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Abstract – The construction industry persistently 

underperforms in hazard recognition, often leading to 

severe workplace injuries due to unrecognized 

hazards. With the recent advancements in Artificial 

Intelligence (AI) and the emergence of Large 

Language Models (LLM), the construction sector has 

begun exploring these technologies for various 

applications. However, a systematic comparison of 

popular LLMs to evaluate their effectiveness in 

identifying construction hazards remains unexplored. 

Additionally, previous studies have primarily focused 

on assessing LLMs using textual input and output, 

leaving their performance with visual inputs 

underexplored. This study addresses this gap by 

systematically assessing and comparing the hazard 

recognition performance of five widely used LLMs 

using construction case images. The findings establish 

a baseline standard for LLMs in construction hazard 

identification through zero-shot learning and reveal 

that LLMs do not perform significantly well in this 

context. Additionally, the study provides valuable 

insights into the reliability and potential applications 

of LLMs for enhancing hazard recognition in the 

construction industry. 

Keywords – LLM, Hazard Recognition, Construction 

Safety, Image Analysis 

1 Introduction 

The construction industry plays a pivotal role in 

developing and maintaining the infrastructure, thereby 

shaping broader society [1]. Despite its importance, the 

construction industry reports a disproportionate number 

of safety incidents around the world [2]. These incidents 

often result in fatal and non-fatal injuries to the workers. 

In the United States alone, approximately 1,000 fatal 

injuries take place every year and the number go well 

beyond 200,000 for non-fatal injuries [3]. In addition to 

the fatal and non-fatal injuries, these incidents also cause 

a significant amount of economic damage [4].  

Over the years, researchers and industry professionals 

have put much effort into investigating the reasons 

behind these safety incidents. Evidence suggests that one 

of the main reasons for these incidents is the failure to 

identify construction hazards [5, 6]. Studies show that the 

construction industry performs poorly in recognizing 

workplace hazards, with over 70% of work-related 

incidents attributed to poor hazard recognition [7].   

Several tools have been developed over the years to 

improve the hazards recognition efforts in the 

construction industry. For example, job hazard analysis 

(JHA) tool is used to catalog hazards that are associated 

with specific construction tasks. However, this method 

assumes that workers possess a level of proficiency in 

identifying hazards, which in reality is not the case [8, 9]. 

On the other hand, tools such as safety checklists fail to 

contribute due to their limitation of identifying a limited 

number of hazards [10]. A number of studies have 

demonstrated that, despite the usage of such safety tools, 

over 40% of construction hazards remain unrecognized 

in the construction workplaces and they in turn cause 

these fatal and non-fatal incidents [11, 12].  

On the technological front, several other tools have 

been developed to aid hazard recognition over the years. 

For example, usage of Building Information Modeling 

(BIM) has been popular among researchers and industry 

professionals [13]. BIM enables collaboration, 

visualization, and enhances the hazard identification 

process. Other efforts have focused on technologies such 

as eye tracking, augmented reality (AR), and virtual 

reality (VR) environments [14, 15]. While these 

technological solutions aid the hazard recognition 

process, they have their own limitations. For instance, 

these technology-driven tools require significant 

expertise, development time, resources, and financial 

investments. These barriers often hinder widespread 
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adoption of these technological solutions. 

In recent years with the development and uprising of 

Artificial Intelligence (AI) and Large Language Models 

(LLM), the construction industry has also leaned towards 

adopting these solutions to improve the safety situation 

of construction workplaces. Different studies have 

demonstrated how some popular LLMs, such as 

ChatGPT, can be beneficial in improving construction 

safety [16-19]. In light of recent advancements, this study 

focuses on evaluating the capabilities of five different 

LLMs in identifying construction hazards using zero-

shot learning. This evaluation aims to establish a baseline 

standard for LLM performance with no prior training, 

additional knowledge base, or guidelines, and offer 

insights on the reliability of LLMs in recognizing 

construction hazards. 

2 Use of LLM in Construction Safety 

In recent years, Large Language Models (LLM) have 

gained significant popularity across different industries 

and domains. Construction industry is no different from 

others. Although the industry is in its very early stages of 

adopting LLMs on a full scale for diverse applications, 

several studies have explored the opportunities these 

LLMs present. For example, a number of studies 

explored the possibility of integrating LLM and BIM to 

support information retrieval from the building models 

[19-21]. Other studies have focused on leveraging 

different LLMs for project management tasks such as 

automated sequence planning [22], generating 

construction schedules [23], automated classification of 

contractual risk clauses [24], automatic matching of look 

ahead planning tasks [25] etc. Additionally, some studies 

focused on how to effectively use LLMs to improve the 

construction education outcomes [16, 26, 27].  

On the safety front, several studies have examined the 

usability of LLMs to improve the health and safety 

condition of construction workplaces. For example, 

Uddin et al. [18] conducted a controlled experiment with 

42 construction engineering students. Their effort 

demonstrated that LLMs can be particularly effective in 

aiding hazard recognition efforts. They also suggest that 

LLMs can be integrated as part of safety education for 

construction students albeit with caution. Another study 

by Uddin et al. [17] explored the usability of LLM in 

aiding construction hazard prevention through design 

efforts. The study demonstrated that LLM can improve 

the hazard recognition efforts during the design phase by 

approximately 40%. Wang et al. [28] evaluated LLM’s 

ability to extract causal factors from construction 

accident reports. The study found that LLM can perform 

well as an assisting tool, offering clear and reliable 

insights, but it still requires further development for 

professional applications like crane safety. The research 

highlights the potential of LLMs in construction while 

emphasizing the need for refinement to enhance their 

practical utility.  

Smetana et al. [29] leveraged an LLM model to 

analyze textual data from OSHA’s Severe Injury Reports 

(SIR) for highway construction accidents. Using 

advanced NLP techniques, clustering, and LLM 

prompting, they identified major accident types, 

including heat-related and struck-by injuries, while 

uncovering commonalities between incidents. The 

findings demonstrate the potential of AI and LLMs to 

enhance data-driven safety analysis and support the 

development of more effective prevention strategies in 

the highway construction industry. Hussain et al. [30] 

developed a virtual reality-based safety training system 

incorporating LLM as a live AI instructor to address 

communication barriers and trainer limitations, 

particularly for migrant workers. Testing across five 

countries showed a 23% improvement in knowledge 

scores, demonstrating the system’s effectiveness. The 

research highlights the system’s potential to improve 

safety training globally, reduce construction site 

accidents, and advance immersive and AI-driven training 

methodologies. 

While the existing studies have demonstrated the 

potential of LLMs in various aspects of construction 

including workers’ health and safety, they predominantly 

focused on evaluating a single LLM and relied 

exclusively on textual inputs and outputs. None of these 

efforts explored a comparative analysis of multiple 

LLMs to assess their relative effectiveness in achieving 

safety outcomes. Additionally, the studies did not 

investigate the use of image-based inputs for hazard 

recognition, despite the growing capabilities of modern 

LLMs to process and interpret visual data.  

With recent advancements in LLMs enabling them to 

analyze multimodal inputs, including images, it becomes 

crucial to evaluate whether these models can effectively 

extract safety-critical information from construction 

images and identify hazards. Such an investigation would 

address a significant gap in the literature and provide 

insights into the broader applicability of LLMs for 

improving construction safety practices. 

Hence, this study focuses on assessing five different 

LLMs’ capability of identifying potential hazards from 

construction case images and then conducting a 

comparative analysis to demonstrate if all the LLMs are 

reliable and if they perform equally in identifying 

potential hazards from construction case images.   

3 Methodology  

To achieve the goals of this study, it was necessary to 

establish a ground truth for evaluating the hazard 

recognition capabilities of the LLMs. This was 
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accomplished by using a dataset of 16 different images 

of construction activities captured as part of a previous 

study [31]. These images depict a wide variety of 

construction activities such as welding, cutting, drilling, 

crane rigging among others.  

Once gathered, these images were then analyzed by a 

panel of 17 construction industry safety experts. The 

collective experience of this panel was over 300 years at 

the time of this assessment. The expert panel was tasked 

with analyzing the images and identifying all the 

potential safety hazards for each image. One example 

image with annotated safety hazards is shown in Figure 

1. The expert panel identified a total of 120 construction 

hazards from these 16 case images. These pre-identified 

hazards are going to serve as ground truth for our LLM 

assessment experiment.  

 

Figure 1. Example image of construction activity 

with pre-identified hazards. 

Next, we chose five LLMS, i.e., ChatGPT 4, GPT 4o, 

GPT o1, Gemini 2.0, and Claude for this experiment. The 

selection of these five LLMs was based on their industry 

adoption [17, 32, 33], multimodal capabilities [34, 35], 

architectural diversity [36], and expected performance 

variation. These models are widely used and include 

multimodal processing which is crucial for hazard 

recognition from construction case images. The study 

specifically leveraged the zero-shot learning capabilities 

of these models, allowing them to identify hazards 

without requiring domain-specific training or 

environment customization. This approach was deemed 

particularly relevant to assess the baseline performance 

of these LLMs without any training or additional 

knowledge input. 

To ensure consistency and standardization, a 

systematic approach was developed to input all the 

images into these LLMs for hazard identification. First, 

the following prompt was provided:  

“You’re a construction safety expert. You will be 

provided with 16 different construction images. You will 

have to analyze these images and identify the potential 

safety hazards for each image.” 

Then each image was fed into to LLM chat prompt 

along with the following instruction:  

“Identify all potential safety hazards for the 

construction activity in this image.” 

No additional contextual or domain-specific prompts 

were provided, ensuring the zero-shot learning approach 

remained intact. This standardized methodology 

facilitated comparability of outputs across all the models. 

Once the LLMs returned their results for each image, 

the hazards were then recorded carefully by the research 

team ensuring traceability and consistency for 

subsequent analysis. The process was conducted under 

controlled experimental conditions, ensuring that all 

models were evaluated using identical inputs and queries. 

The output generated by the LLMs were then 

compared against the ground truth dataset to evaluate 

their hazard recognition performance. Three different 

metrics were used to evaluate the performance of these 

LLMs, i.e., Precision, Recall, and F1-score [37, 38]. 

Precision score denotes the proportion of correctly 

identified hazards relative to the total hazards identified 

by the model. Recall is the proportion of correctly 

identified hazards relative to the total hazards present in 

the ground truth dataset. And F1-score is the harmonic 

mean of precision and recall, providing a balanced 

measure of accuracy and completeness of the models.  

4 Data Analysis and Results  

In order to measure the Precision, Recall, and F1-

Score of each LLM, we used equations 1, 2, and 3 

respectively for each image.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =  
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
 

 

(1) 

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =  
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
 

 

(2) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑖 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖  × 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
 

 

(3) 

Where: 

TPi = Hazards correctly identified by each LLM 

FPi = Hazards incorrectly identified by each LLM 

FNi = Hazards that exist in the ground truth but 

were missed by each LLM 

 

Once the Precision, Recall, and F1-Score for all 16 

images were gathered, then they were averaged to get the 

mean Precision, Recall, and F1-Score using equations 4, 

5, and 6 where n is equal to 16.  
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𝐴𝑣𝑔. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
1

𝑛
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝑛

𝑖=1

 
 

(4) 

𝐴𝑣𝑔. 𝑅𝑒𝑐𝑎𝑙𝑙 =  
1

𝑛
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑛

𝑖=1

 

 

(5) 

𝐴𝑣𝑔. 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
1

𝑛
∑ 𝐹1 − 𝑆𝑐𝑜𝑟𝑒𝑖

𝑛

𝑖=1

 

 

 

(6) 

Table 1 below shows the summarized results for the 

five LLM models that were assessed.  

Table 1 Summary of LLM Performance 

Models Precision Recall F1-Score 

ChatGPT-4 0.30 0.29 0.30 

GPT4o 0.25 0.30 0.27 

GPTo1 0.27 0.30 0.27 

Gemini 2.0  0.31 0.33 0.31 

Claude 0.42 0.29 0.34 

Overall 0.31 0.30 0.30 

4.1 ChatGPT-4 

As can be seen in Table 1, ChatGPT-4 achieved 0.30, 

0.29, and 0.30 scores in Precision, Recall, and F1-Score 

metrics respectively. A precision score of 0.30 indicates 

that only 30% of the hazards identified by the model were 

accurate, which also highlights a significant proportion 

of false positives. This indicates that ChatGPT-4’s level 

of precision in recognizing construction hazards as a 

standalone tool may not be very reliable. Similarly, the 

recall score of 0.29 demonstrates the model’s inability to 

detect the majority of the hazards present in the actual 

scenarios. The F1-score of 0.30 shows that the model 

struggles to achieve both accuracy and completeness in 

construction hazard identification from images. 

4.2 GPT4o  

GPT4o’s performance in construction hazard 

recognition from the images is similar to GPT4’s. 

GPT4o’s precision score of 0.25 indicates that only 25% 

of the identified hazards were accurate, reflecting a 

higher rate of false positives. Additionally, the recall 

score of 0.30 shows that the model was able to identify 

only 30% of the actual hazards in the test scenario. The 

F1-score of 0.27 indicates that this model also struggles 

to identify construction hazards on its own from the 

construction images.  

 

4.3 GPTo1 

GPTo1 model performed rather poorly in 

construction hazard identification in this study. GPTo1 

achieved 0.27 in precision which demonstrates a poor 

performance in recognizing hazards accurately, with a 

higher level of false positives. The recall score of 0.30, 

which is consistent with GPT4 and GPT4o, shows that 

the model was able to identify 30% of the actual hazards 

present in the test scenarios. This underscores that a 

significant proportion of hazards went unrecognized. The 

F1-score of 0.27, which is similar to GPT4o, highlights 

the model’s limitations in recognizing construction 

hazards successfully.  

4.4 Gemini 2.0  

Gemini 2.0 with precision score of 0.31, recall score 

of 0.33, and F1-score of 0.31 demonstrated a slight 

improvement over the other three LLMs. The precision 

score indicates that 31% of the hazards were identified 

accurately. While the recall score of 0.33 demonstrates a 

higher percentage of correctly identified hazards from the 

hazards present in the ground truth dataset. The F1-score 

of 0.33 shows the balanced performance between 

precision and recall for this model.  

4.5 Claude  

Claude’s performance in construction hazard 

recognition with a precision score of 0.42 demonstrates 

its ability to identify hazards with relatively higher 

accuracy, which is the highest among other models tested 

in this study. This score also highlights a significantly 

lower rate of false positives. However, a lower recall 

score of 0.29 indicates that Claude identified only 29% 

of the actual hazards from the ground truth dataset. While 

its precision ensures that the hazards identified are likely 

correct, the lower recall suggests that many actual 

hazards remain unrecognized, which could be a concern 

in environments requiring exhaustive risk identification. 

4.6 Trend of Hazard Identification 

Along with assessing different LLMs’ hazard 

recognition performance, it is also important to examine 

if there’s a common trend demonstrated in construction 

hazard recognition. To achieve this, we aggregated all the 

hazards that were correctly identified by the LLMs, 

referred to as True Positives (TP), to gain insight into 

which hazards were most successfully recognized. We 

also summed up all the False Negatives (FN) to identify 

the hazards that were least frequently recognized by the 

LLMs. Figure 2 and figure 3 below show the top five and 

bottom five hazards identified by the LLMs.  
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Figure 2. Top five hazards identified by the LLMs. 

As can be seen in figure 2, the LLMs overall 

performed better in identifying more common hazards 

such as struck by, excavation, confined space, and fall 

hazards.  

 

Figure 3. Least five hazards identified by LLMs. 

On the other hand, figure 3 demonstrates that the 

LLMs performed rather poorly in identifying hazards 

such as noise, weather, ergonomics, radiation, and 

pressure. This finding is consistent with previous 

research efforts where the studies evaluated the hazard 

recognition trend of the construction workforce [12, 39].   

5 Discussion 

The performance of the evaluated LLMs in 

construction hazard recognition from images under zero-

shot learning conditions reveals a varied outcome across 

all the measured metrics. Among the five tested models, 

Claude showed the highest precision level in identifying 

construction hazards. This suggests that Claude 

minimizes false positives better than the other models, 

making it particularly suitable for applications where 

avoiding unnecessary interventions is critical. However, 

the lower recall value of Claude indicates the failure to 

identify all the hazards present in the ground truth dataset. 

On the other hand, Gemini 2.0 achieved the highest recall 

score and maintained a balanced F1-score. Compared to 

Claude, Gemini 2.0 sacrifices some precision but 

compensates with better recall, making it a more reliable 

choice for scenarios requiring broader hazard 

identification.  

The superior performance of Claude in precision may 

be attributed to its underlying architecture, which 

possibly favors conservative predictions by avoiding 

overgeneralizations. Meanwhile, Gemini 2.0’s balanced 

performance could stem from a more robust 

generalization capability, enabling it to identify a larger 

proportion of hazards without excessively sacrificing 

precision. 

The remaining three models, ChatGPT-4, GPT4o, 

and GPT-o1 exhibited comparable performance, with 

precision ranging from 0.25 to 0.30 and recall clustering 

around 0.30. These models struggled to achieve a balance 

between precision and recall, with their F1 scores 

hovering at 0.27 to 0.30. Notably, ChatGPT-4 

demonstrated the highest F1 score among this group at 

0.30, indicating a slightly better overall performance in 

balancing accuracy and coverage. The relatively lower 

precision of GPT4o (0.25) suggests a greater tendency 

toward false positives, while GPT-o1 showed a slight 

improvement in reducing these errors. 

The overall average metrics across all models, 

precision of 0.31, recall of 0.30, and F1 score of 0.30, 

highlight a consistent challenge for LLMs in performing 

hazard recognition tasks as standalone tools under zero-

shot learning conditions. However, it is worth noting that 

the hazard recognition performance of LLMs using zero-

shot learning is comparable to that of human participants 

with no prior intervention or training, as observed in 

previous studies [12, 31, 40].  

The variation in precision, recall, and F1-score across 

LLMs can be attributed to differences in model 

architecture, training data, and inference strategies. For 

example, Claude exhibits high precision but low recall as 

it applies conservative thresholds, flagging only high-

confidence hazards to minimize false positives. In 

contrast, Gemini 2.0, designed as a multimodal AI, 

prioritizes higher recall over precision, leading to more 

hazard detections but also increased false positives. The 

GPT models from OpenAI are balanced models that 

achieve moderate precision and recall, making them 

consistent but not specialized in hazard detection. 

The results obtained from this experiment indicate 

that LLMs face significant challenges in construction 

hazard recognition from images when they are used 

without domain specific knowledge, fine tuning, or 

specific guidance. The findings contrast with previous 

studies that showed LLMs perform exceedingly well 

when they are integrated into safety training or education 

contexts for construction professionals. Previous studies 
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used LLMs to support humans by generating insights or 

suggesting hazards, leveraging human reasoning to fill 

gaps in understanding [17, 18]. While on the other hand, 

the current zero-shot learning setup relied entirely on the 

models’ ability to independently interpret the 

construction images and identify hazards. This exposes 

the limitations of the LLMs’ specific knowledge base.  

 

These findings of this study demonstrate that, while 

LLMs perform remarkably well with structured prompts, 

and additional knowledge base, without these 

interventions and without human assistance, LLM’s can 

perform rather poorly in construction hazard recognition.  

6 Conclusion  

Construction hazard recognition is one of the pivotal 

steps in order to ensure a safer construction environment. 

Previous studies have demonstrated that construction 

hazards often remain unrecognized in the workplace 

which translates to both fatal and non-fatal accidents. In 

order to tackle this issue, numerous studies have focused 

on developing and adopting various tools to help with 

hazard recognition.  

With the advancement of modern technology, 

Artificial Intelligence (AI), and Large Language Models 

(LLM), researchers and practitioners have started to 

utilize these technological solutions to improve 

construction hazard recognition. However, since there 

are multiple different LLM platforms available, it was 

necessary to conduct a comparative analysis to see if they 

are reliable and which model performs better than others. 

Additionally, it was also important to assess these models’ 

performance with zero-shot learning, in other words, 

with no enforced knowledge.  

This study was designed carefully to evaluate five 

different LLMs performance in construction hazard 

recognition from construction case images. The findings 

of this study reveal that LLMs perform rather poorly in 

identifying construction hazards with zero-shot learning 

as standalone tool. However, the hazard recognition trend 

demonstrates that the LLMs’ performances are not too 

different from the human subjects from construction 

industry. LLMs show a similar trend in identifying 

common hazards and missing out uncommon hazards, 

similar to previous other studies [12, 39, 41].  

The study highlights that although LLMs show a 

promise in identifying construction hazards, they may 

require some input, training, additional knowledge base, 

interventions, and human assistance to perform better as 

previous studies have demonstrated an improved hazard 

recognition performance by human subjects with 

assistance from different LLMs [17, 18].  

In future work, we plan to explore the impact of fine-

tuning LLMs using larger construction-specific datasets 

to assess their potential for improved hazard recognition. 

While our current study leveraged zero-shot learning to 

establish baseline performance, real-world applications 

would likely require models that have been trained on 

domain-specific data. We plan to expand our analysis to 

include a detailed examination of false positives and false 

negatives for each model, providing deeper insight into 

the specific types of hazards that LLMs fail to recognize 

or misclassify. This will help identify recurring patterns 

in model errors and guide improvements in hazard 

recognition accuracy through targeted fine-tuning and 

dataset enhancements. 

Additionally, building on our analysis of hazard 

identification trends in Section 4.6, future work will 

incorporate qualitative insights from construction safety 

experts to better understand the nature of LLM errors. 

While our study quantitatively identified the types of 

hazards frequently missed by LLMs, expert consultation 

will provide deeper context on why certain hazards are 

overlooked and how models can be improved. 

Specifically, we will work with industry professionals, 

site safety managers, and researchers to identify common 

misclassifications, potential biases in AI hazard detection, 

and effective strategies for model training. 
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