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Abstract – 

Construction workers frequently engage in 

manual operations at workplaces, increasing their 

ergonomic risks of developing Work-Related 

Musculoskeletal Disorders (WMSDs). To proactively 

assess and prevent such risks, ergonomic scales have 

been widely employed, incorporated cutting-edge 

technologies to achieve advancements in automation. 

However, these scales have demonstrated limited 

accuracy in risk identification, mainly attributed to 

unreliable joint-level assessment rules based on 

discrete boundaries and binary rules. Although 

previous attempts have incorporated fuzzy logic to 

improve accuracy, the involved subjective 

determination of function shapes and threshold 

settings remains a persistent hindrance. To address 

this limitation, the present study aims to develop data-

driven joint-level scoring models for replacing these 

conventional rules. This process leverages pose data 

from the Construction Motion Data Library (CML) 

dataset and employs a robust and heuristic data-

driven approach named Heuristics Gaussian Cloud 

Transformation (H-GCT). The results, with all 

Confusion degrees below the threshold value of 0.64, 

demonstrate the significant independence of the 

developed scoring models, ensuring accurate 

identification of ergonomic risk. Furthermore, a 

comparison is conducted with previous studies that 

employed fuzzy logic to improve REBA. This process 

highlights the superiority of the data-driven H-GCT 

in developing scoring models. This study contributes 

to the existing body of knowledge by providing joint-

level scoring models to improve the applicability of 

ergonomic assessment in construction. Future studies 

can further enhance this work by expanding pose data, 

enriching assessment modules, and refining the data-

driven approach. 
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1 Introduction 

Construction workers frequently engage in physically 

demanding manual operations at workplaces [1]. As a 

result, they face remarkable ergonomic risks of 

developing Work-Related Musculoskeletal Disorders 

(WMSDs). In Hong Kong, statistics from the Pilot 

Medical Examination Scheme (PMES) reveal that around 

41% of registered construction workers suffer from 

WMSDs-related injuries [2]. Moreover, amidst the 

challenges posed by an aging labor force, escalating labor 

wage, and manpower shortages in construction, 

ergonomic risks may give rise to increasingly serious 

repercussions. Therefore, it is crucial to assess and 

prevent ergonomic risks of workers’ operations.  

To proactively prevent ergonomic risks for 

construction workers, various systematic observation 

methods have been employed. These methods typically 

involve the assessment by experienced experts and 

incorporate observational ergonomic scales such as 

Rapid Entire Body Assessment (REBA) [3], Rapid Upper 

Limb Assessment (RULA) [4], and Ovako Working 

Postures Assessment System (OWAS) [5]. Serving as 

assessment tools, these scales define the rules for coding 

posture-related data (e.g., joint angles) and subsequently 

rate ergonomic risks for construction workers based on 

the data [6]. For instance, REBA codes the postures of 

the trunk, neck, legs, upper arms, lower arms, and wrists, 

while assigning whole-body postures with ergonomic 

risk scores ranging from 1 to 15.  

However, attributed to manual implementation, these 

practical methods are subject to notable constraints in 

objectivity and cost-effectiveness. To address these 

challenges, recent advancements have introduced 

cutting-edge data collection technologies, such as 

computer vision [7] and wearable sensors [8], to enable 

automated detected of ergonomic risks. In line with these 

initiatives, several studies have adopted machine learning 

and deep learning algorithms to classify postural 

ergonomic risks. For example, Zhang, Yan [9] compared 

the accuracy of multiple classification algorithms (BP-
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ANN, DT, SVM, KNN, and EC) and developed optimal 

posture classifiers for the arms, back, and legs. Moreover, 

from the perspective of whole-body posture, Antwi-Afari, 

Qarout [8] trained a gated recurrent units (GRU) network 

to accurately classify five types of awkward working 

postures. However, an evident limitation emerges as the 

insufficient interpretability regarding the relationship 

between inputs and outputs in these black-box 

classification methods, particularly in comparison to risk 

rating based on well-established rules. In response to this 

challenge, a significant body of research transfers 2D [10] 

or 3D [7] joint coordinates extracted by pose estimation 

technologies into joint parameters. These joint 

parameters further serve as inputs for ergonomic scales 

such as REBA. 

Despite significant progress in automated 

implementation of ergonomic scales, these scales have 

demonstrated limited accuracy in assessing ergonomic 

risk for construction workers [11]. This limitation is 

primarily attributed to the unreliable rules for joint-level 

assessment. Specifically, these scales rely on discrete 

boundaries and binary rules (specified angle ranges and 

positions) to determine risk categories for assessed 

modules [3, 4]. However, the formulation of these ranges 

for classifying joint-level risks lacks reliable support by 

statistical data on joint angles obtained from construction 

workers [12]. Furthermore, the oversimplified binary 

rules are susceptible to subjectivity resulting from 

manual observations and errors introduced by the pose 

estimation tools. Despite attempts to improve the joint-

level rules by fuzzy logic [11, 13], the subjective 

determinations of function shapes and transition ranges 

continue to hinder the accuracy. Therefore, the 

development of joint-level scoring models, utilizing 

extensive 3D pose data of construction workers and a 

robust data-driven algorithm, holds potential for 

improvement. This approach allows for proactive mining 

of implicit knowledge from voluminous data and 

effectively captures the characteristics of variations in 

joint-level risks [14, 15], thereby enhancing the 

credibility of scoring models. 

To address the limitation in joint-level assessment 

rules of ergonomic scales, this study attempts to develop 

data-driven scoring models for replacing the unreliable 

discrete boundaries and binary rules. Given the 

objectivity of the REBA scale, which scores ergonomic 

risks based on joint angle values [7], and its emphasis on 

whole-body assessment covering critical body segments 

such as the trunk, neck, legs, upper arms, lower arms, and 

wrists, the joint-level modules of REBA serve as the 

foundational framework in this study. To achieve the 

goal, this study implements Heuristic Gaussian Cloud 

Transformation (H-GCT) [16], which consists of two 

phases: (1) Heuristic Gaussian Transformation (H-GT) 

for data clustering and (2) Forward Cloud Generation 

(FCG) for enhancing uncertainty representation at the 

boundaries between adjacent scoring models. Prior to 

implementing this robust data-driven approach, 

statistical data on joint angles are extracted from the 

Construction Motion Data Library (CML) dataset. 

Subsequently, these developed scoring models are 

evaluated using Confusion degree (CD) values. This 

indicator effectively reflects the independence of scoring 

models and their accuracy in risk identification. 

Ultimately, a comparison is implemented with previous 

studies that adopted fuzzy logic to improve REBA, 

aiming to highlight the superiority of the data-driven H-

GCT in developing scoring models. 

2 Methodology 

Figure 1 illustrates the workflow of the scoring model 

development process, which involves extracting 

statistical data from CML dataset and developing scoring 

models through H-GCT. 

 

Figure 1. Workflow for the development of joint-level scoring models using H-GCT 
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2.1 Extracting statistical data from CML 

dataset 

To obtain statistical data on joint angles of 

construction workers, the Construction Motion Data 

Library (CML) developed by Tian, Li [17] is selected. 

This dataset contains 4,333 samples of construction-

related activities specifically curated for ergonomics 

analysis, covering five major types observed on 

construction sites, namely production activities, unsafe 

activities, awkward activities, common activities, and 

other activities. The dataset provides useful 3D pose data 

(20-joint system) for analysis. 

In this study, based on REBA [3], 15 joint-level 

assessment modules are selected to cover five critical 

body segments: trunk, neck, legs, upper arms, and lower 

arms. Table 1 provides an overview of these modules and 

corresponding score distributions. Taking the Trunk 

Flexion module as an example, its assessment rules in 

REBA are as follows: an upright position (i.e., 0° flexion) 

is assigned a score of 1, a flexion or extension angle of 0-

20° is assigned a score of 2, a flexion angle of 20°-60° or 

an extension angle greater than 20° is assigned a score of 

3, and a flexion angle greater than 60° is assigned a score 

of 4. Following the progression of trunk flexion angles 

from negative to positive (with extension angles defined 

as negative), the corresponding scores change 

sequentially as 3, 2, 1, 2, 3, and 4, respectively (as 

illustrated in Table 1). Using the extracted 3D pose data, 

a vector-based calculator is utilized to obtain statistical 

data on joint angles for the 15 modules. Prior to 

developing the scoring models, the 2σ-criterion is applied, 

which sets the threshold at two standard deviations from 

the mean [18]. This criterion effectively eliminates 

potential outliers while preserving underlying data 

distributions. 

2.2 Developing scoring models through H-

GCT 

Building upon the filtered statistical data on joint 

angles, the Heuristic Gaussian Cloud Transformation (H-

GCT) is subsequently utilized to generate scoring models. 

Compared to other data-driven heuristic and clustering 

algorithms, such as Gaussian Mixture Model (GMM) [19] 

and K-Means [20], H-GCT effectively leverages prior 

knowledge from REBA to predefine the number of 

generated models while showcasing the capability to 

synthetically describe uncertainty [16]. The 

implementation of H-GCT follows two steps [21, 22]: 

Firstly, the H-GT generates a predefined number of 

clusters that align with joint-level assessment modules of 

REBA (i.e., the Gaussian distributions), based on the 

input data samples. Subsequently, the Forward Cloud 

Generation (FCG) develops cloud model to enhance 

uncertainty representation at boundaries between 

adjacent scoring models. 

2.2.1 Data clustering by H-GT 

Based on the score distributions of the assessment 

modules, the Heuristic Gaussian Transformation (H-GT) 

is selected to generate a predefined number of Gaussian 

Distributions (GDs) [19]. The H-GT algorithm leverages 

prior knowledge from REBA to determine the number of 

clusters, denoted as M, within each specific module. This 

allows a set of data samples to be partitioned into a 

superposition of M GDs. For a random variable x in the 

problem domain, which represents joint angles for each 

module, the frequency distribution function p(x) can be 

constructed. After the H-GT process, the mathematical 

expression for p(x) is given by formula (1) [16]. 

𝑝(𝑥) → ∑(𝑤𝑖𝐺)

𝑀

𝑖=1

 (1) 

In formula (1):  

𝐺 =
1

√(2𝜋)𝑑|𝐶𝑜𝑣𝑖|
𝑒−

1
2

(𝑥−𝜇𝑖)𝑇 ∑ (𝑥−𝜇𝑖)−1
𝑖  

(

2) 

Among these parameters, wi, μi, and  Covi represent 

the amplitude, expectation, and covariance matrix of the 

i-th GD after transformation, respectively, with the wi 

satisfying the condition ∑ wi
M
i=1 = 1 . Furthermore, d 

represents the dimension of the data sample while M is 

the predefined number of clusters. 

Table 1 An overview of considered assessment modules 

Joint-level assessment module Score distribution 

Trunk Flexion 3, 2, 1, 2, 3, 4 

Trunk Bending 1, 0, 1 

Trunk Twisting 1, 0, 1 

Neck Flexion 2, 1, 2 

Neck Adjustment 1, 0, 1 

Legs Support 2, 1, 2 

Legs Flexion (left) 0, 1, 2 

Legs Flexion (right) 0, 1, 2 

Upper Arms Flexion (left) 2, 1, 2, 3, 4 

Upper Arms Flexion (right) 2, 1, 2, 3, 4 

Upper Arms Abduction (left) 1, 0, 1 

Upper Arms Abduction (right) 1, 0, 1 

Gap between Shoulders 1, 0, 1 

Lower Arms Flexion (left) 2, 1, 2 

Lower Arms Flexion (right) 2, 1, 2 

During the H-GT process, the Expectation 

Maximization (EM) algorithm is employed as an iterative 

optimization technique for parameter estimation in GDs 

with hidden variables [23]. It combines with Maximum 

Likelihood Estimation (MLE) and involves two main 

steps: the E-step for posterior probability calculation and 

the M-step for reassessment and optimization.  
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For the implementation, the EM algorithm is 

configured to iterate 100 times by default. The number of 

components, which corresponds to the generated GDs, is 

determined for each module based on the respective score 

distribution. Powered by the scikit-learn library and 

Python (version 3.9.12), the statistical data on joint 

angles for the 15 considered modules undergo 

transformation into 15 sets of GDs.  

2.2.2 Cloud models generation by FCG 

The H-GT process facilitates the transformation of 

continuous data samples into a superposition of multiple 

GDs. Each element within the generated GDs is 

associated with a membership degree determined by the 

probability values on each relevant GD (one-to-one 

correspondence). However, the absence of interpreting 

probable one-to-many correspondence at the boundaries 

between adjacent models introduces uncertainty. To 

address this, the Cloud Model (CM), functioning a 

cognitive model capable of synthetically describing the 

uncertainty, is employed [24]. Consequently, it optimizes 

the robustness of assessment.  

During the FCG process, three numerical 

characteristics, namely Ex (expectation), En (entropy), 

and He (hyper entropy) are routinely employed to 

provide a comprehensive representation of a CM. 

Specifically, Ex represents the most representative data 

sample within a cluster, En quantifies the granularity 

scale of the cluster, and He portrays the uncertainty of the 

cluster granularity. As a result, a set of CMs can serve as 

the specific scoring models for a considered assessment 

module [25]. 

To determine the above Ex, En, and He before 

generation of CMs, the following steps are involved: 

(i) For the k-th GD after H-GT, its mean and standard 

deviation are μk and σk, respectively. 

(ii) The current standard deviation is considered as 

the maximum granularity parameter of the concept, while 

keeping the expectation constant to achieve equal scaling. 

Subsequently, the scaling ratios α1 and α2 of the k-th GD 

are computed to avoid overlap between adjacent clusters. 

These scaling ratios are determined using the following 

formulas (3) and (4) [16]: 

𝜇𝑘−1 + 3𝛼1𝜎𝑘−1 = 𝜇𝑘 − 3𝛼1𝜎𝑘 (3) 

𝜇𝑘 + 3𝛼2𝜎𝑘 = 𝜇𝑘+1 − 3𝛼2𝜎𝑘+1 
(4) 

Then, the variation range of standard deviation 

caused by unclear conceptual partition in the k-th GD is 

[α × σk, σk], where α = min (α1, α2). 

(iii) According to the theory of Gaussian Cloud, that 

is, the standard deviation follows a GD, En is the 

expectation of standard deviation, and He is the standard 

deviation of the standard deviation [16]. The parameters 

and Confusion degree (CD) of the k-th CM can be 

determined as formulas (5) to (8) [16]: 

𝐸𝑥𝑘 = 𝜇𝑘 (5) 

𝐸𝑛𝑘 = (1 + 𝛼) × 𝜎𝑘/2 
(6) 

𝐻𝑒𝑘 = (1 − 𝛼) × 𝜎𝑘/6 
(7) 

𝐶𝐷𝑘 = 3 × 𝐻𝑒𝑘/𝐸𝑛𝑘 = (1 − 𝛼)/(1 + 𝛼) 
(8) 

Following the FCG, the 15 sets of GDs corresponding 

to the considered modules are transformed into 15 sets of 

CMs. These CMs serve as the scoring models for the 

assessment. Each CM consists of numerous cloud drops, 

which allow for the representation of uncertainty 

between adjacent models.  

Table 2 Confusion degrees of all generated CMs 

Assessment module Confusion degrees (CDs) 

Trunk Flexion 
0.56, 0.56, 0.51, 0.45, 

0.38, 0.36 

Trunk Bending 0.43, 0.49, 0.49 

Trunk Twisting 0.53, 0.53, 0.51 

Neck Flexion 0.46, 0.46, 0.36 

Neck Adjustment 0.47, 0.47, 0.46 

Legs Support 0.45, 0.45, 0.38 

Legs Flexion (left) 0.40, 0.40, 0.39 

Legs Flexion (right) 0.50, 0.50, 0.39 

Upper Arms Flexion 

(left) 

0.47, 0.51, 0.51, 0.29, 

0.29 

Upper Arms Flexion 

(right) 

0.48, 0.48, 0.46, 0.30, 

0.28 

Upper Arms Abduction 

(left) 
0.31, 0.40, 0.40 

Upper Arms Abduction 

(right) 
0.33, 0.40, 0.40 

Gap between Shoulders 0.46, 0.55, 0.55 

Lower Arms Flexion 

(left) 
0.59, 0.59, 0.40 

Lower Arms Flexion 

(right) 
0.31, 0.42, 0.42 

3 Results and discussions 

3.1 Developed joint-level scoring models 

Through the H-GCT process, 15 sets of scoring 

models are developed for the 15 considered joint-level 

assessment modules in Table 1. As shown in Figure 2, 

these scoring models consist of multiple CMs (cloud 

models) that intuitively represent the correspondences 

between input joint angles and membership degrees of 

each risk category. The CMs synthetically describe the 

one-to-many uncertainty at the edges of adjacent scoring 

models, thereby optimizing the robustness of joint-level 

ergonomic assessment.  

During the assessment process, the joint parameters 

for a specific module (e.g., joint angles) are inputted into 
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the corresponding joint-level scoring model (Figure 2). 

The output of this process is a fuzzy set, which comprises 

a series of membership degrees. Each degree corresponds 

to an individual CM included in the scoring model. To 

calculate the joint-level ergonomic risk score, the Center 

of Area (CoA) method is employed for defuzzification, 

benefiting from its comprehensive consideration of 

membership information [11]. In the case of the Trunk 

Flexion module, assuming an input angle value of 30°, 

the resulting membership degrees from the six CMs are 

2.81e-14, 6.91e-75, 5.82e-50, 3.33e-17, 1.48e-02, and 

9.85e-01, respectively. According to Table 1, these CMs 

correspond to the score values of 3, 2, 1, 2, 3, and 4. By 

utilizing the CoA method for defuzzification, the risk 

score for this module is determined to be 3.99. 

To evaluate the performance of the H-GCT, 

Confusion degree (CD) is utilized as a measure of the 

independence between generated CMs. This indicator 

exclusively quantifies the degree of overlap between 

adjacent CMs. It is worth noting that a more distinct 

division between CMs, characterized by minimal overlap, 

offers advantages in achieving more accurate assessment 

performance [16]. According to the computation results 

in Table 2, all generated CMs exhibit a significant level 

of independence. with all 52 CDs are below the threshold 

value of 0.64. This suggests the minimal of overlap or 

confusion in the core area of CMs [16]. 

 

Figure 2. Developed 15 sets of joint-level scoring models 

   
(b) by 2σ criterion-based data 

filtering 

(b) by 3σ criterion-based data 

filtering 

(c) no data filtering 

Fig.3 Comparison of generated CMs for Upper arm flexion (left) under different data filtering criteria 

3.2 Performance of H-GCT 

This section focuses on two crucial parameters that 

exert substantial influence on the performance of H-GCT. 

In specific, the threshold criterion for data filtering and 

the number of iterations during H-GT are investigated.  

Firstly, the performance of the 2σ-criterion is 

compared with that of the 3σ-criterion (resulting in less 

data being deleted) and no data filtering. The Upper Arm 

Flexion (left) assessment module's complexity is used as 

an example in Figure 3 to illustrate the generated CMs 

under these three criteria. It is evident that increasing the 

amount of deleted data leads to a reduction in overlaps 

between adjacent CMs, and the 2σ-criterion has 

generated CMs with the highest level of independence.  

Secondly, the iteration process of H-GT is examined, 

specially focusing on the calculation of the likelihood 

estimation value to observe the EM (Expectation 
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Maximization) algorithm. Figure 4 reveals that H-GT for 

upper flexion angles data has undergone sufficient 

transformation as it approached the default 100th iteration 

and beyond. This is evident from the nearly highest 

estimated value and the reduction of fluctuations (notable 

fluctuations observed from the 10th to the 80th iterations). 

Furthermore, the generated GDs (Gaussian Distributions) 

at the 80th, 90th, 100th, 110th, and 120th iterations are 

plotted to provide a detailed representation of the 

iterative progression towards the optimal state. 

 

Figure 4. Iteration process of H-GT for statistical 

data on left upper arm flexion angles 

3.3 Comparative analysis of scoring models 

with prior methods 

This section conducts a comprehensive comparison 

of the generated scoring models with previous methods. 

Prior explorations have addressed the issue of sharp 

transitions between risk categories in REBA by 

employing fuzzy logic [1, 11, 13, 26]. These efforts aim 

to mitigate the impact of instrument errors [6] and 

inevitable human perceptual biases [4] on assessment 

accuracy. To facilitate the comparison, the Upper Arm 

Flexion (left) and Trunk Twisting modules are selected 

as representative examples. Figure 5 and Figure 6 are 

presented to illustrate the comparison of cloud models 

(abbreviated as CM) and membership functions 

(abbreviated as F) involved. These two modules 

represent typical joint-level assessment modules of 

REBA, characterized by discrete boundaries and binary 

rules, respectively. 

Firstly, notable differences can be observed in the 

input domains of generated cloud models and 

corresponding membership functions in REBA. This 

disparity primarily arises from the fact that REBA is 

developed based on the knowledge and experience of 

ergonomists [3], while the data-driven H-GCT generates 

scoring models based on extensive pose data from 

construction workers. Although the utilization of fuzzy 

logic by Wang, Han [11] effectively improve the 

traditional REBA, its focus remains limited to 

membership functions’ shape and threshold settings, 

without fundamental altering the input domains of these 

functions. 

Notably, the function shapes exhibit differences 

between the scoring models and other membership 

functions. Previous studies introduced fuzzy logic to 

improve REBA involving predetermined shapes such as 

trapezoidal and triangular functions [11, 26]. In contrast, 

in this study, the function shape is uniformly initialized 

as Gaussian distribution and iteratively optimize during 

the H-GCT process [16]. The incorporation of fuzzy 

logic effectively mitigates sharp transitions between risk 

categories, as evidenced by Figure 5(b). However, within 

each membership function improved by fuzzy logic, 

there are still notable instances where changes in angle 

do not correspond to changes in the assigned risk 

category, indicating certain unrealistic aspects. 

Moreover, the threshold settings for fuzzy logic 

impact a direct influence the degree of overlap between 

adjacent functions, thereby affecting the distribution of 

membership functions. Previous studies typically relied 

on predetermined threshold values, such as 5° threshold 

adopted by Wang, Han [11]. On the contrary, the data-

driven H-GCT approach employs an iterative 

optimization process to dynamically adjust the thresholds 

(i.e., overlap area) between adjacent cloud models. This 

dynamic adjustment process serves to minimize the 

Confusion degrees (CD) and, consequently, enhance the 

accuracy of assessment. 

Ultimately, it is worth noting that previous studies 

failed to effectively improve the binary rule-based 

assessment modules of traditional REBA [1, 11, 13, 26]. 

These modules exhibit remarkable susceptibility to 

instrument errors and human perceptual biases, given 

their utilization of a limited and unrealistic input domain 

for certain membership functions. For instance, the 

practice of “assigning a risk score of 0 when the trunk 

twisting angle is 0°” fails to accurately reflect the true 

ergonomic risk. To overcome this limitation, the H-GCT 

generates scoring models that incorporate a reasonably 

expanded input domain for these functions, as illustrated 

in Figure 6(a). 
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(a) scoring models generated by H-

GCT 

(b) membership functions improved 

by Fuzzy logic 

(c) membership functions 

determined by REBA 

Figure 5. Comparison of scoring models and membership functions for Upper Arms Flexion (left) module 

   
(a) scoring models generated by H-

GCT 

(b) membership functions improved 

by Fuzzy logic (*no improvements) 

(c) membership functions 

determined by REBA 

Figure 6. Comparison of scoring models and membership functions for Trunk Twisting module 

 

4 Conclusion 

This study primarily contributes to the existing body 

of knowledge concerning the occupational health and 

safety management on construction sites. It accomplishes 

this by developing joint-level scoring models tailored to 

whole-body ergonomic assessment of construction 

workers. Specifically, a robust and heuristic data-driven 

approach named H-GCT is employed, leveraging 

statistical data on joint angles extracted from a 

comprehensive CML dataset.  

The results demonstrate that the CMs involved in 

generated scoring models exhibit a substantial level of 

independence, as evidenced by all Confusion degrees 

remaining below the threshold value of 0.64. This high 

level of independence contributes to the accurate 

identification of ergonomic risk. Furthermore, a 

comparison is conducted with previous studies that 

employed fuzzy logic to improve REBA. This process 

highlights the superiority of the data-driven H-GCT in 

developing scoring models.  

In terms of practical use, the output of these scoring 

models can be collaborated with fuzzy inference to 

achieve both accurate and continuous whole-body risk 

scores, enhancing the applicability. Moreover, for future 

studies, it is recommended to improve the work by 

expanding pose data, enriching assessment modules, and 

refining the data-driven approach. 
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