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Abstract  

This paper investigates the accurate prediction of 

the maximum force in fiber-reinforced composites 

using the CatBoost machine learning algorithm. The 

study incorporates the Shapley additive explanations 

technique to enhance interpretability, revealing the 

significance of the impact of each variable on the 

output at both local and global scales. The research 

demonstrates that Shapley additive explanations 

provide valuable insights into the decision-making 

process of the machine learning model, identifying 

influential variables for specific instances and 

contributing to a comprehensive understanding of the 

overall model predictions. Notably, the alignment 

between the feature importance analyses from the 

machine learning model and Shapley additive 

explanations reinforces the significance of certain 

parameters in predicting maximum force as an 

interfacial property. The study advances the 

prediction of interfacial properties in fiber-reinforced 

composites and underscores the value of interpretable 

machine learning methods in offering insights into 

complex predictive models. 
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1 Introduction 

Fiber-reinforced composites have become integral 

materials in civil engineering applications, owing to their 

remarkable combination of stiffness, strength, and 

lightweight properties [1]–[3]. The mechanical 

performance of these composites is primarily dictated by 

their interfacial properties [4], [5]. the determination of 

interfacial properties through fiber pullout tests involves 

labor-intensive and time-consuming experimental and 

numerical methods. Hence, there is a pressing need for 

an accurate and efficient alternative for predicting 

interfacial properties, essential for the design and 

customization of composite materials. 

In recent years, machine learning (ML) techniques 

have emerged as promising substitutes for time-

consuming simulation processes that offer the advantage 

of low computational cost and high accuracy [6]–[10]. 
For instance, Mangalathu and Jeon [11] employed lasso 

regression for beam-column joints. Yao et al. [12] 
demonstrated the superiority of two-class support vector 

regression (SVR) over one-class SVR and logistic 

regression in mapping landslide susceptibility. Chopra et 

al. [13] investigated the efficiency of ML models such as 

decision trees (DT), random forests (RF), and neural 

networks in estimating concrete compressive strength. 

Their findings revealed the superior efficiency of the 

neural network model, followed by the RF method. 

Additionally, Das et al. [14] introduced a data-driven 

physics-informed approach for concrete crack estimation, 

showcasing the capability to predict infrastructure 

service life based on real-time monitoring data. 

In this study, the CatBoost algorithm is employed to 

predict the maximum force in fiber-reinforced 

composites. A grid search approach and K-fold cross-

validation are employed, utilizing a dataset comprising 

922 samples to identify the optimum parameters of the 

ML model. Understanding why an ML model produces 

specific estimations and identifying the features 

influencing those estimations is crucial. Therefore, the 

Shapley additive explanations (SHAP) method is applied 

to comprehend the behavior of the ML model. The paper 

is organized as follows: Section 2 introduces SHAP as an 

interpretable ML approach; Section 3 presents a 

numerical example for maximum force prediction, and 

finally, Section 4 offers concluding remarks and future 

directions.  

2 Interpretable ML approach 

In addressing the inherent black-box nature of ML 

models, particularly in the context of predicting the 

maximum force in fiber-reinforced composites, this 

study employs an interpretable ML approach. The 

opaqueness of such black-box models can lead to a 
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diminished level of trust and understanding, impeding 

their broader acceptance and applicability. 

In this study, the SHAP approach is employed for 

model interpretation to mitigate this challenge. The 

SHAP technique draws inspiration from conditional 

expectation and game theory [15]. It provides a 

systematic framework for assessing the impact of 

individual input features on the predictions of the model, 

thereby offering a clearer understanding of the decision-

making process. 

The central idea behind SHAP lies in evaluating the 

significance of each feature by assessing the increase in 

estimation error after modifying the values of a given 

factor. A feature is deemed significant if its manipulation 

results in a substantial increase in prediction error; 

conversely, a feature is considered non-significant if its 

alteration has little impact on the error. This approach 

allows us to identify and prioritize the input features that 

contribute most significantly to the predictions of the 

model, thereby enhancing interpretability. 

In essence, SHAP aids in ranking the features based 

on their contribution to the decision-making process, 

highlighting the interactions and relationships among 

these features. The interpretability framework is 

constructed on the principles of additive feature 

attribution, wherein the output model is represented as a 

linear function comprising the sum of the actual values 

associated with each parameter. 

The interpretable framework developed through 

SHAP provides a transparent and comprehensible 

representation of the decision logic of the ML model. 

This approach not only enhances the trustworthiness of 

predictions by elucidating the role and influence of 

individual features but also contributes to the broader 

adoption of ML techniques in assessing the maximum 

force in fiber-reinforced composites. The resulting 

interpretable model serves as a valuable tool for 

practitioners and researchers seeking to bridge the gap 

between advanced ML capabilities and a clear 

understanding of the underlying mechanics in composite 

material. 

3 Numerical examples 

The assessment of Fmax in fiber-reinforced composites 

can be effectively carried out using dependable 

quantitative methods such as the fiber pullout test and 

simulation. In this study, a thorough compilation of 922 

fiber pullout outcomes from existing literature forms a 

comprehensive dataset [16]–[27]. 

The input data comprises 11 distinct features, 

providing details on fiber characteristics, sample 

preparation environment, and testing conditions. The 

resulting output, Fmax, represents an interfacial property. 

Table 1 outlines the specified ranges for these parameters.  

 

Table 1. Statistical attributes of dataset. 

Attribute Unit Minimum Maximum 

Type of fiber - 1 10 

Fiber diameter µm 5 300 

Embedded length µm 24.5 2018 

Young’s modulus 

of fiber 

GPa 3.39 294 

Poisson’s ratio of 

fiber 

- 0.17 0.37 

Type of matrix - 1 10 

Young’s modulus 

of matrix 

GPa 1.2 3.96 

Poisson’s ratio of 

matrix 

- 0.31 0.37 

Loading rate m/s 0.0017 6 

Prepare temperature ℃ 20 370 

Test temperature ℃ -196 120 

Fmax N 0.005 1.902 

 

Figure 1 illustrates the correlation matrix of the input 

parameters, where each correlation coefficient signifies 

the degree of interaction between two parameters. In this 

paper, any correlation exceeding 0.70 is considered a 

significant dependency. The matrix reveals a significant 

association, with a correlation of 0.95, between 

embedded length and fiber diameter. Additionally, there 

is a correlation coefficient of 0.79 between embedded 

length and fiber type. Moreover, the correlation 

coefficient between the type of fiber and fiber diameter 

stands at 0.73. Notably, there are no evident correlations 

observed for the remaining parameters. 
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Figure 1. Correlation matrix for input variables 

3.1 Regression model 

In this paper, a comparative study has been conducted 

to determine the best regression model. The investigation 

encompasses several regression algorithms, namely 

decision tree (DT), AdaBoost, and CatBoost. Through 

rigorous analysis and comparison, the aim is to identify 

the most suitable regression model for the given dataset. 

The process of fine-tuning the hyperparameters for 

ML models involves utilizing a grid search approach 

combined with 10-fold cross-validation to prevent 

overfitting. Consequently, the hyperparameter values 

that yield the best performance are chosen for the ML 

approaches. The optimal hyperparameter values for the 

regression algorithms are presented in Table 2. The 

average R2 and RMSE values resulting from 10-fold 

cross-validation are presented in Table 3.  

 

 

 

 

Table 2. Optimal hyper parameters. 

Model Optimal configuration 

DT Max_depth=6, min_samples_leaf=1, 

min_samples_split=2, random_state=3 

AdaBoost Learning_rate=1, n_estimators=50, 

random_state=0 

CatBoost Depth=8, iterations=1000, 

learning_rate=0.01 
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Table 3. Performance of regression models. 

Model Average R2 Average RMSE 

DT 0.988 0.028 

AdaBoost 0.982 0.039 

CatBoost 0.997 0.018 

 

As a result of the comparative study, the CatBoost 

model exhibits the highest accuracy. Figure 2 displays 

the regression plot of the CatBoost model, confirming its 

high accuracy. The x-axis illustrates the actual data, 

whereas the y-axis denotes the predicted data. The plot 

illustrates the correlation between actual and predicted 

values. A notable observation is that a significant portion 

of the data points closely align with the regression line, 

indicating a strong predictive accuracy. In the subsequent 

subsection, the CatBoost model is further explored as an 

interpretable method.  

 

Figure 2. Regression plot 

3.2 Interpretable method 

Illustrated in Figure 3 is the significance of 

parameters in shaping the CatBoost model, taking into 

account their contributions to each tree. The most 

influential feature is the fiber diameter, followed by the 

embedded length. Conversely, the loading rate holds the 

least importance, with the Poisson's ratio of the matrix 

following as the next less critical variable. Notably, 

discerning whether an input variable exerts positive or 

negative effects on the relative importance plots is 

unfeasible. 

 

Figure 3. CatBoost importance factor  

Figure 4a illustrates the SHAP summary plot, where 

individual points correspond to Shapely values for the 

parameters. Each row in the plot contains an equal 

number of samples. The Shapely values and input 

variables are represented on the x-axis and y-axis, 

respectively. The variables are arranged in descending 

order of importance, with the most crucial variable 

positioned at the top. Samples with the same SHAP value 

for a factor are dispersed along the horizontal axes. High 

variable values are depicted in red, while low values are 

in blue. The red color signifies the range of values that 

elevate the SHAP value and, consequently, the associated 

estimation. 

Observations indicate that an increase in the Young's 

modulus of the fiber, preparation temperature, and 

Poisson's ratio of the matrix results in a reduction of the 

SHAP value, leading to a decrease in Fmax. Conversely, 

an increase in embedded length, fiber diameter, and 

Poisson's ratio of the fiber contributes to an elevation in 

the Fmax value. Figure 4a maintains an equal distribution 

of points in each row. 

In Figure 4b, the global significance factor is 

presented as the mean of the absolute SHAP value per 

factor. According to SHAP analysis, the input parameters 

of embedded length and fiber diameter are identified as 

the most crucial, aligning with findings from the 

CatBoost significance variable. 
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                                                      (a)                                                                                                           

 

(b) 

Figure 4. SHAP plots: (a) Shapely value; (b) Global 

importance factor. 

Figure 5 illustrates the presentation of the SHAP 

dependence graph, which takes the form of a scatter plot 

depicting the SHAP value of a parameter in relation to 

other parameters. The color representation in the figure 

indicates the impact of interactions with other variables 

on the horizontal axis values. Notably, a majority of these 

interactions exhibit non-linear behavior. In Figure 5a, the 

influence of the type of fiber on embedded length is 

showcased, revealing that, except for the type of fiber 

equal to 10, the SHAP value tends to decrease with an 

increase in embedded length. Additionally, positive 

effects are predominantly noticeable in the case of fiber 

diameter and the Poisson's ratio of the fiber, as depicted 

in Figure 5b. Figure 5g highlights that the Young's 

modulus of the matrix has a predominantly negative 

impact on the SHAP value concerning the input 

parameter of embedded length. The remaining plots 

indicate that the negative effect is generally more 

pronounced for the other variables. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

Figure 5. SHAP partial dependence plots. 

4 Conclusions 

This study presents an exploration of interpretable 

ML approaches for predicting the maximum force in 

fiber-reinforced composites during pullout tests. The 

investigation focuses on the CatBoost algorithm, 

utilizing a dataset of 922 samples with 11 features as 

inputs to the ML model. The performance of the 

CatBoost model is found to be exceptional, exhibiting 

high accuracy with R2 values of 0.997 and RMSE values 

of 0.018. 
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The CatBoost algorithm is coupled with the SHAP 

interpretable approach to enhance the transparency and 

interpretability of the ML model. This step is crucial for 

elucidating the predictions made by the ML model, 

providing insights into the relative importance of input 

features. SHAP, chosen for its comprehensive 

explanatory capabilities, proves to be a valuable tool in 

understanding the trends and contributions of individual 

parameters. Remarkably, the SHAP values highlight 

embedded length and fiber diameter as the most 

influential variables, positively impacting the estimation 

of the maximum force. 

Furthermore, the congruence between the features 

identified as significant by both the CatBoost method and 

SHAP underscores the reliability and consistency of the 

proposed approach. This alignment strengthens 

confidence in the interpretability of the ML model and 

the robustness of the identified influential parameters. 

While this study focuses on fiber-reinforced 

composites, the methodology developed herein holds 

promise for broader applications in structural 

performance estimation across diverse systems. The 

successful implementation of the proposed approach 

creates opportunities for future research, which will 

extend the methodology to predict other interfacial 

properties of fiber-reinforced composites. This 

expansion not only contributes to the versatility of the 

developed methodology but also underscores its potential 

impact on advancing the understanding and prediction of 

structural behavior in various engineering applications.  
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