach that, instead of
using an OGM, applies a robot-specific world model rep-
resentation extracted from an Industry Foundation Classes
(IFC) file for 2D-LiDAR localization. In their factor
graph-based localization approach, the system queries se-
mantic objects in its surroundings (lines, corners, and cir-
cles) and creates data associations between them and the
laser measurements. More recently, in [10], they improved
and evaluated their method for global localization, achiev-
ing better results against AMCL.

Instead of using a BIM model, [11] use a CAD-based
architectural floor plan for 2D LiDAR-based localization.
In their localization system, they implement Generalized
ICP (GICP) for scan matching with a pose graph SLAM
system. Later, they proposed an improved pipeline for
long-term localization and mapping in dynamic environ-
ments performing better than Monte Carlo Localization
(MCL) in the pose tracking problem [12].

In our previous work [2], besides proposing a method to
create an OGM from a multi-story IFC Model, we demon-
strated that the widely used AMCL is not that robust to deal
with changing and dynamic environments, as compared to
Graph-based Localization (GBL) methods, like Cartogra-
pher and SLAM Toolbox. Based on these findings, and
in an effort to facilitate the transition from Particle Filter
(PF) to GBL methods, we also contributed with an open
source method that converts OGM to Pose Graph-based
Maps (PGBM) for robust robot pose tracking. [2].

2.2 BIM-based 3D LiDAR localization and mapping

Other methods have explored 3D LiDAR localization
with BIM models.

A high-accuracy robotic building construction system
was proposed by [13]. Besides a robust state estimator
that fuses Inertial Measurement Units (IMU), 3D LiDAR,
and Wheel encoders, they use ray-tracing with three laser-
distance sensors and a 3D Computer-aided Design (CAD)
model to localize the end-effector with sub-cm accuracy.
To accomplish this, they took several orthogonal range
measurements while the robot was stationary.

In [14] and [15], the 3D LiDAR scan is aligned with
the BIM model using the Iterative Closest Point (ICP) al-
gorithm. Whereas in [14], the alignment is constrained to
a few selected reference-mesh faces to overcome ambigu-
ities, [15] use image information to filter foreground and
background in the point cloud and use only the background
for registration. Later the pipeline was reconfigured to cre-
ate a self-improving semantic perception method that can
better handle clutter in the environment [16].

[17] propose a technique to create .pbstream maps from
BIM models and achieve localization using Cartographer.
This method is very convenient; however, since they use
Cartographer in localization mode, the robot must have its
initial pose inside the boundaries of the prior map to be
localized and create an aligned map.

[18] propose Reference-LOAM (R-LOAM), a method
that leverages a joint optimization incorporating point and
mesh features for 6 degrees of freedom (DoF) Unmanned
Aerial Vehicle (UAV) localization. Subsequently, in [19],
they improved their method with pose-graph optimization
to reduce drift even when the reference object is not visible.

Recently, [20] introduced a semantic ICP method that
can leverage the 3D geometry and the semantic informa-
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Figure 1. Overview of BIM-SLAM. The pipeline consists of three steps: BIM-based session data generation,
Multi-session anchoring, and Map update.

tion of a BIM model for data associations achieving a
robust 3D LiDAR localization method. Their framework
proposes a BIM-to-Map conversion, converting the 3D
model into a semantically enriched point cloud. Their ex-
periments show that they can achieve effective 3D LiDAR-
only localization with a BIM model.

[21] proposed another relevant approach; here, instead
of using object semantics for localization, they use geo-
metric and topological information in the form of walls
and rooms. With this information, they create Situa-
tional Graphs (S-Graphs), which are then used for accurate
pose tracking. Later, they enhanced their method allowing
the creation of a map prior to localization and posterior
matching and merging with an A-graph (extracted from
BIM models). The final merged map was denoted as an
informed Situational Graph (iS-Graph) [22].

In [23], the authors introduced direct LiDAR localiza-
tion (DLL), a fast direct 3D point cloud-based localization
technique using 3D LiDAR. They employ a registration
technique that does not require features or point corre-
spondences and is based on non-linear optimization of the
distance between the points and the map. The approach
can track the robot’s pose with sub-decimeter accuracy by
rectifying the expected pose from odometry. The method
demonstrated better performance than AMCL 3D.

While numerous strategies aiming to leverage
BIM models for LiDAR localization and mapping have
emerged. Most of them have focused on real-time local-
ization without allowing a better estimation of previous
poses with pose-graph-based optimization techniques.

Moreover, almost all must have a good initial pose inside
the given map. Without this initial pose and if the robot
starts from a point where the BIM model is not visible,
there is no possibility for localization or the creation of
an aligned map. Furthermore, most focused on something

different than automatically identifying the environmental
discrepancies.

In this paper, we propose a method that handles these
issues, demonstrating that it is possible to retrieve an accu-
rate, aligned, updated, optimized map close to the ground
truth and identify positive differences. The method also
works if the robot’s starting position is not inside the map.

3 Methodology
3.1 Overview

Our method can be divided into three main steps, as
illustrated in Figure 1: Step 1: Automatic generation of
ground truth SD from an IFC model employing OGM to
Pose Graph-based map (Ogm2Pgbm) [2] and Gazebo sim-
ulator. Step 2: Multi-session anchoring with a BIM model
as ground truth. Step 3: 3D aligned map construction and
change detection.

3.2 BIM-based session data generation

Using parts of our previous contribution [2], 3D LiDAR
SD with ground truth poses can be created from the
BIM model. As a first step, an OGM is created from
the model, which is then used to determine the path where
a robot will be simulated. The generation of SD from an
OGM is performed with the open source Ogm2Pgbm pack-
age [2], with a slight modification. Instead of simulating
2D laser scan Robot Operating System (ROS) messages
with ray casting, we leverage the Gazebo physics simula-
tion engine [24] to simulate the complete 3D LiDAR scans.
This simulation is done by sending navigational goals to
a simulated robot and leaving it to navigate autonomously
with the ROS Navigation Stack through the estimated path
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Figure 2. Generated SD from the BIM model. In
the top left, the ground truth pose graph-based map
G�� , with its nodes and edges (the result of odome-
try constraints). Besides having position and orien-
tation, each node x��,� has its corresponding laser
scan P� and global descriptors �� . In this research,
we use only polar context descriptors.

provided by the Wavefront Coverage Path Planner (PP) of
Ogm2Pgbm.

The navigational goals are found by retrieving only one
waypoint out of 20 in the list of generated waypoints from
the PP. In this way, the waypoints are separated by a
considerable distance but still allow the robot to navigate
the complete path without skipping any region. Then the
selected waypoints are passed as navigational goals (with
pose and orientation) to Gazebo only when the simulated
robot is at a certain distance to the next selected waypoint.
These navigational goals are necessary to allow the robot
to execute the whole exploration smoothly without unnec-
essary stops or skipping previous navigational goals.

It is necessary to recall that in this step, the semantics
of the BIM model are leveraged, extracting only perma-
nent structures (for example, walls, ceilings, and floors)
and excluding spaces, non-permanent or LiDAR-invisible
objects (like doors, windows, or curtain walls). Please,
refer to [2] for more details about this step.

Once the 3D LiDAR data is simulated with ground truth
odometry, we implement a keyframe information saver [5]
to generate session data from it. A session S is defined as

S :=
(
G, {(P� , ��)}�=1,...,�

)
, (1)

where G is a pose-graph text file with pose nodes, odom-
etry edges, and optionally recognized intra-session loop
edges.

The (P� , ��) are the 3D point cloud and the global de-
scriptor of the ��ℎ keyframe, and � is the total number of
equidistantly sampled keyframes. Figure 2 illustrates the
elements of the SD.

3.3 Ground-truth multi-session anchoring

Given the SD from the real-world data SQ , denoted as
query, and the SD from the BIM model SGT , denoted as
ground truth session, our goal is then to align SQ with
SGT and retrieve a globally consistent map.

To align these maps, we use anchor node-based inter-
session loop factors, as described in [5], [25], [26], [27].
Instead of optimizing the poses of the two sessions, we do
not allow modifications of the ground truth session created
from the model. This step is based on the assumption that,
while there can be Scan-BIM deviations, the model still
represents a reliable map suitable for localization.

In order to avoid alterations to the current session in
SGT , we add its poses as prior factors with a very low
variance (i.e., 1 × 10−100 ) in its noise model, to the pose-
graph optimization problem.

Anchor nodes represent the transformation from the lo-
cal frame of each session graph to a standard global ref-
erence frame. Once the poses of each session are trans-
formed into the global frame (via the anchor nodes), a
comparison of the measurements between sessions is pos-
sible.

As outlined in Kim et al. [25], the anchor node can suc-
cessfully approximate the offset between sessions. Besides
allowing faster convergence to the least-squares solvers,
anchor nodes allow each session to optimize their poses
before global constraints are observed [27].

This characteristic is beneficial for long-term mapping
since it allows the creation of a first consistent map in the
state of the environment at the time the data was collected.
Once a map is created with a new session, the anchor nodes
allow finding the transformation that aligns that session
with another reference one. In our case, the reference
session is extracted from the BIM model.

To add the anchor node to the pose graph optimization
problem, we only need to add the following factor:

�
(
x�, � ,Δ�

)

∝ exp
(
−1

2
��( (Δ�� ⊕ x��,�

)
�
(
Δ� ⊕ x�, �

) )
− �

��2
Σ�

)
,

(2)
Here x is a SE(3) pose; � is an encounter [25], � and �

are pose indexes; ⊕ and � are the SE(3) pose composition
operators.Δ indicates an anchor node, which is also a SE(3)



pose variable. Whereas the query session’s anchor node
Δ� has a relatively high covariance, the ground truth’s
Δ�� has an insignificant value (very close to zero).

(a) (b)
Figure 3. Loop closure detection between sessions.
(a) the descriptors of each session data are com-
pared against each other to find correspondences.
(b) Some correctly and wrongly detected loop clo-
sures are shown in green and red, respectively. In
blue, two encounters � linked to the trajectories’ re-
spective anchors. The trajectory’s offset concerning
a common global frame is specified by the anchors
Δ.

To identify loop-closure candidates between sessions,
we use Scan Context (SC) [28] and the pose proximity-
based radius search loop detection. Figure 3 exemplifies
the inter-session loop closure detection process. Once
loops are detected, a 6D relative constraint between two
keyframes is determined by registering their respective
laser scan point clouds P��,� and P�, � with ICP. As
in [5], only loops with adequate low ICP fitness ratings
are allowed, and the score is used to calculate an adaptive
covariance Σ� in (2).

Once the values of the anchor nodes and the poses on the
local coordinate system of SQ are optimized, as shown in
Figure 4, all the poses in the pose-graph can be converted
from the local (denoted as �G∗

�
) to the global coordinate

system �G∗
�

by applying the following transformation to
each pose x in a graph:

�x∗� = Δ∗
� ⊕� x∗�,

where � is the global coordinate system.

3.4 Aligned map construction and Change detection

With the calculated poses on the same coordinate sys-
tem, a map can be created by placing the respective laser
scans P�,� in the estimated poses �x∗

�,�
, which are now

in the BIM coordinate system.

(a) (b) (c)
Figure 4. Pose graph optimization with multiple ses-
sions. (a) In orange is the drifted map created by
a SLAM system (exaggerated for illustrative pur-
poses); in red is the respective trajectory; in green
is the ground truth trajectory (b) Each pose graph
optimization iteration tries to create a consistent
global map placing the scans closer to the ground
truth. (c) The final map is correctly aligned with the
BIM model.

Once the 3D map of the current state of the environ-
ment is aligned with the BIM model, a comparison of the
two maps is possible. A distance threshold is set to differ-
entiate between objects present in the model and the new
objects in the updated environment, also known as Positive
Differences (PD).

A signed distance computation lets us determine which
points are close to and far from the mesh. Close points
allow confirming BIM model elements, and far points are
considered new elements, i.e., elements not present in the
model.

In the next step, a density-based clustering algorithm
(DBSCAN) is used to split the point cloud of detected
PDs into segments of points that are close to each other
and might represent single objects. This results in better
visualization of the new objects in combination with the
model, allowing a better scene understanding.

Finally, each cluster of the PDs is converted to a mesh
representation created using cubes from a Voxel Grid (VG)
of the point cloud.

Compared with other surface reconstruction methods,
voxels represent the actual geometry of the objects visible
in the scene. A final result is visible on 5.

4 Experiments and results
The data used for evaluating the proposed strategies are

presented in this section, together with implementation and
evaluation details. Both simulated and real environments
were used for the experiments.

4.1 Simulated experiments

We used Gazebo [24] to simulate the experimental data.
The robot used for the simulated experiments was the

Robotnik SUMMIT XL, equipped with a Velodyne VLP-



(a) (b)
Figure 5. Detected positive differences in the point
cloud and the BIM model. (a) The original aligned
corrected point cloud (b) Only voxelized clustered
new objects in the scene. The ceiling was removed
for better visualization.

16 3D LiDAR. Table 1 presents the results on the simulated
sequence.

Table 1. Quantitative comparative results.

Method Trans. Error (cm) Rot. Error (deg)
RMSE Max RMSE Max

SC-A-LOAM 12,439 24,015 2,316 5,276
BIM-SLAM 10,594 20,175 2,074 4,841

4.2 Real-World experiments

The real-world data was collected in the same envi-
ronment as the simulated one with an Ouster OS1-32 Li-
DAR.The sensor was mounted with a mini-PC and bat-
teries in a mapping system. This system can be used as
a handheld or above a robotic platform as depicted in 6.
The legged robot Go1 was the robot platform we utilized
for these tests. This data was used to generate the results
shown in Figure 5.

RGB-D 
camera

3D LiDARBattery
Mini-PC

Figure 6. Portable mapping system developed to ac-
quire real-world data. Here it is placed over the Go1
quadruped robot.

4.3 Implementation details

While the Step 1 and 3 were implemented in Python,
Step 2 was written in C++ using ROS noetic.

Ogm2Pgbm [2], Scan Context [28], and LT-SLAM [5]
were sources that we used that are freely available online.
The parameters of SC were adjusted for indoor environ-
ments; for example, we use a maximum radius of 10 m and
a cosine similarity threshold between descriptors of 0.6.

Whereas in Step 2, the pose-graph optimization is done
with GTSAM using iSAM2, in Step 3, the process is done
with Trimesh and Open3D.

The generation of the SD was done with SC-A-LOAM
[6] an enhanced version of A-LOAM with loop closure
and key-frame information saving capabilities (i.e., for SD
generation).

5 Discussion
While in terms of drift reduction, our method performs

only slightly better than state-of-the-art SLAM algorithms,
as shown in Table 1. The main advantage of the proposed
technique relies on the alignment of the acquired sensor
data with the BIM model. The method also allows the
creation of a map without the sensor being inside the prior
map (as localization algorithms would require) or knowing
its initial position.

We also show how the aligned sensor data can improve
situational awareness (see Figure 5). Moreover, once the
data is aligned, the model can be leveraged to identify
new and missing components and clean the point cloud,
removing unnecessary noisy points from the surroundings.
These features would enable robust long-term map data
management, using less memory than needed and saving
all the information in one reference coordinate system.

However, our pipeline still presents some limita-
tions. For example, in the case of significant levels of
Scan-BIM deviations, the minimal overlap between the
scan and the BIM, or symmetric environments, the correct
alignment may not be possible with our method. Adjust-
ments in creating the point cloud descriptors or the corre-
sponding matching process might be necessary to address
this issue.

Nonetheless, the method is not restricted to Manhattan-
world environments with enclosed rooms, like in [22], nor
does it require manual input of the robot’s initial position
in the map like the one proposed in [19].

Avenues for future research include enhancements in the
place recognition algorithm (here, we use SC); leveraging
topological and semantic information from the BIM model
to make most robust the alignment and optimization pro-
cess; and improvements on the extraction of SD from
BIM models, in terms of speed and feature extraction,
perhaps with a faster rendering method.



6 Conclusions
This paper presents a modular pipeline to allow 3D

LiDAR data alignment and change detection with a
BIM model as a reference map. Contrary to several other
approaches, we aim to create an accurate, consistent map
of the current state rather than focusing on real-time per-
formance. The method does not need to know the robot’s
initial position, nor does the robot need to start inside the
given map. In this way, our framework allows map align-
ment and extension even if the reference BIM model is no
longer visible or if only a part of the model is scanned.

In the future, we would like to test the method on
SD with more environmental changes and to enhance the
change detection module to handle negative differences,
i.e., when parts of the original BIM model are no longer
present in the environment.
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