
Interpretation Conflict in Helmet Recognition under 

Adversarial Attack 
 

He Wen, Simaan AbouRizk 

 
Department of Civil and Environmental Engineering, University of Alberta, Canada 

hwen7@ualberta.ca, abourizk@ualberta.ca 

 
Abstract – 

Humans and Artificial Intelligence (AI) may have 

observation and interpretation conflicts in 

collaborative interaction. The adversarial samples 

make such conflicts more likely to occur in the field of 

image recognition. However, few studies have been 

seen combining the human-AI conflict and 

adversarial attack. This study presents the 

interpretation conflict due to adversarial samples in 

the helmet recognition task. A simulation also has 

been conducted to illustrate this problem. The results 

show that it should be prudent for the construction 

industry to land AI applications due to adversarial 

attacks on image recognition; the adversarial samples 

easily trigger interpretation conflicts, for example, the 

logo, graffiti, sticker, and text on helmets; lean 

construction should be propagated for the 

preconditions for AI applications. 
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1. Introduction 

Artificial intelligence (AI) and machine learning have 

enabled numerous creative applications in construction 

operations [1]. Typical examples include face 

recognition, personnel positioning, and violation 

detection [2], [3], contributing to safety management and 

operations. More specifically, helmet detection is one of 

the mature experiments [4], [5], since the safety helmet 

is the most essential and mandated personal protective 

equipment (PPE), and violation is still occasional or even 

expected. For example, a recent survey in California 

shows that 36% of construction workers struggle to 

ensure they consistently wear PPE [6], even if they are 

all well-equipped at daily check-in. Similar studies also 

indicate that on-site supervision and enforcement are 

required but time/effort consuming [7], [8]. 

Fortunately, computer vision and image recognition 

with deep learning facilitate this task instead of human 

inspection by vision (Figure 1), integrating body 

detection and personnel location [9], [10], [11]. As the 

pioneer field of AI, image recognition of helmets has 

constantly improved its accuracy in academic 

experiments [12], especially with the version update of 

the algorithm of You Only Look Once (YOLO) [13]. 

While the majority of research findings boast an accuracy 

rate exceeding 90%, the authors endeavoured to replicate 

these experiments utilizing algorithms outlined in 

published papers and publicly available construction site 

images, however, the accuracy was still unsatisfactory. 

 

 
Figure 1. Worker location and helmet detection [10] 

One significant cause of such accuracy problems is the 

samples in field applications often have some noise or are 

heavily polluted. For example, in the helmet recognition 

task, the logo, graffiti, sticker, and text might be 

considered the adversarial samples (Figure 2), or even the 

light and shadow may manipulate the results. This is the 

phenomenon of adversarial attacks [14]. The deep 

learning neural network misclassifies the adversarial 

sample by adding an imperceptible perturbation to the 

original image [15]. Indeed, the problem of adversarial 

attacks in image recognition has received long-term 

attention and research, and feasible countermeasures 

have been proposed [16], [17]. However, in the field of 

helmet detection, many studies do not mention this issue. 

 
Figure 2. Adversarial samples of helmets 
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Once the adversarial sample misleads the AI, it occurs a 

typical human-AI conflict [18], both observation conflict 

and interpretation conflict. This can trigger false alerts to 

workers or false violation records. On the other hand, it 

may also miss the detection of the helmet. In a critical 

environment, such a situation might trigger prudent risks. 

Therefore, this study aims to present this problem, alert 

the practitioners about this risk, and then demonstrate it 

through a simulation. The novelty of this paper is: 

i. The mathematical expression of interpretation 

conflict in image recognition. 

ii. A measurement of the conflict based on the 

vector distance and cross-entropy. 

iii. The combination of helmet recognition and 

adversarial attack. 

A reminder to the readers of this article: Section 2 

describes the problem in mathematical expressions; 

Section 3 presents the simulation of a case; Section 4 

summarizes the discussion of the simulation results and 

solutions to the proposed problem; Section 5 includes the 

remarkable conclusions, contributions, and limitations. 

2. Problem statement 

For computer vision, AI regards a picture as a 

ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ × 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 matrix, usually with a basic 

kernel of 3 𝑝𝑖𝑥𝑒𝑙 × 3 𝑝𝑖𝑥𝑒𝑙 × 3 𝑅𝐺𝐵  [19], where RGB 

means red, green, and blue. Then the matrix is converted 

to a high-dimensional column vector by the three 

channels. On the other side, humans do not yet know how 

the brain works, from seeing a picture to recognizing the 

classification of the picture, at least not mathematically. 

Therefore, assume that the same is true for humans, and 

the human observation is also converted into a vector, 

then the variable of observation difference (VOD) for 

observation conflict can be expressed as [20]: 

𝑉𝑂𝐷 = 𝑋𝐴 − 𝑋𝐻                               (1) 

Where is 𝑋𝐴 the AI vector and 𝑋𝐻 is the human vector.  

In addition, AI further performs deep learning with 

the convolutional neural network (CNN) to get the score, 

then applies the Softmax function to transfer the score to 

the classification probability 𝑦̂𝐴 . The last step is to 

conclude the classification result 𝑦𝐴  through the cross-

entropy function, where 𝑦𝐴 is a one-hot vector. Naturally, 

when humans see an image, they estimate the probability 

𝑦̂𝐻 for a limited number of classifications, and then get 

the result 𝑦𝐻 , which can also be expressed as a one-hot 

vector. Usually, humans could recognize their 

classification result 𝑦𝐻  immediately. An example of 

recognizing a helmet is shown in Figure 3. Thus, the 

variable of interpretation difference (VID) [18], which is 

the interpretation conflict, can be simplified as the 

difference between two 𝑛 × 1 one-hot vectors: 

𝑉𝐼𝐷 = 𝑌𝐴 − 𝑌𝐻                             (2) 

Where 𝑛 is the number of classifications. When 𝑉𝐼𝐷 =
0𝑛×1 , there is no interpretation conflict; when 𝑉𝐼𝐷 ≠
0𝑛×1, there is an interpretation conflict.  

 
Figure 3. An example of how humans and AI recognize 

a picture 

Then  

𝑉𝐼𝐷 ∝ 𝑑 = 𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑦̂𝐴, 𝑦𝐻)                 (3) 

Where 𝑑  is the distance between 𝑦̂𝐴  and 𝑦𝐻 . This 

distance could be applied to measure the interpretation 

conflict under various noises, including adversarial 

samples. 

Due to the improvement of AI learning ability, the 

accuracy rate has been increasing for the recognition task 

of standard samples, which is close to human cognition, 

reaching above 80% accuracy in 50-150ms [21], [22]. 

However, adversarial samples have a greater chance of 

interpretation conflict. As described in the Introduction, 

a small perturbation is added to the picture. Typically, a 

perturbation involves increasing or decreasing small 

values to/from each pixel of the image. Then humans 

cannot tell the difference between before and after, and 

get the same classification result. However, AI may give 

an unexpected result; for example, Figure 4 shows that 

AI recognizes a helmet as a pencil sharpener under 

adversarial attack. Here the 𝑉𝐼𝐷 = [−1,0,1,0, … ,0]𝑇. 

 
Figure 4. An example of interpretation conflict under 

adversarial attack 

Therefore, the problems to be presented and solved in 

this study are: Does AI accurately detect whether workers 

are wearing helmets on construction sites, and do 

adversarial samples potentially trigger interpretation 

conflicts between human supervisors and AI? 
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3. Simulation and results 

Though helmet identification is a typical application 

of image recognition with high accuracy, under 

adversarial attack, it may show unpredictable errors. 

Therefore, the simulation is designed as the following 

major steps to present this problem (Figure 5). 

 
Figure 5. Simulation procedure 

Step 1: Randomly search and choose a helmet picture 

from the public Internet as the test sample. 

Step 2: Code the program in MATLAB r2022a to 

train and test the image with SqueezeNet and the Fast 

Gradient Sign Method (FGSM) [23].  

SqueezeNet is a pre-trained neural network with 

plenty of classification labels and a relatively small 

computational occupation suitable for academic 

simulation [24]. This study added more training samples 

to optimize the SqueezeNet to identify the test examples. 

200 training samples of safety helmets from the 

public Internet are added (Figure 6), and the label is 

marked “safety helmet” (Hereinafter referred to as 

“helmet”) to distinguish the “crash helmet” in the original 

SqueezeNet. 

 
Figure 6. Example of training samples 

The FGSM is a mature technique for generating 

adversarial samples [15], and it has 

𝑋𝑎𝑑𝑣 = 𝑋 + 𝜀 ∗ 𝑠𝑖𝑔𝑛(∇𝑋 𝐿(𝑋, 𝑇))              (4) 

Where 𝑋  is the original image vector, 𝑋𝑎𝑑𝑣  is the 

adversarial image vector, ∇𝑋 𝐿(𝑋, 𝑇)  is the gradient of 

the loss function 𝐿 to the targeted label 𝑇; 𝜀 controls the 

size of the push and the adversarial strength, which 

means that the larger the 𝜀  value, the greater the 

perturbation. 

Step 3: Increase 𝜀  gradually until the classification 

result changes from “helmet” to another label. The 

procedure is designed to trigger an interpretation conflict. 

Step 4: Continue to increase 𝜀  to generate enough 

conflict results for comparison and discussion. After the 

simulation, the results are shown in Figure 7.   

 

 
Figure 7. Original image and adversarial images 

As the attack strength increases, in other words, the 

noise increases, it misleads the AI to recognize the helmet 

as “pencil sharpener”, “wool”, “mitten”, and “dishrag”. 

The relation between conflict measurement (distance 𝑑) 

and attack strength (control parameter 𝜀 ) is shown in 

Figure 8.  

 

Figure 8. The relation between conflict measurement 

and attack strength 
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4. Discussion 

The simulation results presented in this study shed 

light on the vulnerability of AI-based image recognition 

systems to adversarial attacks, particularly in helmet 

detection on construction sites. While this issue is present 

across all PPE detection scenarios, safety helmets are 

particularly vulnerable to adversarial attacks compared to 

safety vests and shoes. This susceptibility has been 

confirmed through extensive experimentation with 

various items, leading the authors to highlight it as a 

typical scenario in helmet detection. 

By systematically increasing the attack strength, as 

controlled by the parameter 𝜀 in the FGSM, it is observed 

a notable increase in interpretation conflicts, manifested 

as misclassifications by the AI system. One of the key 

findings of this study is the progressive deterioration in 

the AI system's performance as the attack strength 

increases. Initially, the AI system accurately identifies 

safety helmets from the test samples, achieving high 

classification accuracy. However, as the adversarial 

perturbations intensify, the system's confidence 

diminishes, ultimately resulting in misclassifications. 

Notably, the misclassifications observed in the 

simulation ranged from plausible but incorrect labels 

such as "pencil sharpener" to more evidently erroneous 

labels like "wool" or "mitten." This progression 

highlights the escalating confusion and uncertainty 

introduced by adversarial attacks. 

The relationship between the conflict measurement 

(distance 𝑑) and attack strength (𝜀) provides valuable 

insights into the vulnerability of the AI system. As 

depicted in Figure 8, there is a clear positive correlation 

between attack strength and conflict measurement, 

indicating that stronger adversarial perturbations lead to 

greater deviation between the AI system's classification 

and the ground truth. This observation underscores the 

sensitivity of AI systems to subtle changes in input data, 

which can be exploited to induce interpretation conflicts 

and undermine the system's reliability.  

From the simulation results, the mitigation strategies 

can be induced. One solution is adversarial training with 

adversarial samples, for example, enabling recurring 

training based on false positive data identified from 

construction sites. 

In addition, model robustness evaluation would 

encourage the model to learn robust representations that 

are resilient to adversarial perturbations. It tunes model 

sensitivity to have a higher tolerance for various types of 

image qualities.  

Furthermore, implementing defense mechanisms 

with adversarial sample detection can help mitigate 

adversarial attacks, since input data pre-processing can 

improve the sample quality. 

5. Conclusions 

This study points out the problem of helmet 

recognition under adversarial attack in the construction 

industry, which is a matter of deep concern with 

observation and interpretation conflict. The distance 

between AI prediction and human cognition could 

measure the human-AI conflict. This reminds 

practitioners not to mindlessly launch new AI 

applications and ignore the weaknesses and defects of AI 

technology itself. 

This study underscores the discrepancy between AI-

based image recognition systems and human perception. 

This interpretation conflict raises important questions 

regarding the limitations of current AI technologies and 

the need for further research to bridge the gap between 

AI and human cognition. Moreover, the findings of this 

study have significant implications for the deployment of 

AI-based safety monitoring systems in real-world 

contexts. The susceptibility of these systems to 

adversarial attacks underscores the importance of 

rigorous testing and validation procedures to assess their 

robustness and reliability. Lastly, promoting education 

and awareness initiatives of adversarial attacks can 

increase understanding of the capabilities, limitations, 

and risks associated with AI technologies. This is also the 

main intention of this study. 

Thus, this study serves as a reminder to both industry 

and academia to consider the diverse array of 

environmental disturbances present at construction sites 

when employing AI technology. It underscores the 

importance of the construction site environment, since 

dirtiness, dim lighting, and outdated equipment/tools can 

potentially create adversarial samples. As a result, it 

suggests the preconditions for AI application, for 

example, maintaining cleanliness, ensuring adequate 

lighting, regularly maintaining equipment/tools/PPE, and 

adhering to standardization protocols for safety signs. 

They are equally vital for enhancing the precision of 

image recognition. Moreover, these are also the basic 

requirements for lean construction management.  

Despite the contributions and insights, several 

limitations must be acknowledged to ensure a 

comprehensive understanding. Firstly, the simulation 

environment employed in this study inherently simplifies 

the complexity of real-world scenarios, for example, the 

training and test samples are from the public Internet, not 

real construction sites. Moreover, the generalizability of 

the findings and proposed solutions may be constrained 

by the specific characteristics of the AI models, datasets, 

and application domains. Also, the efficacy of the 

proposed solutions may vary depending on factors such 

as the architecture of the AI system, the nature of the 

adversarial attacks, and the diversity of the input data.  

Therefore, future research should aim to address these 

limitations and explore new approaches to enhance the 
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robustness and reliability of AI systems in safety-critical 

applications, such as helmet recognition in this study. 

The research and practice of AI reliability are full of 

challenges and encourage further exploration. 
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