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Abstract 

In the rapidly evolving field of artificial 

intelligence (AI), synthetic data generation has 

become increasingly crucial, particularly in domains 

where real-world data is scarce, expensive, or 

sensitive. In this study, we introduce BCGen, a novel 

image realism enhancement pipeline that integrates 

our proprietary synthetic construction data 

generation and autonomous labeling engine, 

BlendCon, integrated with Generative AI. Leveraging 

the graphical capabilities of Blender and the deep 

learning prowess of the ControlNet model, BCGen 

represents a novel approach to synthesizing and 

enhancing construction site imagery. Our 

methodology narrows the reality gap, delivering 

images with increased realism and diversity while 

preserving the full annotations. The paper delineates 

our approach, methodology, and the broader 

implications of our findings. Through meticulous 

hyperparameter tuning and an innovative post-

processing technique, we demonstrate the enhanced 

realism and diversity of the generated images, 

pointing towards the vast potential of synthetic data 

in visual AI applications within construction. 
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1 Introduction and Background 

1.1 Overcoming Data Acquisition Challenges 

in Construction with Synthetic Solutions 

Since 2017, the construction industry, known for its 

complex operations and dynamic environments, has 

increasingly harnessed Deep Learning (DL) to overcome 

unique challenges in data acquisition and processing 

across various domains, such as safety, road surveys, 

bridge inspection, and site operation monitoring [1]. 

Despite the significant role of DL in revolutionizing 

traditional practices, such as object detection, instance 

segmentation, and pose/activity recognition—often 

surpassing human capabilities— its integration into the 

construction sector faces hurdles, notably, the scarcity of 

fully-annotated data [2]. This scarcity stems from the 

high costs and time requirements for manual collection 

and labeling, logistical challenges in deploying sensors, 

and confidentiality issues, highlighting a critical barrier 

to leveraging data-hungry DL tools within the sector [3]. 

To address the limitation mentioned, synthetic data 

generation, bolstered by advances in rendering engines 

and GPUs, offers a promising solution, especially for 

tasks difficult to label in real-world settings. The 

adoption of Blender [4] and video game engines for data 

generation demonstrates this potential, particularly in 

facilitating the creation of human-centric images [5-7]. 

This strategy addresses the disparity in the volume of 

training images available in computer science versus 

construction studies, where the former often uses multi-

million-image datasets while the latter struggles with far 

fewer images [8]. These rendering engines enable the 

generation of synthetic data, addressing data scarcity and 

streamlining the deployment of DL techniques in 

construction contexts more effectively.  

1.2 An Introduction to our Synthetic Data 

Generation Engine, BlendCon  

In a forthcoming publication, we introduce BlendCon, 

a computational framework that addresses the need for 

high-quality, diverse data in the construction industry, 

particularly for the advancement of Deep Neural 

Networks (DNNs)-based visual AI. The framework 

utilizes the graphics engine, Blender, to generate 

synthetic, fully-labeled data, which is a step forward in 

overcoming the limitations associated with manual data 

collection and privacy concerns. BlendCon creates a 

virtual construction site, producing diverse synthetic 

images by randomizing key elements of the scene. This 

approach has been validated in two key areas: trainability 
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and scalability. For instance, Yolov7 models trained with 

data generated by BlendCon showed comparable or 

superior performance to models trained with real data. 

BlendCon distinguishes itself by integrating dynamic 

elements, such as mobile equipment and human workers, 

into synthetic image generation and by offering 

simulations from multiple perspectives, breaking away 

from the limitations of single-viewpoint models and 

enhancing diversity in synthetic data. Furthermore, it is 

equipped with multimodal label generation capability, 

producing various types of labels for each image, namely 

depth maps, semantic masks, and 2D and 3D bounding 

boxes (BBs) and key points for construction workers. 

While BlendCon has proven effective in synthetic 

data generation and the trainability of DNNs, it still faces 

a pivotal challenge: the "reality gap." In the subsequent 

section, we delve deeper into this challenge and elaborate 

on how this gap, i.e., the divergence in the perceptual and 

contextual quality between synthetic and real-world 

imagery, is a crucial factor influencing the effectiveness 

of DNNs trained on synthetic data in real-world scenarios. 

As we delve into the realm of synthetic data 

generation and the pursuit of enhanced image realism, we 

arrive at an inquiry that guides our research trajectory: 

How can we further improve BlendCon? By enhancing 

image realism through generative AI, we propose the 

next generation of BlendCon, aimed at offering a scalable 

solution to the scarcity of labeled construction datasets 

and facilitating the adoption of deep learning within the 

construction industry. 

1.3 Reality Gap in Synthetic Data Generation 

The concept of the reality gap emerges from the 

inherent differences between the distributions of real and 

synthetic images. Synthetic images, while beneficial in 

overcoming data scarcity, often lack nuanced details and 

contextual variability present in real-world scenarios [9]. 

This disparity can lead to a decrease in the effectiveness 

of DNN models when applied to actual construction 

environments. Effectively bridging this gap is thus a 

critical objective in enhancing the utility of synthetic data 

for DNN training, a process referred to as domain 

adaptation in machine learning [10,11]. Two primary 

methods have emerged to address the reality gap: 

enhancing realism and domain randomization. 

A) Enhancing Realism: This approach focuses on 

making synthetic images closely mimic real-world 

scenarios. Studies suggest that the heightened realism in 

synthetic data significantly improves the performance of 

DNNs, allowing them to better adapt to real-world 

applications [12]. By refining textures and lighting 

conditions, and incorporating real-world irregularities, 

this method aims to reduce the perceptual differences 

between synthetic and real imagery while preserving full 

annotations [13,14]. This approach is not without its 

limitations; significantly, the process of enhancing 

realism in synthetic images can be both time-consuming 

and costly, and the subjective nature of 'realism'—what 

is deemed realistic—remains ambiguously defined. 

B) Domain Randomization: Contrasting with the 

pursuit of realism, domain randomization adopts an 

unconventional tactic –intentionally making synthetic 

images more abstract or less realistic. This method 

involves introducing a high degree of variability in the 

synthetic images, which paradoxically can lead to the 

development of more robust DNN models. The premise 

is that by exposing the DNN to a wide range of variations, 

the model learns to focus on the most critical features, 

becoming more adaptable to real-world variability. A 

notable study in this area demonstrated the effectiveness 

of this approach, where severely randomized images 

contributed to the training of robust models capable of 

bridging the reality gap [15]. This approach, however, 

requires significant computational resources and carries 

the risk of overgeneralizing DNN models, potentially 

leading to models that, while robust in handling diverse 

scenarios, may not perform optimally in specialized tasks, 

such as construction applications. 

The choice between these approaches depends on the 

specific requirements of the application and the nature of 

the tasks the DNN models are expected to perform. This 

paper marks the beginning of our exploration into the 

first approach, laying the foundation for a future study 

that is planned to investigate both strategies with the 

objective of evaluating their impact and effectiveness in 

optimizing the utility of synthetic data for training DNN 

models in construction applications. 

1.4 ControlNet for Enhanced Image Realism 

In this study, we introduce BCGen, a pipeline for 

integrating the power of generative AI, specifically the 

Stable Diffusion (SD) model, ControlNet [16], into our 

automated construction image synthesis and labeling 

framework, BlendCon. This marks the first application of 

ControlNet in the construction domain for image-to-

image translation, generating more realistic images from 

synthetic ones while maintaining full annotations.  

ControlNet is designed to integrate spatial 

conditioning controls into large, pre-trained text-to-

image diffusion models. By leveraging robust and deep 

encoding layers of these models and applying zero 

convolutions, it finetunes the imagery while avoiding the 

introduction of deleterious noise. Its ability to handle 

various inputs, such as edges and human poses, and its 

robust performance across datasets of differing scales, 

make ControlNet an essential tool for generating realistic 

images from synthetic data, particularly in applications 

where maintaining accurate annotations is as crucial as 

image quality itself [16]. 

ControlNet distinguishes itself by its ability to fine-
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tune the realism of generated images while preserving 

annotations [16]. This capability is crucial in applications 

like construction site imaging, where maintaining the 

accuracy of annotations is as important as the visual 

realism of the images. By integrating ControlNet, we 

hypothesize that synthetic images could become more 

adaptable for real-world applications, thereby potentially 

bridging the reality gap. This assertion, however, remains 

to be validated in future phases of our research. 

1.5 Related Work on Enhancing the Realism 

of Synthetic Images  

Deep learning, particularly Generative Adversarial 

Networks (GANs) [17] and Diffusion Models [18] has 

been pivotal in enhancing image realism. GANs, by their 

adversarial nature, refine images to closely resemble real 

photographs. Diffusion Models, demonstrate remarkable 

capabilities in text-to-image generation and synthesizing 

photorealistic images, offering a significant leap in image 

quality and diversity [19]. GANs, while effective, may 

struggle with ensuring stability during training, 

producing artifacts [20]. Diffusion Models, however, 

characterized by their gradual process of image 

formation, offer higher stability and image quality, albeit 

at the cost of increased computational complexity. 

A recent study leveraged diffusion models, including 

ControlNet, to enhance the FFHQ-Aging dataset [21], 

producing synthetic images that exhibit a diverse array of 

facial expressions, ethnicities, and lighting conditions, 

thereby advancing the realism and quality of synthetic 

imagery for facial image augmentation [22]. Furthermore, 

in the medical domain, diffusion models have been 

extensively utilized for various applications, including 

realistic endoscopic image generation [23] and 

synthesizing MRI sequences and thoracic X-ray images 

[24].  

Several of the mentioned studies have implemented 

established photorealism metrics to gauge the quality of 

the enhanced images. Metrics such as the Inception Score 

[25], Fréchet Inception Distance [26], Kernel Inception 

instance [27], Structural Similarity Index Measure [28], 

Learned Perceptual Image Patch Similarity [29], and 

Contrastive Language-Image Pre-training (CLIP) [30]-

based metrics [31] have been pivotal in assessing the 

realism of synthetic imagery. However, despite such 

evaluations, there remains an underexplored area in the 

existing literature: assessing the cost-effectiveness of 

employing these advanced generative models. To the best 

of the authors' knowledge, a systematic examination of 

the cost-benefit analysis of utilizing such sophisticated 

techniques for enhancing synthetic image realism has not 

yet been documented.  

2 Method 

2.1 Architecture of BCGen: BlendCon with 

Integrated Generative AI 

Our proposed framework, BCGen, leverages a three-

part pipeline to enhance image realism. Figure 1 

demonstrates the BCGen pipeline, encapsulating the end-

to-end process from image synthesis with BlendCon, 

through realism enhancement via the ControlNet pipeline, 

to the final avatar cut and paste for anatomical accuracy, 

ensuring the retention of high-quality annotations.  

To further elucidate, initially, BlendCon synthesizes 

RGB construction site images, along with their 

corresponding depth maps, semantic masks, and precise 

annotations of 2D and 3D bounding boxes and key points 

for construction workers, using inputs such as horizon, 

processed scenes, animated avatars, and lighting and 

camera configuration. The outputs are fed into the 

ControlNet pipeline, where the RGB images, depth maps, 

and semantic masks—alongside a text prompt—are 

processed by ControlNet to create more realistic images.  

Our text prompt is "a high-quality, high-resolution 

 
Figure 1. The proposed image realism enhancement pipeline 
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image of a construction site.” We also pass "blurry, 

blurred, bad anatomy, low quality" as the negative 

prompt. 

This integration of ControlNet paves the way for 

enhanced realism while meticulously preserving all 

annotations, including worker key points and 2D and 3D 

bounding boxes. Hyperparameter tuning is employed to 

refine this process and optimize the outputs, a topic we 

will explore in detail in the subsequent section. In the 

final stage, to ensure anatomical accuracy and maintain 

the integrity of our key point annotations, we initiated a 

process termed ‘Avatar cut and paste,’ which involves 

extracting the worker avatars from the initial BlendCon-

generated images and superimposing them onto the 

images enhanced by ControlNet.   

2.2 ControlNet Hyperparameter Tuning  

 Given ControlNet’s extensive range of adjustable 

parameters, such as the degree of reliance on the input 

images, conditions, and text prompts, we embarked on a 

rigorous hyperparameter tuning exercise employing a 

grid search methodology. This allowed us to identify the 

most ideal settings for our particular use case. Moreover, 

it was during this tuning process that we encountered 

scenarios where, despite explicitly excluding poor 

anatomy and low quality in our negative text prompt, the 
output sometimes exhibited compromised structural 

integrity, especially in the anatomy of the construction 

workers, and as outlined previously, to counteract this, 

we resorted to avatar cut and paste.  

We investigated six ControlNet hyperparameters, 

namely output image size, conditioning scales—which 

determine the weight of our conditions, i.e., depth maps 

and semantic masks, classifier-free guidance scale (CFG) 

—which dictates the influence of the text prompt on 

image generation, number of inference or denoising steps 

for the diffusion model, input image strength—which 

determines the input image weight, and the choice of 

diffusion model noise scheduler, across three different 

random seed initializations. The results were scrutinized, 

and the most effective hyperparameter combinations 

were selected through visual comparisons.  

The initial phase of our study involved a qualitative 

assessment of the synthetic images generated by our 

pipeline, relying on visual observation to evaluate the 

quality. We considered any image unrealistic, blurry, 

distorted, or exhibiting anatomical inaccuracies and 

abstract backgrounds as unsatisfactory. Figure 2 

showcases examples where the interplay of 

hyperparameters resulted in suboptimal results, such as 

compromised human anatomies, abstract backgrounds, 

and blurred images, underscoring the inherent challenges 

and complexities of synthetic data generation. 

3 Results, Discussions, and Limitations 

3.1 Hyperparameter Tuning Results 

Our analysis underscored the significant impact of 

image size on output realism, diversity, and quality, 

investigating two sizes of 512 by 512 and 1280 by 1280, 

which revealed that larger images notably enhanced all 

aspects. Our investigation into the number of inference 

steps, specifically examining 40, 80, and 150 steps, 

revealed its critical significance: fewer than 50 steps 

often resulted in blurry and structurally unsound images, 

while exceeding 100 steps did not notably improve 

quality but extended runtime unnecessarily.  

The investigated eight schedulers are linear multistep 

(LMSDiscrete), denoising diffusion implicit (DDIM), 

denoising diffusion probabilistic (DDPM), multistep 

diffusion probabilistic (DPMSolverMultistep), Euler 

(EulerDiscrete), pseudo numerical (PNDM), Euler with 

ancestral sampling (EulerAncestralDiscrete), and unified 

predictor-corrector scheduler (UniPCMultistep) [32]. 

The unified predictor-corrector noise scheduler was 

identified as the most effective for our task.  

The interplay of CFG, Strength, and Conditioning 

Scalehyperparameters, and their impact on image realism 

was further explored. We charted the instances where 

these parameters harmonized to produce satisfactory 

outputs, yielding realistic images with minimum blurs, 

and anatomical inaccuracies, as demonstrated in Figure 3. 

The graph illustrates the frequency of the satisfactory 

outcomes across various configurations of CFG, strength, 

and conditioning scales, with marker size indicating the 

occurrence count. 

We experimented with conditioning scales of [0.3, 

0.8], [0.5, 0.5], [0.8, 0.3], and [0.8, 0.8], input image 

strengths of 0.5, 0.7, and 0.9, and CFGs of 5, 7.5, 10, and 

12.5. Ultimately, we selected a conditioning scale of 0.8 

for both depth maps and semantic masks, a strength of 90 

percent, and a CFG of 12.5. 

3.2 BCGen Results and Discussions 

The application of ControlNet to the original 

synthetic images from BlendCon has resulted in 

enhancements in realism and diversity, as evidenced in 

Figure 4. The before-and-after comparisons illustrate the 

ControlNet-induced changes, with noticeable 

improvements in texture detail, lighting fidelity, and the 

incorporation of realistic environmental effects. These 

images not only demonstrate an enriched visual diversity 

but also indicate a substantial narrowing of the reality gap, 

affirming the potential of our approach in creating 

realistic images for use in AI training and other 

construction industry applications. 

While generative DL models today can produce 

hyperrealistic images, our contribution lies in the unique 
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capability of our pipeline to maintain original annotations.  

The importance of annotated images cannot be 

overstated, as manual labeling of 2D, 3D, key points, 

semantic masks, and depth maps involves considerable 

costs, time, and potential for errors. Our effort ensures 

that the synthetic images generated are not only visually 

compelling but also maintain full annotations, making 

them immediately useful for DNN training and other 

applications within the construction industry. 

3.3 Limitations of The Study 

This research is a stepping stone, highlighting the 

necessity for verification and validation methods tailored 

to the unique requirements of enhanced synthetic image 

evaluation. The study presents several limitations that 

inform its theoretical implications: 

A) Generalization of Results: The findings, although 

promising, are not yet generalizable across all potential 

input scenarios, indicating that further research is 

required to broaden the applicability of the results. For 

instance, the suboptimal results in indoor environments 

with a high degree of clutter, as seen in the last row of 

Figure 4, suggest that the model may struggle with overly 

complex indoor construction scenes. This issue may arise 

due to the lack of specific information in the textual 

prompt and a heavy reliance on it. This aspect will be 
further investigated in future studies.  

B) Evaluation of Results: Established photorealism 

metrics could play a pivotal role in evaluating the quality 

of enhanced images, enabling the creation of business-

oriented key performance indicators that measure the 

efficacy and cost-efficiency of synthetic data generation 

and enhancement. However, the investigation of these 

established metrics for evaluating the efficacy and cost-

efficiency of the synthetic data enhancement process was 

not carried out in the current stage of our study. 

As previously discussed in our methodology, the 

initial phase of our study was dedicated to a qualitative 

assessment of the synthetic images generated by our 

pipeline, where we relied on visual observation to 

determine the quality of the output. This subjective 

method highlights a limitation in our evaluation process, 

underscoring the need for developing objective criteria 

and metrics to assess realism and AI training applicability. 

C) Computational Resources: The computational 

demand varies with the conditions set and image size, 

with the current setup requiring about 40 seconds per 

1280 by 1280 image on two NVIDIA RTX 3090 GPUs, 

which could be a limiting factor for scalability. 

D) Variability in Text Prompts: Our exploration of 

variability in text prompts was limited to a few variations 

of main and negative prompts, restricting our 

understanding of their precise impact on the results. 

Further detailed prompt engineering is designated for 

future research. 

 
Figure 3. Visualization of ControlNet 

hyperparameter tuning through grid search 
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Figure 2. Examples of suboptimal image generations: (a): BlenCon’s synthetic images, (b): a satisfactory result, 

(c) compromised human anatomy, (d): a generated image suffering from both blurriness and compromised 

human anatomy, (e): occurrence of both anatomical inaccuracies and an abstract background. 

 
Figure 4. Contrast between the original synthetic construction site image from BlendCon (leftmost) and its 

enhanced iterations by ControlNet, showcasing diversity improvement and realism enhancements. 
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4 Looking Ahead: Future Directions 

Building upon the work presented in the previous 

section, the development of business-oriented 

performance indicators metrics for measuring synthetic 

data quality and degree of enhancement is essential. 

These metrics should not only assess the visual fidelity 

of the images but also quantify the cost-benefit of 

enhancing realism within a corporate context. Upcoming 

studies will focus on validating DNN trainability, 

performance, and affordability with enhanced images, 

crucial for practical AI applications. 

Further exploration into additional input modalities 

for ControlNet, such as human poses or edge maps as 

conditions or main inputs, is planned. Leveraging human 

key point detection models, such as OpenPose [33], could 

allow for a more nuanced representation of worker 

anatomies. This aligns with methods like Control-GPT 

[19], which combines programmatic sketches with text-

to-image generation, a technique that could be adapted to 

enrich our dataset diversity and control [19]. Additionally, 

we plan to explore the implementation of alternative 

generative models besides ControlNet to assess their 

performance and facilitate comparative analysis. 

By experimenting with multiple prompts and 

conditions, we aim to refine our generative model's 

output further, ensuring that the synthetic images not 

only serve the construction industry's current needs but 

also pave the way for emergent AI-driven solutions. 

In future research, we aim to employ photorealism 

metrics for developing business-oriented key 

performance indicators, thereby measuring the efficacy 

and cost-efficiency of synthetic data generation and 

enhancement. This initiative seeks to standardize the 

validation of synthetic image quality within the AI field.  

Additionally, we will evaluate the performance of 

DNNs trained on limitedly available real-life 

construction datasets, synthetic data generated by state-

of-the-art models, such as Midjourney [35], and domain-

randomized synthetic imagery. This evaluation is crucial 

to verify our method's cost-effectiveness and practicality 

in real-world applications, shedding light on the 

economic viability of leveraging such advanced 

techniques in the construction industry. 

5 Conclusion 

In this study, focusing on the investigation of the 

reality gap in synthetic data generation, we introduced a 

pipeline incorporating the stable diffusion-based model, 

ControlNet, within our synthetic construction data 

generation and labeling engine, BlendCon. This pipeline 

paves the way for generating a diverse range of enhanced 

synthetic images, while preserving their full annotations, 

i.e., depth maps, semantic masks, and 2D and 3D 

bounding boxes and key points for construction workers. 

Our investigation reveals that ControlNet's 

hyperparameters critically influence the enhancement of 

realism, prompting us to conduct a thorough search 

across over 2,300 hyperparameter combinations, 

evaluating them through visual observation. This 

exhaustive process underscored the significance of 

quantifying realism via photorealism metrics and 

highlighted the need to balance the costs associated with 

synthetic image generation and enhancement. In 

conclusion, our study demonstrates that cutting-edge, 

controllable diffusion-based generative models hold 

significant potential for the construction industry, 

enabling the creation of realistic, fully annotated 

synthetic imagery by narrowing the reality gap. 
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