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Abstract –  

The Hazard and Operability (HAZOP) study is 
the most widely used hazard analysis technique in the 
process industry, aimed at enhancing safety and 
preventing accidents. It identifies potential hazards 
and operability malfunctions by dividing the design 
into small sections, called nodes, and analyzing each 
node’s process separately. This paper briefly 
describes HAZOP studies and their role in enhancing 
operational safety across process industries. It also 
describes the advancements made to facilitate the 
performance of these studies and their challenges. To 
address these challenges, a new framework 
integrating BERTopic into HAZOP studies is 
proposed for enhanced efficiency and accuracy. The 
framework leverages historical data to categorize 
HAZOP elements into topics and extract node process 
and equipment descriptions to generate an intelligent 
pre-populated HAZOP analysis table. This paper 
focuses on categorizing causes into main risk factors 
for each HAZOP node and prioritizing them based on 
the likelihood of occurrence for each factor. The 
BERTopic model, incorporating embedding 
generation, dimensionality reduction, clustering, and 
topic representation, was applied to 1,574 HAZOP 
records from an oil pump station. The model achieved 
coherence and diversity scores of 80% and 92.4% 
respectively, outperforming Latent Dirichlet 
Allocation (LDA) model at 45.4% and 88.8%. It 
identified 13 topics, validated against hazard causes 
in oil pump stations and pipelines from literature. 
This model can be extended to categorize 
consequences and countermeasures, prioritizing them 
by severity and risk levels to generate a prepopulated 
table. This table can guide participants during 
sessions, significantly reducing the time required for 
the final HAZOP report. 
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1 Introduction 

Hazard analysis encompasses identifying potential 
hazards, assessing scenarios that could result in adverse 
outcomes, and developing countermeasures to eliminate 
or mitigate these hazards [1]. In this regard, hazard and 
operability (HAZOP) analysis has been the most widely 
used technique in the process industry. This is due to its 
simplicity, systematic approach, thoroughness, 
structured brainstorming process, and applicability to a 
wide range of systems [2]. The HAZOP concept dates to 
1974 following a large explosion in England, which 
resulted in the deaths of 28 workers and injuries to 36 
others. An international standard for HAZOP studies [BS 
IEC 61882] was published in 2001 and updated in 2016.   

A HAZOP study is typically conducted during the 
design stage to identify and assess potential hazards, their 
causes, consequences, safeguards, and recommendations. 
The primary inputs are Piping and Instrumentation 
Diagrams (P&IDs) and the expertise of participants. 
P&IDs provide detailed design and engineering 
information about the plant. Participants contribute 
specialized knowledge of processes, drawing upon their 
professional experience [3]. The process begins by 
dividing the P&IDs into clearly defined sections, referred 
to as nodes, to ensure that each piece of equipment in the 
process is analysed thoroughly. The study employs 
guidewords (e.g., no, more, less of) in conjunction with 
parameters (e.g., pressure, temperature, flow) to identify 
deviations from the normal operating conditions. This 
systematic approach is applied within a specific node. 
Once deviations are identified, the team investigates their 
potential causes and consequences and identifies 
safeguards and recommendations to prevent or mitigate 
the hazardous situation [4]. The HAZOP study has gained 
regulatory acceptance in the chemical industry, and has 
been extended to other industries, including oil and gas, 
petrochemical plants, nuclear power, environmental 
engineering, and infrastructure projects [5]. However, it 
often faces quality issues stemming from complexity, 
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time consumption, reliance on expert judgment and 
knowledge loss. Completing the analysis for a typical 
chemical process takes 1–8 weeks and for large-scale 
processes, such as plants with over 200 P&IDs, the 
required time increases significantly [6]. To overcome 
these issues, intelligent systems with various levels of 
automation have been developed to reduce time, cost, and 
human bias [5]. 

In this respect, this paper introduces the evolution of 
HAZOP automation within the process industry and 
highlights the challenges of existing systems. To address 
these limitations, it proposes a novel framework that 
leverages artificial intelligence (AI) tools to generate an 
intelligent pre-populated HAZOP analysis table, 
designed to assist participants during workshop sessions.  

2 Literature Review 

HAZOP automation has been a research focus for 
over 30 years, developing intelligent systems, including 
knowledge-based systems, model-based approaches, and 
data-driven models 

Knowledge-based systems are computer systems that 
use knowledge representation to provide expert 
knowledge or draw conclusions [7]. These systems, 
include expert systems, computer simulations, integrated 
based tools, ontologies, and Bayesian networks [5].  

Expert systems emulate human logic through 
knowledge databases that store domain knowledge, 
inference engines to deduce conclusions based on 
predefined rules, and user interfaces, enabling diagnosis, 
fault-finding, and problem-solving. Notable examples 
include Stateflow [3] and preHAZOP [8]. While these 
systems automate routine tasks like identifying common 
causes and consequences, they are often industry-specific 
and struggle with adapting to new technologies or 
dynamic process changes or changing environments [4]. 

Ontologies, represented as directed acyclic graphs 
(DAGs) with nodes as concepts and edges as 
relationships. For instance, Yan et al.  [9] applied named 
entity recognition (NER) to extract knowledge from 
HAZOP reports, organized it into an ontology knowledge 
base via Protégé and web ontology language (OWL), and 
employed the HermiT inference engine for automated 
analysis. This approach improved scenario coverage and 
safeguard descriptions, though its effectiveness depends 
on the ontology's scope and detail. Notably, the model 
focuses on text analysis and lacks automated risk 
assessment. Additionally, ontologies is time-consuming 
and biased as they rely on human’s experience [4]. 

Bayesian networks (BNs) are acyclic graphs where 
nodes represent process variables and arcs depict cause–
effect relationships. Each node has probabilistic states 
used to extrapolate the likelihood of other events. BNs 

have been applied in HAZOP to quantify risk and event 
probabilities, with experts assigning prior and 
conditional probabilities [10]. However, building BNs 
relies heavily on expert input for structure and prior 
probabilities, which can be subjective and challenging. 

The model-based approaches use detailed 
mathematical models, combining the HAZOP technique 
with dynamic simulations to understand system 
behaviour during failures. This integration enhances 
hazardous scenario identification and risk assessment, 
reducing subjectivity in evaluating event severity and 
likelihood. Dynamic HAZOP simulation uses two main 
approaches: custom mathematical models tailored to 
specific units, offering full control over simulation 
methods or commercial process simulators, such as 
Aspen Plus, Aspen HYSYS, and k-Spice, which allow 
flexible adjustments to process flow sheets [11]. While 
these tools provide robust environments for integrating 
simulation with process hazard analysis, HAZOP studies 
rely on teams, and analysing new units requires 
developing and verifying new equations for each case. 

Knowledge-based and model-based approaches have 
supported HAZOP studies, but acquiring and updating 
domain-specific knowledge remains challenging, 
subjective, and time-consuming. Recently, data-driven 
models have advanced HAZOP studies by leveraging 
historical data to improve safety outcomes and reduce 
manual effort [5]. Various classification models have 
been applied to automate specific aspects of HAZOP 
reports. For example, the BERT-BiLSTM-Attention 
model was used to predict severity from consequence 
descriptions, achieving a precision of 88.6% [12]. Bag of 
Words (BOW) was combined with ML to predict 
deviations based on causes, reaching 92% accuracy [13]. 
Peng et al. [14] proposed an ELMo-DCNN-BiLSTM-
CRF model for NER to identify material and equipment 
terms, achieving higher recall for equipment (93.52% 
recall) than materials (86.08% recall). Term Frequency 
Inverse Document Frequency (TF-IDF) was applied with 
Naïve Bayes to predict likelihood, severity, and risk 
levels using causes, and consequences, with accuracies 
exceeding 80% [15]. Ekramipooya et al. [16] utilized 
Bidirectional Encoder Representations from 
Transformers (BERT) and multi-layer perceptron (MLP) 
to predict recommendations using two separate models, 
one using causes and the other using consequences.  

These classification models face some limitations. 
HAZOP studies involve interconnected elements, such as 
process parameters, guidewords, causes, consequences, 
safeguards, and recommendations. Effective automation 
requires considering all these elements and addressing 
their interdependencies to avoid inaccuracies. 
Additionally, they lack prediction of safeguards and 
recommendations, based on these interconnected 
HAZOP elements. 
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Topic modelling methods have been developed to 
uncover latent topics in HAZOP reports. Wang et al. [15] 
used Latent Dirichlet Allocation (LDA) to uncover 
hidden cause and consequence from HAZOP data. TF-
IDF, LDA, Part-of-Speech (POS) tagging, and the 
Apriori algorithm were used to explore correlations 
between causes and consequences, clustering them into 
20 topics [17]. Despite its strengths, LDA does not 
consider the semantic relationships between words and 
order of words. BERT technique address this by 
generating contextual word and sentence vector 
representations. Ekramipooya et al. [16] leveraged BERT, 
Uniform Manifold Approximation and Projection 
(UMAP), and Hierarchical Density-Based Spatial 
Clustering of Applications with Noise (HDBSCAN) to 
cluster recommendations as a first step for prediction 
models. However, they did not use topic representation 
algorithms, limiting the analysis of the generated topics. 

The topic modelling literature has focused on 
identifying the main topics of causes and consequences 
for entire plants. However, HAZOP teams typically 
analyse nodes individually, necessitating the 
identification of these topics at the node level and their 
corresponding risk levels for effective risk assessment. 
Additionally, existing studies fail to categorize 
safeguards and recommendations, which are essential for 
guiding preventive measures. Moreover, previous 
research does not map the identified topics to their 
associated P&ID nodes, which is crucial since the 
division of P&IDs into nodes depends on the perspectives 
of HAZOP participants, based on process flow or main 
equipment. To address these gaps, this study leverages 
historical data to generate an intelligent HAZOP table 
that assists participants during workshops in developing 
the final report. In 2022, BERTopic, a state-of-the-art 
topic modelling algorithm built on pretrained sentence 
transformers, was introduced by Grootendorst [18]. It has 

shown superior performance in capturing semantic 
context across various domains. For its ability to provide 
a comprehensive semantic view and generate coherent 
topics representing different factors of causes, 
consequences, and countermeasures, BERTopic was 
chosen for this study to enhance the efficiency and 
accuracy of topic modelling and analysis. 

3 Proposed Method 

Figure 1 illustrates an intelligent analysis method, 
designed to enhance the efficiency and accuracy of 
conducting HAZOP studies and aid less experienced 
engineers by leveraging historical HAZOP data (reports 
and P&IDs’ nodes), closely matching the plant under 
investigation. Using BERTopic, the method identifies the 
most frequent topics of root causes, consequences, and 
countermeasures for each HAZOP node and prioritizes 
them by likelihood, severity, and risk levels. These topics 
are also linked to their corresponding deviations. A 
multimodal model like Gemini [19] extracts detailed 
process and equipment descriptions from P&ID nodes, 
providing a deeper understanding of the process and 
associated risks. Mapping these topics to the P&ID nodes 
offers participants a clearer understanding of hazard 
identification and assessment for each node under 
investigation. By combining these insights, the method 
generates an intelligent, pre-populated HAZOP analysis 
table to guide participants during workshops, reducing 
time and manual effort for similar projects to produce the 
final HAZOP report. Due to space limitations, this paper 
will focus on categorizing causes into main risk factors, 
identifying the most frequent factors for each node and 
prioritizing them based on the likelihood of associated 
hazards.

 

Figure 1. Flowchart of intelligent HAZOP analysis method using Topic Modeling. 
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The process starts with collecting HAZOP reports and 
P&IDs’ nodes. HAZOP reports include deviations, 
causes, consequences, safeguards and recommendations, 
likelihood, severity, and risk. The dataset is shuffled to 
minimize order bias and enhance model generalization 
[20]. The preprocessing step involves tokenization, text 
cleaning, and normalization. Tokenization breaks text 
into smaller units (tokens) for granular analysis. Text 
cleaning removes irrelevant elements like stopwords, 
punctuation, and special characters while normalization 
uses techniques like lemmatization and lowercase 
conversion to standardize text [21]. 

Following preprocessing, the BERTopic model is 
applied as shown in Figure 2, including vector 
embedding, dimensionality reduction, clustering, 
tokenization, and topic representation. It begins with 
embedding extraction using Sentence-BERT (S-BERT) 
to generate dense -size embeddings that capture semantic 
meaning. These embeddings include token embeddings, 
segment embeddings, and position embeddings. To 
produce a single-size embedding for each sentence, S-
BERT applies mean pooling across token embeddings, 
resulting in 768-dimensional vectors [22]. 

To optimize the HDBSCAN process, UMAP is 
employed for dimensionality reduction, which preserves 
both local and global structures of high-dimensional 
embeddings in a lower-dimensional space, facilitating 
efficient clustering [23]. Key hyperparameters, such as 
the number of neighbours, the number of components, 
and the distance metric (e.g., cosine similarity), are fine-
tuned to maintain semantic relationships and improve 
clustering performance [24]. 

The datapoints are then tokenized and vectorized. 
Tokenization breaks the text into smaller units like words 
or phrases. CountVectorizer was used to transform these 
textual units into numerical vectors [25]. Topic 
representation is then refined using class-TF-IDF, that 
identifies distinguishing features between clusters. 
KeyBERT further enhances topic representation by 
selecting the most relevant keywords based on their 
cosine similarity to cluster embeddings [25]. 

Topic quality is evaluated using coherence and 
diversity metrics. The coherence score (C_V) assesses 

the semantic relatedness of topic words, with higher 
scores (e.g., 0.6–1.0) indicating well-defined and 
interpretable topics [26]. The Coherence score is 
calculated as follows:  

𝐶_(𝑇) = 2 / (|𝑇|(|𝑇| − 1)) ∗ Σ_{𝑖=1}^{|𝑇|} Σ_{𝑗 ≠𝑖} 
𝑠𝑖𝑚(𝑊𝑜𝑟𝑑_𝑖,𝑊𝑜𝑟𝑑_𝑗)                  (1) 

The coherence score (C_V (T)) for a given topic T is 
calculated based on the number of words in the topic (∣T∣), 
the representation of two distinct words (Wordi and 
Wordj) within that topic, and the similarity measure (sim 
(Wordi, Wordj)) between these word pairs.    

The diversity score measures the uniqueness of topic 
words across clusters, with values closer to 1 reflecting 
minimal redundancy. While metrics provide quantitative 
insights, human evaluation remains essential for 
validating the interpretability of topics [27]. 

To enhance topic exploration and reduce outliers, 
Zero-shot BERTopic uses predefined topics and cosine 
similarity thresholds to guide clustering. By adjusting the 
similarity threshold, the model flexibly assigns 
documents to predefined topics or generates new topics 
as needed [27]. This iterative process, paired with human 
judgment, ensures the final topics are actionable.  

The model was evaluated against the LDA model, a 
probabilistic method for uncovering latent topics in text. 
LDA uses a document-term matrix, treating each 
document as a mixture of topics and attributing words to 
these topics based on co-occurrence patterns [28]. TF-
IDF was used to enhance feature representation, as it 
weights terms based on their frequency within documents 
and importance across the corpus. The resulting TF-IDF 
matrix serves as input for LDA, enabling it to analyse 
term significance and distribution to uncover topics. 

The models were implemented on Google Colab 
(CPU runtime), with Key libraries including NLTK and 
SpaCy for preprocessing, PyTorch, BERTopic, and 
scikit-learn for topic modelling, and Gensim for 
evaluation metrics. Core Python packages like NumPy, 
pandas, Matplotlib, and Seaborn supported data 
manipulation and visualization.  

 
Figure 2. Methodology to apply BERTopic Model on HAZOP Causes. 
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4 Case Study and Results 

The data utilized in this study comprised node name, 
causes, and likelihood derived from HAZOP reports 
focused on oil pump stations, which play a vital role in 
transporting oil through pipelines between various 
locations. The dataset was sourced from the thesis of 
Kilincet al.  [29] report of an oil pump station located in 
Sivas, Turkey, designed to ensure safe and efficient 
transfer of oil via pipelines. At the station, oil enters from 
the pipeline and first reaches the pig receiving system. It 
then passes through the main pump filters before 
reaching the pumps, where it is energized and sent 
through the pig launching section back into the pipeline 
toward its next destination. Additionally, the wax 
handling system, used to remove wax (solid oil), 
represents one of the most challenging processes in the 
operation. The dataset encompasses six nodes and 1,574 
data points required for safe oil transfer within the plant.  

The BERTopic model was fine-tuned by 
experimenting with various hyperparameters to optimize 
topic generation. Key parameters included 
min_topic_size (20–50) to control the minimum 
documents per topic, affecting topic granularity; 
top_n_words (15) to emphasize the most representative 
terms for interpretability; n_neighbors (10–15) in UMAP 
for balancing local and global data structures during 
dimensionality reduction; n_components (3–5) to set the 
dimensionality of reduced embeddings. These 
configurations resulted in topics ranging from 6 to 43. 
Figure 3 illustrates topic coherence and diversity scores 
across multiple experiments, providing a quantitative 
assessment of topic quality. Coherence scores peaked at 
32 topics, achieved 0.898, while diversity score was 
highest at 9 topics, with 0.967. Variations in the number 
of top words had no impact on the scores. 

 
Figure 3. Coherence and Topic Diversity Scores. 

As highlighted earlier, the resulting topics should be 
evaluated through human judgment [30]. Consequently, 

the topics and their top words were manually reviewed, 
focusing on experiments with higher coherence and topic 
diversity scores, such as those with 17, 25, 32, 38, 41, and 
43 topics. The evaluation process was guided by the main 
causes of hazards identified in oil pump stations and 
pipelines in the literature, including operator error, 
inadequate pipe management, corrosion, insufficient 
maintenance, ignored alarms, fire, explosions, and 
equipment issues [31], [32]. This review assessed 
whether each cluster contained distinct topics and how 
well-separated these topics were, or if overlapping top 
words indicated a lack of distinction among them. 

Following this review, 41 topics were initially 
selected because they exhibited less overlap. However, 
further analysis revealed several groups of similar topics 
that required merging. Topics 1, 2, 3, 12, 19, and 21 were 
found to be closely related and grouped together, as were 
topics 0, 11, 22, 24, 31, and 33, topics 8, 9, 10, 16, 18, 34, 
35, and 36, topics 4, 29, 30, and 39, topics 7, 17, and 27, 
topics 6, and 14, topics 20, 23, and 28, topics 26, and 38, 
and topics 13 and 25. These similar topics were merged, 
and additional experiments were conducted to optimize 
the coherence and topic diversity scores, resulting in 13 
topics, achieving coherence and diversity scores of 80.0% 
and 92.4%, respectively. Table 1 presents the final topics, 
including the top frequent words (1-3 grams) associated 
with each topic and their corresponding suggested labels. 
Cause topic generation is based on topic words and 
manual induction. Thus, the topic’s formation needs 
knowledge, experience, and analysis. This approach 
ensured a robust and interpretable topic modelling 
outcome while maintaining high performance metrics.  

It is worth noting that this model resulted in 71 
outliers, stemming from several factors. Some data points 
contain very short descriptions and general statements, 
providing insufficient semantic information for 
clustering. Additionally, the dataset exhibited high 
variability in text length across data points, further 
contributing to the outliers. Zero-shot BERTopic was 
applied to explore potential new topics for documents 
that did not align with predefined topics. Experiments 
were conducted with cosine similarity values ranging 
from 0.5 to 0.95. Values between 0.5 and 0.8 did not yield 
new topics, while values above 0.8 introduced new topics 
that closely resembled the predefined ones. Based on 
these findings, a cosine similarity value of 0.8 was 
selected, which effectively reduced the number of 
outliers from 71 to just 32 documents. The frequency of 
topics is presented in Table 1.  
 

Table 1. The Cause topics and their corresponding labels and Frequency. 

Topic Top Words Category Frequency 
0 valve, operate valve, motor operate valve, operate, error, close omit, main oil line, completely omit, oil line pump Omitted or wrong operations 43 
1 slop tank, slop tank pump, failure, reinjection, reinjection pump, switch, interlock, flow, block, slop tank block Pump failure / malfunctions. 200 
2 valve, pass, open, valve skid, skid, check valve, check, open pass, valve fail open, safety valve fail, fail open pass Valve errors or failures. 754 
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3 maintenance, closure, close maintenance case, blind leave close, maintenance case block, leave close maintenance Inadequate maintenance 58 

4 emergency, emergency shutdown, error false signal, alarm may fail, shutdown valve, error, level, faulty level alarm Safety system failure 60 
5 multiple, multiple simultaneous, multiple drain operation, multiple drain, simultaneous, simultaneous thermal Simultaneous operations 77 
6 roof, complete, complete loss, gauge lead unintended, surge valve gauge, valve gauge, valve gauge lead, valve Relief devices error/ failure 35 
7 insulation, corrosion, corrosion insulation, insulation cui, corrosion insulation cui, cui, cui tank wall, insulation low Corrosion 87 
8 external fire, fire external, external fire external, fire external fire, fire, external External fire 110 
9 underway leak heating, also source, heating coil may, leak heating, leak heating coil, event underway leak,  Leakage 39 
10 mode, mistakenly put, put back, put, pump leave manual, tank pump leave, mode mistakenly put, manual mode Human errors 5 
11 pipe, bore, pipe rupture within, pipe rupture, rupture, large bore pipe, large bore, large, bore pipe rupture Pipe failure or error. 50 
12 transmitter fail, transmitter, failure level, failure level transmitter, level transmitter, level transmitter fail Transmitter failure /error 24 

The identified topics were validated against the 11 
main causes identified manually by Kilincet al. [29], 
including omitted operations, fires, inadequate 
maintenance, operational failures, out-of-range, wrong 
equipment, incorrect operations, misplaced equipment, 
equipment failures, safety system failures, and 
simultaneous operations. The validation confirmed a 
strong alignment with traditional methods, while the 
model also provided more granular insights, such as 
pump malfunctions, pipe rapture, valve failures (the most 
frequent category), and relief device failures, which align 
with categories like equipment failure or wrong 
equipment. Additionally, the model revealed extra causes, 
such as human errors, leakage, and corrosion, expanding 
the depth and detail of the traditional HAZOP analysis. 
Identifying main causes for the entire plant provides 
valuable insights, but the HAZOP team evaluates nodes 

individually. Therefore, it is crucial to pinpoint the key 
causes for each node and determine which risk factors are 
included, excluded, and prioritized. Figure 4 illustrates 
the topics and their frequency for each node, highlighting 
the most critical causes. For instance, in Node 1 (Pig 
Receiving), the primary causes include valve failures, 
pipe ruptures, and omitted operations. Notably, Node 1 
accounts for 11 out of the 13 identified causes, excluding 
pump malfunctions and relief device failures. 

In addition to those identified main causes for each 
node, prioritizing them based on likelihood (e.g., 1 to 8, 
where 1 indicates an event has not yet occurred in the 
industry and 8 indicates frequent occurrence at the 
facility) ensures that critical issues are addressed first. 
High-frequency topics within each likelihood category 
highlight recurring or critical hazards, guiding the 
implementation of effective safeguards.   

Figure 4. The included and excluded topics associated with each P&ID's node

For instance, in node 2 (Pig Launching), as shown in 
Figure 5, the frequency distribution of topics across 
probability categories "2," "3," "4," "5," "6," and "7" 
identifies specific areas requiring mitigation strategies. 
Topic 9 (leakage) has the highest frequency in category 
"7," indicating a high probability of occurrence and 
making it a priority for risk assessment. In contrast, Topic 
0 (omitted or wrong operations), Topic 2 (valve errors or 
failures), and Topic 4 (safety systems failure) are the 
most frequent topics in categories "4," "3," and "2," 
respectively. Although these categories represent lower 
likelihoods, their recurrence across multiple deviations 
within the same node could cumulatively escalate the 

overall risk. This emphasizes the need to evaluate 
whether the frequency of such hazards justifies earlier 
intervention to prevent escalating if left unaddressed. 

 
Figure 5. Categorization of topics by likelihood 
for Node 2 (Pig Launching). 
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The BERTopic model was compared to the LDA 
model to evaluate its effectiveness. LDA was selected as 
it has been extensively applied in HAZOP studies. Since 
LDA requires a predefined number of topics, a range 
from 6 to 43 topics (matching BERTopic's output) was 
tested. Various hyperparameters were explored, 
including passes (10–100), iterations (1000–5000), and 
alpha and beta values (0.01). Multiple experiments were 
conducted to identify the optimal number of topics (K), 
determined using perplexity and coherence metrics, as 
smaller perplexity and higher coherence typically 
indicate better topic recognition [28]. Figure 6 shows 
perplexity was lowest at 42 topics, while coherence 
peaked at 12 topics with a score of 45%. However, low 
and fluctuating coherence scores indicated LDA's 
challenges in producing stable and interpretable results. 
Topic diversity was highest (89%) at 8 topics. A detailed 
review of 42, 12, 8, and 41 topics revealed overlapping 
clusters, complicating the selection of optimal topics. 

 
Figure 6. LDA Model Evaluation Metrices. 

5 Conclusion 
This paper briefly reviewed current developments of 

intelligent systems in HAZOP studies, emphasizing the 
potential of utilizing historical HAZOP data to streamline 
the process. The review reveals several gaps including 
inadequate incorporation of all HAZOP elements in 
classification models, prediction of countermeasures 
based on these interconnected elements, and 
categorization of causes, consequences, and 
countermeasures by node, likelihood, severity, and risk 
levels. This study applied the BERTopic model to 
categorize causes into 15 risk factors, achieving a 
coherence score of 80% and a topic diversity score of 
92.4%, which outperforms LDA’s 45.4% coherence and 
88.8% diversity. The model identified key topics by node 
and likelihood. This approach can be extended to 
consequences and countermeasures, generating a 
prepopulated HAZOP table to assist workshop 
participants in verifying or identifying additional issues. 

The main limitation of this study is its focus on oil 
pump stations, using data from a single HAZOP report, 
which may affect the model’s generalizability. 
Expanding the dataset is recommended to improve model 
performance. Moreover, hyperparameter tuning for 
BERTopic was time-consuming, requiring multiple trials 
for high coherence and diversity. Optimization 
techniques are suggested to streamline this process. 
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