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Abstract -
In the autonomous excavation task, the real-time estima-

tion of the bucket filling rate and the volume of the excavated
mass are essential feedbacks to measure the excavation qual-
ity. In this work, facilitated by the LiDAR and inclination
sensors mounted on an autonomous excavator, we introduce
an onlinemethod to calculate the volume of themass in the ex-
cavator bucket during digging process. The LiDAR is mainly
used for acquiring the 3D point clouds of the excavated mass
and bucket, and the inclination sensors are utilized for local-
ization acquisition of the bucket. In specific, a pre-process
is first used to obtain the empty bucket model by scanning it
with LiDAR. Then, to reduce the influence of the noises of
the inclination sensors in the digging process, a registration
algorithm is employed to transform the real-time captured
point clouds of the bucket and excavated mass to the empty
bucket model (obtained in the pre-process). Finally, based on
the height map construction and point clouds interpolation,
volume estimation algorithm is utilized to obtain the final
results. Note that our method is validated in real-world sce-
narios, and the experiment results demonstrate the accuracy
and reliability of our volume estimation scheme.
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1 Introduction
Recently, research and developments of autonomous ex-

cavation have seen increased popularity as it promises
more efficient, more sustainable, and safer excavation op-
erations (Zhang et al. [1], Jud et al. [2]). In the excavation
process, important metrics to evaluate the excavate quality
are whether the bucket is filled with excavated mass and
how much it has been filled after each excavation. Previ-
ousmethods, such as payload estimation [3], mainly utilize
the measurement of hydraulic cylinder pressures and dy-
namic modeling for volume estimation by estimating the
payload carried in a hydraulic excavator. However, these
approaches usually require additional hardware sensors as
well as sensor calibration, which limits the applications.
In this study, to relief the problem, we utilize visual

strategies to directly measure the excavation quality con-

sidering current autonomous excavators are commonly
equipped with cabin-mounted LiDAR and inclination sen-
sors, while LiDARsensors aremainly used for point clouds
acquisition of surrounding environments, and inclination
sensor for measuring the bucket pose. In this work, we
address this problem by estimating the volume of the ex-
cavated mass in the bucket using LiDAR data on an au-
tonomous excavator (Figure 1). Note that the data is ac-
quired from LiDAR (e.g. Livox Mid100), which has an
uneven distribution, and the volume estimation is espe-
cially challenging. Specifically, to estimate the in-bucket
mass volume, firstly, the dense bucket point cloud is dy-
namically obtained by fusing multiple frames of bucket
point clouds, and the bucket pose is acquired by the incli-
nation sensors mounted on the excavator, simultaneously.
We then align the real-time obtained bucket points with an
initialized empty bucket model, and the height maps are
generated and interpolated both on the real-time obtained
bucket points and the empty bucket model. Finally, the
mass volume is calculated based on the height maps.
In summary, this paper presents the following contribu-

tions:

• A dynamic bucket point cloud fusion method that
allows obtaining the dense bucket point cloud while
the bucket is moving, which is a base of real-time
volume estimation.

• A height map interpolation method that makes it pos-
sible to estimate the volume from the height map on
the uneven LiDAR data.

To the best of our knowledge, this is the first demonstra-
tion of the real-time in-bucket mass volume estimation on
the uneven LiDAR data.

2 Related Work
A direct way to measure the excavation quality in real-

time is to weigh the mass in the bucket. The method of
payload estimation [3], which is based on cylinder pres-
sures measurement and dynamic modeling, can estimate
the payload carried by a hydraulic excavator. As we are in
an autonomous excavator that can provide point cloud by
the cabin-mounted LiDAR sensors and bucket pose by the
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Figure 1. The autonomous walking excavator which
is equipped with a cabin-mounted LiDAR(Livox
Mid100) and a HIK web camera.

inclination sensor, it is possible to measure the excavation
quality by visual methods.

Wulfsohn et al. [4] presented an estimator of the volume
of axially convex objects from total vertical projections
with the known position of the vertical axis. However,
this approach needs to rotate the object around the known
vertical axis and re-scanning it, which is not feasible in our
task. Mayamanikandan et al. [5] presented a tree volume
estimation method using terrestrial LiDAR data, based on
the extraction of the tree diameter at breast height(DBH)
using Random Sample Consensus(RANSAC) based cir-
cle fitting and the estimation of tree height. However,
RANSAC based method is not suitable for the mass which
has an irregular shape in the bucket. Be Wley et al. [6]
presented a model and reconstruction based volume esti-
mation method to measure the in-bucket payload volume
on a dragline excavator. However, their approach focuses
on bucket classification and reconstruction from the 2D
scanlines, which is very different from LiDAR data.

3 Volume Estimation Pipeline
As the goal here is to dynamically calculate the volume

of the mass in a moving excavator bucket, we are looking
to get a dense and up-to-date bucket point cloud as well
as the latest bucket pose in the LiDAR coordinate system.
This section presents a dynamic bucket obtaining pipeline
that uses the excavator’s onboard LiDAR sensors and the
joint states to fuse multiple frames of bucket point clouds
incrementally. Wefirst scan and initialize the empty bucket
model, which is used to align with the real-time obtained
bucket points and as a base of volume estimation. A height
map and interpolation based volume estimation module is
then presented. An overview of the different modules
constituting the volume estimation pipeline is depicted in
Figure 2.

3.1 Dynamic Bucket Obtaining

With the aim of providing a bucket point cloud as com-
plete as possible, we intend to fuse multiple frames of
bucket points to get a dense bucket point cloud. To this
end, we initially acquire the bucket pose from ROS trans-
formation tree(TF) corresponding with the current frame
point cloud. We then segment the point cloud by the radius
search to extract the bucket point cloud. After about 10
frames of the bucket point cloud are obtained, we fuse them
by transforming them through the original pose. Thus, the
dynamically dense bucket can be expressed as:

� = {)−18 �8 |8 = 1, 2, ..., #} (1)

Where � is the dense bucket point set, # is the number
of the frames, )8 is the current bucket pose, �8 is the
segmented bucket point set in frame 8.

3.2 Pose Initialization

It is easy to recover the bucket to the original pose
by transforming it with the latest transformation matrix.
Furthermore, it is necessary to initialize the empty bucket
model to parallel to the axis for the convenience of bucket
part removing and height map generation. We initialize
themodel with principal component analysis(PCA) results
and fine-tune it by hand. The initialized empty bucket
model is shown in Figure 3:(b) where the plotted grid
represents theXOYplane. Thus, we got the transformation
from the original pose to initialized pose)? , and the initial
transformation from scene to model can be expressed as:

)8=8C = )?)
−1
; (2)

Where )8=8C is the initial transformation, ); is the latest
bucket pose obtained from TF.
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Figure 2. Overview of the volume estimation pipeline developed for the volume estimation of the mass in an
excavator bucket.

3.3 Transformation Refinement

The registration module gives the volume estimation
system the ability to align the real-time obtained bucket
points with the model, which can improve the accuracy of
volume estimation.
Our registration approach aims to find the transforma-

tion that minimizes the distance between the empty bucket
model and the real-time obtained bucket points with an ini-
tialized pose provided by the inclination sensors. Consid-
ering this case, the iterative closest point(ICP) is suitable
for the transformation refinement. As there is lots of noise
produced by the moving bucket in the real-time obtained
bucket points, the bucket point cloud is firstly filtered using
a uniform down-sample, and then filtered by a statistical
outliers removal. We retain the original bucket point cloud
for the next height map generation step. Then, an ICP step
is employed to refine the alignment of the empty bucket
model and real-time obtained bucket points, yielding an
improved transformation )82? . The final transformation
between the empty bucket model and real-time obtained
bucket points is then computed as follows:

) 5 8=0; = )82?)8=8C (3)

3.4 Height Map Generation and Interpolation

In our implementation, we generate the height map us-
ing the height of points on the z-axis directly, facilitated
by the pose initialization step, and those values are stored
in a plotted grids based on the minimum and maximum
points on the x-axis and y-axis.
Before we generate the height map from the real-time

obtained points, we first removed the most bucket part of
the real-time obtained bucket points using a passthrough
filter. The point cloud of mass in the bucket is then
used for height map generation. We use the full point
cloud to generate the height map on the empty bucket
model(Figure 3:(b)), which is shown in Figure 3:(c).
As shown in Figure 3:(c), there are lots of holes in

the generated height map produced by the distribution of
LiDAR points. Those holes must be filled by the interpo-
lation method, while each hole means an invalid value in
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Figure 3. The height map generation and interpolation process: (a) the empty bucket image, (b) the initialized
empty bucket point cloud, (c) the generated height map, (d) the interpolation area(white), (e) the interpolated
height map.

the volume estimation module. The proposed approach of
interpolation consists of the following steps:
1) Interpolation area selection: To interpolate correctly,

the first step is to know which pixel needs to be inter-
polated, which is very important for volume estimation
because false interpolation means reducing the accuracy.
We firstly check the bordering points on every row and
every column, which are shown in Figure 4, marked as red
points. Then, the interpolating points are determined by
judgewhether it is within the bordering points andwhether
there are points in its adjacent region. We change the size
of the adjacent region to fit the density variation. The
interpolation points are marked as blue points in Figure 4.
The selected interpolation area of the model height map is
shown in Figure 3:(d).

2) Interpolation: As the interpolation area is selected,
we compute the mean height of the valid points in the
adjacent region of every interpolating points, and set the
value of the interpolating point as ℎ<40=, which can be
expressed as:

ℎ<40= =
1
#

#∑
8=1

ℎ8 (4)

Where # is the number of the valid points, ℎ8 is the height
of 8Cℎ valid point in the adjacent region. The interpolated
model height map is shown in Figure 3:(e).

3.5 Volume Estimation

The volume estimation module is based on the interpo-
lated height map both on the empty bucket model and the
real-time obtained bucket points(Figure 6:(e)). We com-
pute the difference between the height maps of the empty
bucket model and the real-time obtained bucket points on
every pixel, where the values are valid on them at the same
time, which can be expressed as:

3 = ℎB − ℎ< (5)

Figure 4. The interpolation area selection, red: the
edge points, black: the inside points, blue: the in-
terpolation points.

3 is the difference between the height ℎ< and the height
ℎB on the height maps of the empty bucket model and
the real-time obtained bucket points on every pixel. The
diagram of the difference is shown in Figure 5, which is a
side-section of the empty bucket model and the mass.

Considering the size of the plotted grids, we compute
the volume of the mass in the bucket as follows:

+ =
∑

3∈%E0;83

(;26A83 × 3) (6)

Where + is the calculated volume, %E0;83 is the valid
pixels, ;6A83 is the length of the grid, 3 is the difference of
the valid pixels.

699



38 Cℎ International Symposium on Automation and Robotics in Construction (ISARC 2021)

Figure 5. The difference calculation in the side-
section, red: the mass, green: the empty bucket
model.

4 Experiments
To show the applicability and repeatability of the pre-

sented system, we implemented the different modules us-
ing the robotic operating system [7] and integrated them
on the autonomous excavation system to perform the vol-
ume estimation of the mass in the excavator bucket, which
is tested randomly in the field.

4.1 Bucket Obtaining and Pose Initialization

Figure 7 illustrates the process ofmultiple frames fusion
of dynamic bucket point clouds and the initialized pose,
which have been discussed in Section 3.1 and Section 3.2
respectively.

4.2 Transformation Refinement

With the bucket pose acquired by TF and a fixed trans-
formation from the original pose to the initialized pose,
we aligned the real-time obtained bucket points and the
model with an error which is caused by the low accuracy
of the sensors. After the down-sample and the outliers
removal processes, an ICP step is then employed to refine
the alignment. In our experiments, a large nearest point
search radius leads to a false registration result while the
mass entirely shades the bucket. Considering the maxi-
mum distance error is about 3 cm, we set the maximum
correspondence distance to 3 cm to avoid false registration.

4.3 Height Map Generation and Interpolation

As 10 frames of bucket point cloud have been fused
dynamically and the fused bucket point cloud has been
alignedwith themodel successfully, we generate the height
maps and interpolate them with the method discussed in
Section 3.4 both on the real-time obtained bucket points
and the empty bucket model. As it has been shown in
Figure 6:(e), there are some not interpolated points which
are resulted from the open form distribution of the points

on the height map. The most relevant parameters of the
experiment are summarized in Table 1.

Table 1. Main parameters of the volume estimation
pipeline

Bucket segmentation
Search radius 1.5m
Down sample
Voxel size 0.01×0.01×0.01(m)
Outliers removal
Number of nearest points 100
Multiplier of the std. dev. 0.8
ICP
Normal estimation radius 0.025m
Max. correspondence dist. 0.03m
RMSE threshold 0.01m
Height map generation
Grid size 0.01×0.01(m)
Interpolation area selection
Adjacent region size 8×8(pixels)
Height map interpolation
Adjacent region size 5×5(pixels)
Abbreviations: ICP, iterative closest point;
RMSE, root mean square error;

4.4 Volume Estimation

As the height map generated and interpolated, we calcu-
late the volume of the mass in the bucket using the method
discussed in Section 3.5.

Table 2. Mean computation times and standard de-
viations (in ms) of each step involved in the vol-
ume estimation pipeline, as computed on an Intel
Core(TM) i7-10875H CPU

Submodule Time
Bucket segmentation and fusion 46±11
Down sample 3±1
Outliers removal 286±7
ICP
Normal estimation 20±6
Alignment 83±15
Height map generation <1
Interpolation area selection 2±1
Height map interpolation 5±1
Volume estimation <1
Total 539

For the sake of completeness, in Table 2 we report the
computational times of the individual steps in the volume
estimation pipeline, when executed in a single thread on
a Core(TM) i7-10875H CPU. As it can be observed, the
complete volume estimation routine is executed in approxi-
mately 0.5s in our experiments, whichmakes our approach
suitable for online operation.
As there is not a convenient way to get the ground truth,

we firstly generated a height map of the full bucket, which
is shown in Figure 8, and calculate the full bucket volume
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Figure 6. The height map generation and interpolation on the real-time obtained bucket points: (a) the bucket
with mass image, (b) the mass point cloud (red) and the empty bucket point cloud(green), (c) the generated height
map of the mass, (d) the interpolation area(white), (e) the interpolated height map.

Figure 7. Multiple frames of bucket obtaining,
green: single frame of the background point cloud,
red: the segmented bucket point clouds of 10 frames
while the bucket is moving, blue: fused and initial-
ized bucket point cloud of multiple frames.

as + 5 D;; . In our experiment, + 5 D;; = 1.71<3. Then,
we compute the filling rate of the bucket comparing with
the directly observed filling rate to measure the accuracy
of our approach. The filling rate is computed as ' =
+4BC
+ 5 D;;

× 100%, where +4BC is the estimated volume of the
mass in the bucket in Equation 6.
Figure 9 illustrates five times volume estimation pro-

cesses, we compare the volume estimation results(in fill-
ing rate) with the directly observed filling rate, which is
shown in Table 3.

Table 3. Volume estimation results comparation in
filling rate

Experiments Observed Estimated
1 0% 0.93%
2 50% 47.51%
3 70% 72.16%
4 105% 107.35%
5 115% 110.86%

Figure 8. Full bucket volume estimation, (a) the
empty bucket height map, (b) the generated full
bucket height map.

As it can be observed, our approach gets the expected
results on volume estimation. In Experiment 1, the esti-
mated filling rate of the empty bucket is 0.93%, caused
by the alignment error and the noises. In Experiment
5(e), there is a not scanned area resulting a lower volume
estimation result.

5 Conclusion
This article introduces an integrated in-bucket mass

volume estimation system for the autonomous excavation
quality measurement with a robotic excavator. The core of
the volume estimation pipeline constitutes of a height map
generation and interpolation module which is based on
the dynamic bucket points obtaining and transformation
refinement. And the experiment result shows the applica-
bility and reliability of the presented system.
A limitation of the current system is that themodel based

volume estimation process always ignores the points out-
side themodel on the height map. It means that the volume
will not be calculated when objects are extended out the
bucket side, such as the stones. As LiDAR collects the
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Figure 9. The generated and interpolated height maps on real-time obtained bucket points, (a) the bucket with
mass image, (b) the mass point cloud (red) and the empty bucket point cloud(green), (c) the generated height
map of the mass, (d) the interpolation area(white), (e) the interpolated height map.
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data, another limitation is that the dynamically obtained
bucket point cloud will be full of noises which are the
flied-out points when the bucket is moving fast, especially
whenmoving away from the LiDAR. As it can be observed
in our experiments, the existence of noise leads to the re-
duction of accuracy, especially when ICP is employed.
Thus, a future research direction of our approach is the
noise suppression.
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