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Abstract -
Best practice for the detection and annotation of visible

defects in slated roofs is by annotation of photos, ideally or-
thophotos. If such a process is to be effectively automated
in support of emerging Digital Twinning solutions, it is nec-
essary to first recognise the external sub-components of the
roof in the orthophotos, in particular the slated and leadwork
areas. Using a dataset composed of many photos from two
historic buildings, this study develops and compares differ-
ent deep-learning -based semantic segmentation models to
segment roof orthophotos into slated areas, leadwork, and
‘other’ areas. Since orthophotos typically contain pixels
which do not belong to the roof panel (black ‘background’
pixels), the method employs a subsequent ‘background’ label
correction step. The best-performing model is found to be
PointRend with Focal Loss: overall aAcc = 99, mIoU = 88.91,
and mAcc = 92.77; for slate class, IoU and Acc is nearly 100;
for leadwork class, IoU and Acc is around 90.

Keywords -
Semantic segmentation; Deep learning; Slated roof; Or-
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1 Introduction
For most traditional slated building roofs, they are

mainly composed of different elements: slate roofing tiles,
leadwork, stonework, and masonry [1]. Additional deco-
rative or functional accessory components may also exist,
e.g. ventilator, balustrade, satellite, etc. Slates occupy
the largest area and are where deteriorations happen eas-
ily and frequently, especially due to weathering with time
[2]. To better detect the visible defects in roof monitoring,
the annotation of photos is a common practice. The best
practice to date employs orthophotos due to their benefits
for length and area quantification.

Within the emerging area of Digital Twinning in the
built environment [3], there is great interest in automating
data acquisition and processing for building fabric mon-
itoring, in order to efficiently, robustly and safely detect
and monitor defects, and support computer-aided mainte-

nance decision making. In the context of slated roofs, we
showed in [4] how orthophotos can be generated for indi-
vidual roof panels, from UAV-acquired photogrammetric
data and the building’s 3D digital twin model. To ensure
effective defect detection in each such orthophoto, it is
next necessary to distinguish the sub-components inside
the orthophoto, in particular the slated and leadwork areas.

Semantic segmentation was developed decades ago, and
can be applied to different kinds of data, from 2D image to
3D point cloud, and even video data. When applied to 2D
images, it enables assigning a class label to each pixel of
an image, and such pixel-level semantic information can
help make judgements or be leveraged by other tasks [5, 6].
With the development of deep learning, different deep ar-
chitectures have been introduced, especially Conventional
Neural Networks (CNNs). As a result, the performance of
semantic segmentation models has been greatly improved,
not only in accuracy but also in efficiency [7].

In construction informatics research dealing with 2D
and 3D data, such as in Scan-to-BIM, semantic segmenta-
tion is increasingly regarded as an essential step after data
collection, to provide further information useful to subse-
quent tasks such as object detection [8]. This technique
has been applied to different types of data, including: (1)
2D image of indoor scene [9] and aerial images of dif-
ferent architecture [10]; (2) 3D point cloud of building
interiors [8], plumbing and structural components [11],
autonomous vehicles and robot navigation [12].

This paper reports on the development and compar-
ison of well-established deep-learning -based semantic
segmentation models for segmenting orthophotos of in-
dividual roof panels into ’background’, ’slate’, ’lead’, and
’other’ classes.

2 Related work

With its powerful pixel-level segmentation ability, se-
mantic segmentation has been developed into a well-
established tool in Computer Vision.

Most recently, different deep learning models have been
proposed for 2D image data. DeepLabV3, a widely used
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system developed by Google [13], can handle the prob-
lem of segmenting objects at multiple scales with cas-
caded module and Atrous Spatial Pyramid Pooling(ASPP).
Compared to DeepLabV3, PointRend demonstrates better
performance (higher mIoU value), by extracting the point
features made up on fine-grained features and coarse pre-
diction [14]. Specifically, PointRend handles better the
problems of smooth region and blurry contours from bi-
linear sampling process. Thanks to the recognisable fea-
tures, the object can be easily detected and classified for
this task, but the contour detection should be more precise.

In recent years, Vision Transformer (ViT) has achieved
superior performance to the commonly used CNNs, by
splitting each image into patches. Due to their outstand-
ing performance in image classification, these models have
also been explored for semantic segmentation: Segmenter
can capture global interaction between elements of a scene
using transformer, rather than the traditional convolutions,
which would easily cause information loss [15]. Seg-
Former reaches better performance and efficiency by re-
designing the Transformer encoder and uses a simple mul-
tilayer perceptron (MLP) decoder[16]. However, all au-
thors also point out that ViT relies heavily on large-scale
datasets to achieve good performances [17].

Within these main classes of deep learning models, dif-
ferent variants can be created by modifying different some
components, such as the loss function. Focal Loss is a
commonly used loss function for dealing with class imbal-
ance and putting more focus on the hard and misclassified
examples, by multiplying each class loss with a weighting
factor [18]. Dice Loss can deal with the imbalance prob-
lem between foreground and background, by giving more
importance on foreground than background, thus making
the model region-related [19]. These two loss functions
and the default Cross-Entropy Loss can be paired and used
together in improving model training [20].

3 Method

We assume as input an orthophoto of a slated roof panel
generated by the method presented in [4]. The generated
orthophoto shows the roof panel, which is composed of
different essential sub-components, slates and leadwork,
as well as other less frequent elements (e.g. stone, grid,
equipment, glass, ladder, etc.), as can be seen in Figure 5.
Since the intention of this work is to find defects in slated
areas as well as leadwork areas, we must first segment the
orthophoto to isolate these particular subparts. For this,
we explore different methods for (pixel-level) semantic
segmentation.

3.1 Dataset

The data output of Duff House in Banff, Scotland by
Li et al. [4] includes data for 36 panels. We split these
into 27 panels for training and 9 panels for testing. For
each panel, we retain maximum 10 unmerged orthophotos
obtained from different photos of the same panel (with
different angles and covering the panel in various ways).
This dataset is used for developing and comparing different
initial semantic segmentation models.

In addition, the data output of St Mary’s Church, in Stir-
ling, Scotland includes data for 18 panels. With this data,
we created another dataset composed of one unmerged
orthophoto per panel. This dataset is used solely to test
the generalisability of the models created using the Duff
House dataset.

Finally, a combined dataset using data from the two
buildings is created. It is divided into a training dataset
that is ∼80% of the overall dataset (27 panel orthophoto
data of Duff House, along with 13 panel orthophoto data
of St Mary’s Church) and a testing dataset that is the
remaining ∼20% (9 from Duff House, along with 5 from
St Mary’s Church). Here, only one unmerged orthophoto
is kept for each panel. We select the orthophoto with the
largest coverage of the panel.

All the orthophotos used in the datasets above are man-
ually labelled in 4 classes: background (labelled as 0),
slate (1), leadwork (2), and other (3). The other category
contains: stone, grid, equipment, glass, ladder, etc. The
class other normally occupies a very small proportion of
pixels in orthophotos.

3.2 Deep learning model

As discussed earlier in 2, these are the state-of-art mod-
els that can be useful to the specific problem in this study:
DeepLabV3, PointRend, Segmenter, Segformer. Basic
hyper-parameter settings are tuned for best performance
by comparing these deep learning models. Our settings
are reported in Table 1. All models were pre-trained using
their default weights.

Table 1. Experimental parameters
Parameter Value
Batch size 4

Max iteration 2400
Validation interval 400

Training vs. Validation 75% : 25%

During training, the input images are not rescaled. This
is because most of the roof orthophotos are rectangular
with varying width-to-length ratios, and the resizing pro-
cessing operations that are typically applied in semantic
segmentation pipelines would result in information loss.
But, to meet the requirements of input image size and com-
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puting capacity limits, all images are cropped (tiled) and
read as 512 × 1024 × 3 matrices.

As will be shown in the Experimental Validation (Sec-
tion 4), PointRend with default backbone (ResNet) and loss
function (Cross-Entropy Loss) achieves best performance
all four initial models. As a result, further experiments are
conducted by using different loss functions including Dice
Loss (sensitive to region detection) and Focal Loss (sen-
sitive to imbalance problem). With grid search as a tool
for hyperparameter adjustment, specific weights between
different losses are selected for best performance.

The models trained with the Duff House dataset were
then tested with the St Mary’s Church dataset to assess its
generalisation ability. The results lead us to finally use
the combined orthophoto dataset (Duff House + St Mary’s
Church) for training and testing a final model with best
segmentation performance and generalisation ability.

3.3 Background label correction

In most deep learning semantic segmentation methods,
precise delineation of segmentation boundary is a chal-
lenging problem, with many confusions arising at those
boundaries. Figure 1 illustrates this issue with a typical
output of the semantic segmentation models we explored.
The figure highlights the discrepancies between the Pre-
diction and Ground Truth (GT) for the different classes.

However, in this study, the set of background pixels
is actually known a priori, because the panel boundary
is defined by the Digital Twin 3D model projection (see
[4] for details). In other words, the Ground Truth for the
background class is known a priori. Therefore, an extra
step is introduced to correct the False Positive (FP) and
False Negative (FN) results for the background class:

1. False Negative (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ≠ 0 and 𝐺𝑇 = 0): In
this case, the predicted label is simply changed back
to ‘0’ (i.e. background class).

2. False Positive (𝐺𝑇 ≠ 0 and 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 0): In
this case, the predicted label is changed from the
background class to the most likely other class. As
illustrated in Figure 2, for each FP pixel the non-zero
label that appears most frequently in the 3 × 3 grid
around it is selected as the new label. If the grid
contains only background pixels (i.e. class ‘0’), then
the grid is expanded by one pixel (i.e. 5 × 5 grid)
and the process is repeated until a at least a non-zero
label is found. As will be shown, this simple process
works well in our context.

As will be shown in the Experimental Results (Sec-
tion 4), while the baseline semantic segmentation results
are already good, this process delivers some additional
improvements.

3.4 Semantic segmentation results

The model trained in Section 3.2 is tested using in-
dividual orthophotos generated by the process described
in [4], which may not necessarily cover entirely a given
roof panel of interest or may overlap. To obtain one sin-
gle orthophoto covering the overall panel with a unified
semantic segmentation result, the labels of individual or-
thophotos must be merged. For this, for each pixel, the
label that appears most frequently among the unmerged
orthophotos is selected as the final label. In cases when
two (or more) classes have the same frequencies for all
unmerged orthophotos, the final label will be selected in
the following order of priority: other, leadwork, slate. For
example, if slate and other appear the same time for one
pixel, then other would be chosen as the final label, be-
cause we observed that the other objects always lay above
the slate surface.

4 Experimental results
In this section, evaluation metrics for semantic seg-

mentation are first introduced. Then all the experimental
results are reported. First, different models are trained
using the Duff House training dataset and tested using the
Duff House and St Mary’s Church testing datasets. The
best model is selected by comparing these results, and it
is finally re-trained and tested using the combined dataset.

All the training and testing work is completed in the
Google Colab Pro environment, with NVIDIA A100 GPU
40 GB.

4.1 Evaluation metrics

The segmentation results for each class are evaluated us-
ing two parameters: Intersection over Union (IoU): com-
puted by contrasting the Prediction and Ground Truth seg-
mentations; and Accuracy (Acc): calculated by dividing
the sum of the True Positive pixels by the sum of the True
Positive pixels and False Positive pixels. To compare the
testing performance between different models, the follow-
ing overall evaluation metrics are evaluated:

• aAcc: the Accuracy of all pixels, evaluating the clas-
sification accuracy.

• mIoU: the mean IoU of all classes; mIoU is an im-
portant indicator to measure the accuracy of overall
semantic segmentation.

• mAcc: the mean Acc of all classes, evaluating the
overall performance in pixel classification.

In the following, we report results for different models
in the form of tables and confusion matrices. In the tables,
we report for each model: the aAcc, mIoU and mAcc for
both overall and overall (excl. background), and then IoU
and Acc for each of the four classes. For the confusion
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Figure 1. Colour coded confusion matrix (left), semantic segmentation model output (middle), illustrations of
FP/FN from the perspective of background class(right).

Figure 2. Illustration of the correction of FP for the
background class. Left: Example 1 where the label
is corrected to ’1’ after one step; Right: Example 2
where the label is corrected to ’2’ after two steps.

matrices, we report both absolute (in pixel counts) and
relative (in percentages) confusion matrices.

4.2 Background label correction

Regardless of the model employed, the Background
model correction step described in Section 3.3 can be ap-
plied to correct FP and FN for the background class. We
thus demonstrate the benefits of this correction using one
model (which we will see later performs well): PointRend
(CEL+FL).

Table 2 and Figure 3 show the results obtained when
training and testing this model on Duff House dataset,
before and after applying the background label correction
results.

While the baseline performance is already quite good
(all metrics > 85 and most of them are > 95), the addi-
tional corrective step improves performance for all classes,
in particular the leadwork and other classes,which had the
lowest performance without this correction. The higher
increases in mIoU (+1.81 to 94.64) and mAcc (+1.19 to
97.24) also indicate a reduced difference in performance
among the different classes. Although anticipated, this
improvement is welcome, because the background regions
are often next to leadwork regions. And so, any correction
of background class would most likely benefit the lead-
work class. Nonetheless, the results demonstrate the good
performance of the proposed background label correction
method.

4.3 Initial models with Duff House dataset

All models are first trained using Duff House training
dataset only, and tested with the Duff House testing dataset.
Table 3 presents the performance of the different models.
Generally, all models already show good performance:
the evaluation metrics of overall performance are all > 90,
most of them are > 95 and even nearly 100. Generally,
the target class, slate, is segmented satisfactorily. Errors
mostly come from the classes leadwork and other.

By comparing the first 4 rows, PointRend stands out
with the highest values in all evaluation metrics. The
variants in the last three rows are then developed based
on PointRend, in an attempt to enhance performance with
regard to specific challenges with our dataset, namely data
class imbalance (the leadwork and other classes occupy
much fewer pixels than background and slate) and region
ambiguity.

Among all the variant models, PointRend(CEL+FL)
achieves the best overall performance. Though it is close
to the default PointRend model, it increases the values on
other class both in IoU (+0.89 to 88.52) and Acc (+0.88 to
94.76). In comparison, PointRend(CEL+DL), by adding
the Dice Loss function, also improves the performance
on leadwork class, but with a sacrificial drop on other
class and accordingly, a decreased overall performance.
Therefore, from all the 3 variant models, we conclude that
the Focal Loss more successfully improves the results and
accounts for data imbalance better than Dice Loss.

4.4 Testing generalisation with St Mary’s Church
testing dataset

Table 4 reports the evaluation results of all models de-
veloped in Section 4.3 on the testing dataset of St Mary’s
Church. This enables an assessment of the model’s gener-
alisation, since no data from St Mary’s Church was used
to train those models. Table 4 shows a similar pattern as
Table 3: all models can segment the slate area more ac-
curately than leadwork and other classes, while the other
class has the worst performance among all classes. How-
ever, compared to the performance on Duff House, there
are general decreases in the overall performance of all
models, such as a nearly 30 drop in mIoU and nearly 20
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Table 2. Testing results before and after background label correction
Result overall overall (excl. background) background slate leadwork other

aAcc mIoU mAcc aAcc mIoU mAcc IoU Acc IoU Acc IoU Acc IoU Acc
Before 98.97 92.83 96.05 - - - 99.26 99.77 98.26 99.0 88.57 92.91 85.26 92.5
After 99.36 94.64 97.24 98.52 92.86 96.32 100 100 98.57 99.3 91.49 94.9 88.52 94.76

background slate leadwork other
Predicted label

background

slate

leadwork

other

Tr
ue

 la
be

l

1 0 0 0

0 0.99 0 0

0.02 0.04 0.93 0.01

0.03 0.02 0.03 0.93

0.0

0.2

0.4

0.6

0.8

1.0

background slate leadwork other
Predicted label

background

slate

leadwork

other

Tr
ue

 la
be

l

1 0 0 0

0 0.99 0 0

0 0.04 0.95 0.01

0 0.02 0.03 0.95

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. Confusion matrices before (left) and after (right) applying the background label correction step.

Table 3. Testing results on Duff House
Model overall overall (excl. background) background slate leadwork other

aAcc mIoU mAcc aAcc mIoU mAcc IoU Acc IoU Acc IoU Acc IoU Acc
DeepLabV3 99.24 93.54 96.73 98.24 91.39 95.64 100 100 98.37 99.25 89.49 92.48 86.31 95.18
PointRend 99.36 94.46 97.11 98.52 92.61 96.15 100 100 98.59 99.3 91.62 95.28 87.63 93.88
Segformer 99.17 93.43 96.63 98.08 91.23 95.51 100 100 97.99 98.97 89.6 94.05 86.11 93.51
Segmenter 99.03 92.06 94.73 97.75 89.41 92.97 100 100 97.81 99.31 86.9 92.22 83.52 87.39

PointRend(CEL+DL) 99.03 90.78 93.51 97.75 87.71 91.34 100 100 98.1 99.45 88.4 96.16 76.63 78.42
PointRend(CEL+FL) 99.36 94.64 97.24 98.52 92.86 96.32 100 100 98.57 99.3 91.49 94.9 88.52 94.76
PointRend(DL+FL) 99.33 94.46 96.91 98.45 92.61 95.88 100 100 98.45 99.35 91.48 94.37 87.9 93.93

drop in mAcc. When comparing models in different rows,
performance values for the leadwork and other classes are
lower and more spread out than the other class and the
same classes in Table 3. In general, there is no promi-
nent model that stands out in all metrics specifically for St
Mary’s Church.

Therefore, even though aAcc remains close to 100% and
the general performance is acceptable, the generalisation
ability of the models is limited. Put another way, unsur-
prisingly the models, when trained using data from only
one building (Duff House), work but not sufficiently well
for other buildings. Therefore, more data, especially with
diverse features of leadwork and other classes, should be
used for training.

4.5 Models trained with combined dataset

Based on the results above, the best performing model,
PointRend (CEL+FL), is retrained using the the combined
training dataset, and tested the combined testing dataset.

The overall performance, reported in Table 5, is almost
at the same level as that of Table 3, whose performance was
already very high. Looking at individual classes, a slight
improvement is achieved for the slate class with IoU (+0.04
to 98.61) and Acc (+0.25 to 99.55). However, some re-
ductions in performance are observed for the leadwork and

other classes. But, importantly, compared to the results in
Table 4, all metrics show significant improvements. This
implies that the new model has achieved a greater level
of generalisability (it performs well on testing data from
both Duff House and St Mary’s Church) without signifi-
cant drop in overall performance. Naturally, this does not
mean the new model will work in all cases of slated roofs;
much more diverse data would need to be collected for
that. But, the selected model performs satisfactorily.

4.6 Visualise semantic segmentation results

After merging the result labels using the strategy in
Section 3.4, the resulting confusion matrix is reported
in Figure 4. It shows that the slate class segmentation
accuracy is still high, but the confusion between leadwork
and other is not insignificant.

This is further illustrated with three example roof pan-
els in Figure 5 and Figure 6. The segmentation result of
Panel A is nearly flawless. In Panel B, though the situa-
tion is more complex (containing other pixels), the slated
area of this orthophoto is generally segmented satisfacto-
rily. However, there are still some pixel misclassifications
specifically caused by the other class, with confusions ob-
served particularly between slate and other at the bottom
of this panel. In the result of Panel C, there are noise pixels
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Table 4. Testing results on St.Mary’s Church by models trained using Duff House training dataset
Model overall overall (excl. background) background slate leadwork other

aAcc mIoU mAcc aAcc mIoU mAcc IoU Acc IoU Acc IoU Acc IoU Acc
DeepLabV3 96.48 62.74 69.51 91.84 50.32 59.35 100 100 96.42 98.56 31.3 37.51 23.23 41.97
PointRend 96.66 65.65 75.62 92.26 54.2 67.49 100 100 96.37 97.9 45.93 75.46 20.3 29.11
Segformer 96.89 66.72 76.74 92.79 55.63 68.99 100 100 97.25 98.14 43.48 65.41 26.15 43.41
Segmenter 97.21 66.58 74.05 93.53 55.44 65.4 100 100 96.91 99.1 53.94 78.69 15.48 18.42

PointRend(CEL+DL) 96.39 64.17 76.33 91.63 52.23 68.44 100 100 96.12 97.3 43.48 85.3 17.1 22.73
PointRend(CEL+FL) 94.79 64.31 80.45 87.92 52.41 73.93 100 100 92.94 93.89 41.93 78.25 22.35 49.66
PointRend(DL+FL) 94.6 62.5 74.24 87.48 50 65.66 100 100 93.11 94.52 40.63 60.9 16.27 41.55

Table 5. Testing results on combined dataset
Model overall overall (excl. background) background slate leadwork other

aAcc mIoU mAcc aAcc mIoU mAcc IoU Acc IoU Acc IoU Acc IoU Acc
PointRend(CEL+FL) 99.0 88.91 92.77 97.68 85.22 90.35 100 100 98.61 99.55 85.93 91.99 71.11 79.52

at the top of the roof panel, the GT of which is slate but
predicted as other. The reason for this mistake possibly
lies in the biological growth on the slate surface, which
may still confuse the deep learning model despite some of
the training data containing it. This issue may nonetheless
be addressed through a more extensive training dataset.
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Figure 4. Confusion matrices of results after apply-
ing merging strategy

5 Conclusions
Different deep learning models for semantic segmenta-

tion are developed and compared using a dataset composed
of data coming from two traditional buildings: Duff House
and St Mary’s Church. PointRend added with Focal Loss
(PointRend(CEL+FL)), trained by the combined dataset is
chosen as the most suitable when considering both datasets
jointly. All of its evaluation matrices, except the ones in
other class, are all > 85%.

The performance of all models is enhanced thanks to
an extra background label correction steps: by eliminat-
ing the confusion between background and other classes
(especially leadwork and other, which are usually the sur-
rounding area of slate), the background accuracy is cor-
rected to 100%, and the accuracies of other classes are
shown to also increase.

However, the confusion matrix in Figure 4 shows that the
confusion between leadwork and other is still significant,
affecting the accuracy of other. This is possibly because
that the other class includes many kinds of objects. While
enhancing the model robustness may be achieved with
more data, it must be highlighted again that our main focus
is the effective segmentation of the slate and leadwork
classes.

The proposed method focuses on the traditional build-
ing roofs, but the methodologies developed are equally
applicable to more modern roofs with a slate or tile con-
struction.

It should be noted that the ’best’ model is just marginally
better than the other ones, with all of them perform reason-
ably well. The difference of testing results on Duff House
and St. Mary’s Church indicates the risk of over-fitting,
which can be addressed by getting more data involved.
With more data collected and used for training, the strat-
egy of selecting the best and most robust model can be
improved. Future work can thus first look at collecting
more building roof data in order to further validate and
improve the orthophoto generation pipeline, and train se-
mantic segmentation models with greater generalisability.
These data shall include roofs with various forms and
shapes, including slate laying methods and different com-
ponents around the slated areas, and in various conditions,
containing different levels of deteriorations.

Future work should also look at the next step of our
proposed overall pipeline, starting with the detection of
defects in the slated areas in particular, and the leadwork
areas as well. Due to the fact that all the created orthopho-
tos have the same orientation and uniform scale, we an-
ticipate that this should ease the development of further
machine learning models.
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(a) Panel A. (b) Panel B.

(c) Panel C.

Figure 5. Orthophotos of typical panels.

(a) Panel A. (b) Panel B.

(c) Panel C.

Figure 6. Semantic segmentation results of orthophotos of the typical panels shown in Figure 5
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