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Abstract -
PPE items, including hardhats, hooks, harnesses, and

straps, are critical for fall prevention. Ongoing research in
construction safety has focused on using deep learning mod-
els to detect Personal Protective Equipment (PPE) worn by
high-altitude workers. Despite efforts using computer vision-
based models for safety monitoring, small object detection,
such as hooks and straps, remains challenging due to image
resolution issues. This study introduces a novel technique
using mobile CCTV cameras controlled by an automated
Pan-Tilt-Zoom (PTZ) algorithm to enhance the detection of
small-sized PPE. The method leverages the size gap between
worker and PPE. In a zoomed-out state with a short focal
length, the system identifies the worker’s bounding box (b-
box), then zooms in with a longer focal length for precise
PPE detection. When encountering multiple workers, the
system applies predetermined zoom-in rules. Experimental
results demonstrated a significant increase in detection accu-
racy for the small PPE: hook detection improved from 39.8%
to 88.3%, and strap detection from 49.4% to 71.8%, as mea-
sured by an mAP of 50. This encouraging performance im-
provement suggests that automated PTZ control technology
could enhance the effectiveness of safety monitoring
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1 Introduction
Construction industry, notorious for the highest number

of accident victims, experiences most fatalities due to falls,
according to the U.S. Bureau of Labor Statistics [1]. In
South Korea, the most common type of industrial accidents
is also falls, leading to a significant number of injuries
[2]. Falls typically occur from high workspaces due to
slipping or structural failures. Despite attempts to install
safety nets and personal airbags, their high costs and spatial
constraints limit widespread usage in construction sites.
Therefore, proper attachment and usage of Safety Hooks
and Safety Straps to fixed structures such as scaffolding
are crucial to prevent falling from height position.

To increase the use of PPE, construction companies
globally, including in South Korea, are employing con-
struction site safety managers to monitor workers’ com-
pliance with PPE usage, with some regions enforcing this
as a legal requirement. However, this manual method
is labor-intensive, costly, and prone to human error. Re-
cent advancements have seen the integration of CCTV and
cutting-edge deep learning for automated safety monitor-
ing in construction sites. These systems use deep learning-
based object detection or instance segmentation models to
identify workers and PPE from video frame, automatically
determining proper PPE usage. This automated safety
monitoring tries to aid or replace human managers, re-
ducing errors, cutting costs, and increasing efficiency in
construction projects.

Figure 1. Video captured by CCTV installed at an
actual construction site.

While automated safety monitoring technology has
been continually developing, achieving significant suc-
cess in certain areas such as recognizing workers’ behav-
iors, detecting hardhats, or differentiating between high-
altitude and ground-level workers, it still faces substantial
challenges in recognizing small PPE items such as safety
hooks and straps. This difficulty arises because these PPE
items are often captured as only a few to several pixels
in size, making it hard for object recognition models to
identify their features. For example, Figure 1 shows this
challenge. It is easy to recognize five workers in ground
and high-altitude, but hard to find their hooks and straps,
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even if human eyes.

Figure 2. Results of applying Super-Resolution (SR)
to construction site image. (a,b) show before SR
application, and (c,d) are after applying SR. (b) and
(d) specifically provide enlarged views of a worker
in the top right area.

Several software-based solutions have been proposed
to address low-resolution issues in images. For exam-
ple, Super Resolution (SR) technology, aimed at enhanc-
ing image resolution software-wise, has been evolving for
decades [3][4] and now focuses on deep learning-based
methods [5]. Despite its advancements, SR’s application
in identifying small PPE at construction sites often doesn’t
meet expectations. Figure 2 shows the use of a contempo-
rary deep learning-based SR method [6] on construction
videos. Overall image clarity improves from (a) before SR
to (c) after SR application. However, there are limitations
when comparing (b) and (d), where despite clearer worker
visibility, finding small PPE remains problematic. Thus,
the approach of only using post-processing on already cap-
tured video frame has limitations in effectively detecting
small PPE.

This study tackles the issue of small object detection,
such as PPE detection in far-field monitoring. The goal
is to overcome problems with low-resolution images by
first taking larger pictures of PPE. The study leverages
PTZ CCTV cameras with remote control capabilities, em-
ploying a worker-centric approach for zooming in to fill
video frames, thus enlarging small PPE for better visibil-
ity. This research is potentially pioneering in proposing
an automated system for adjusting PTZ cameras specifi-
cally for PPE detection in construction workers. It utilizes
the size different between a typical 180cm worker and
20cm PPE, prioritizing worker detection in a zoomed-
out state, then calculating center coordinates for targeted

zoom-in, enhancing focused on the PPE detection. To
evaluate the effectiveness of the suggested system, ex-
periments were carried out in a laboratory environment,
capturing both zoomed-in and zoomed-out videos target-
ing a worker. Performance of the PPE detection model
was compared between two scenarios. The feasibility of
implementing automatic PTZ control was examined in an
indoor setting. The integration of automated PTZ CCTV
control with safety monitoring in this study is expected
to demonstrate utility and facilitate precise safety moni-
toring. Moreover, the system’s design to operate without
the need for personnel to control the CCTV leads to a
more efficient monitoring system, reduces human error in
surveillance, and is anticipated to improve the accuracy of
monitoring.

2 Related works
2.1 Construction safety monitoring with computer vi-

sion

In recent years, continuous research has utilized ad-
vanced computer vision technology for safety monitor-
ing in construction sites [7]. Studies include training
Region-based fully convolutional networks to recognize
construction equipment [8], installing CCTV on cranes
for worker safety monitoring in complex construction en-
vironments [9], and combining computer vision models
with IoT sensors for accurate fall hazard detection [10].
Additionally, depth estimation on single-lens captured im-
ages has been proposed for improved safety monitoring
[11], and optimizing loss functions in deep learning mod-
els has been shown to enhance PPE detection [12]. These
studies indicate widespread use of computer vision in con-
struction safety monitoring and support the suitability of
instance segmentation and object detection for PPE detec-
tion. However, they primarily focus on recognition per-
formance in already captured footage, with less discussion
on the methods of capturing the footage itself.

2.2 Autonomous PTZ control

Automating PTZ control has been extensively re-
searched. Maximizing PTZ CCTV’s object tracking and
zooming capabilities is key. Attempts include using classi-
cal computer vision methods such as KLT feature trackers
for PTZ operation [13]. Efforts to reduce or mitigate de-
lays between video and PTZ control have been made for
successful zooming and tracking [14]. Studies on opti-
mally operating multiple PTZ cameras in a space, con-
sidering field of view and concurrent tracking, have been
conducted [15]. Research on inspection robots for contin-
uous object monitoring [16] and integrating PTZ control
with neural networks for end-to-end solutions [17] have
also been explored. Previous research on PTZ cameras
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typically involved wired connections, enabling detection
without significant delays, which differs from this study.
Here, the CCTV is wirelessly connected, resulting in a
delay of about 3 seconds for video reception and motor
control. This delay was factored into the design of the au-
tomated PTZ control system. The interval between PTZ
control commands had to be longer than this delay to pre-
vent malfunctioning.

3 Methodology

Figure 3. Simplified flowchart of the automated PTZ
CCTV system

Figure 4. Top view of the PTZ CCTV’s PAN coor-
dinates

Figure 3 illustrates the automated PTZ CCTV system,
which consists of a hardware control unit for operat-
ing the PTZ and an analyzer unit that processes footage
from the CCTV. The CCTV continuously captures frames
and broadcasts it using the Real-Time Streaming Protocol
(RTSP), a standard protocol commonly used in CCTV sys-
tems for transmitting live video. The analyzer receives this
video via RTSP for analysis. Deep learning models em-

Figure 5. Side view of the PTZ CCTV’s TILT coor-
dinates

ployed for analysis include object detection and instance
segmentation models such as YOLOv8m-seg [18]. These
models are trained to identify workers and PPE, with their
training process described later in 3.2. The system calcu-
lates the actual coordinates on the CCTV camera from the
pixel coordinates of objects detected by the model Figure 4
and Figure 5.

𝜙𝑡𝑎𝑟𝑔𝑒𝑡 =
𝑥 − 𝑊

2
𝑊
2

∗ 𝐹𝑂𝑉𝑤

2
+ 𝜙𝑐𝑒𝑛𝑡𝑒𝑟 (1)

𝜃𝑡𝑎𝑟𝑔𝑒𝑡 =
𝑦 − 𝐻

2
𝐻
2

∗ 𝐹𝑂𝑉ℎ

2
+ 𝜃𝑐𝑒𝑛𝑡𝑒𝑟 (2)

The detailed method for coordinate calculation follows
equations 1 and 2. 𝑊 and 𝐻 represent the width and height
pixel values of the image, also 𝑥 and 𝑦 mean the pixel co-
ordinates of target object in the image. 𝐹𝑂𝑉𝑤 and 𝐹𝑂𝑉ℎ

refer to the Field of View (FOV) of the camera in the width
direction and height direction. 𝜙𝑡𝑎𝑟𝑔𝑒𝑡 and 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 repre-
sent the Pan and tilt coordinates of target object. 𝜙𝑐𝑒𝑛𝑡𝑒𝑟

and 𝜃𝑐𝑒𝑛𝑡𝑒𝑟 represent the center coordinates of image.
Based on the estimated coordinate information, the PTZ

motor is activated through a Open Network Video Inter-
face Forum(ONVIF) protocol which is a global standard
for the interface of IP-based physical security products,
such as network cameras. This processes are repeated,
continuously capturing and analyzing footage and oper-
ating the PTZ control. The performance of the proposed
system is validated by the improved mask-AP(Average Pre-
cision) of the deep learning model.

3.1 States and transitions

A Finite State Machine (FSM) is a design method where
a device can only exist in one of a finite number of states
at a time [19]. The FSM allows a system to operate within
predictable states, enabling stable control. The proposed
system’s PTZ control algorithm is designed as an FSM,
as shown in Figure 6. The diamond in the figure repre-
sents the starting state, while the circles represent other
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Figure 6. Flow chart of proposed auto PTZ control system using finite state machine

states. The lines between states indicate possible transi-
tions. The system transitions from one state to another
based on predefined procedures. Details on actions and
transition definitions for each state will be discussed in the
subsequent sections.

3.1.1 initCCTV

The ’initCCTV’ state activates when the system starts.
It has no inward transition since it’s the initial state. In this
state, the system checks the CCTV power, initiates the ON-
VIF protocol, positions Pan-Tilt-Zoom to zero, and creates
shared memory between states. These operations prepare
the system for action, initialize hardware, and stabilize the
system. It also checks communication status, attempting
reconnection if issues arise. Transition to the next state
is based on predefined user instructions: it transitions to
’Find site’ if commanded, or ’Do zoom out’ otherwise.

3.1.2 Site finding

The ’Site Finding’ state enables a PTZ CCTV to au-
tomatically detect and orient towards the direction of on-
going construction work, allowing it to start filming inde-
pendently without remote assistance via human. Figure 7
illustrates how this feature operates. Initially, it performs
’Heading to zero position,’ returning pan and tilt to po-
sitions 0 and 1. To anticipate network delays, a refresh
function clears any buffer backlog. Then, it captures a
single frame from the CCTV. ’n’ represents the number of
captures, dividing 360º by ’n’ to determine the pan angle
per capture. The deep learning model identifies workers
in each frame, storing their locations. This process repeats
until a full rotation is completed. Afterwards, the num-
ber of detected workers at each rotation point is averaged
to identify the current work site, and the camera is ori-
ented accordingly. Once complete, the system transitions
to ’Zoom out’ state.

3.1.3 Zoom out

In the ’Zoom out’ state, the system receives RTSP and
searches for workers or, if possible, PPE in the video.
This state manages the overall schedule, alternating every
5 seconds to the ’Heading adjustment’ state or switching
to the ’Zoom in’ state every 30 seconds.

3.1.4 Heading adjustment

The ’Heading adjustment’ state involves receiving real-
time RTSP video to locate workers and automatically ad-
just the camera’s direction towards them. Once this action
is completed, the system reverts back to the ’Zoom out’
state.

3.1.5 Zoom in

The ’Zoom in’ state uses the PTZ’s zoom feature to
select a worker for closer observation. After detecting a
worker and calculating their PTZ coordinates, it zooms
in on a certain worker based on a pre-chosen policy: (1)
smallest area worker, (2) no PPE, or (3) from left to right
sides. The extent of zooming is until the worker’s bound-
ing box (b-box) fills the video frame. If the setting for
’Tracking a target’ is enabled, it activates the ’Tracking a
target’ state every 3 seconds. The ’Zoom in’ state operates
for 15 seconds, after which it returns to the ’Zoom out’
state.

3.1.6 Tracking a target

In the ’Tracking a target’ state, the system continuously
follows the magnified individual. It calculates the neces-
sary pan and tilt adjustments considering the focal length
changes due to zooming. This process lasts for 5 seconds,
after which the system reverts back to the ’Zoom in’ state.

3.2 PPE detection model

Accurately and rapidly detecting workers and PPE is
crucial for effective safety monitoring. For this, YOLOv8,
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Figure 7. Algorithm of the Site Finding

known for its accuracy and detection speed, was employed.
YOLOv8 introduced an anchor-free detection system, en-
hancing performance with faster computation and better
accuracy. Mosaic augmentation, used until 10 epochs be-
fore training completion, prevented overfitting, ensuring
general detection capabilities. YOLOv8’s versatility al-
lows easy modification or addition of features to its head,
if needed. Thus, the study adopted YOLOv8m-seg, using
transfer learning on data labeled in instance segmentation
format from a construction site video collected during
2022-2023 in Korea.

4 Experiment

4.1 Experimental Settings

Figure 8. The PTZ CCTV is mounted on a module
equipped with a router and battery.

The PTZ CCTV camera used in this study is the Hikvi-
sion ’DS-2DE4A225IW-DE 2MP’ model, capable of up
to 25x zoom and providing a 57.6º FOV at 1x zoom shown
in Figure 8. The RTSP video streams at a resolution of
1280x720 at 10 frames per second (FPS). The computer
used for training and inference employs an RTX3090 GPU.

4.2 Image dataset for PPE detection model

Figure 9. Example: (Left) Images and (Right) GT
masks

The dataset used for training the model consists of
videos collected from 65 construction sites, including
apartment and road projects in South Korea, labeled for
instance segmentation with four classes: worker, hardhat,
strap, and hook (as shown in Figure 9). It comprises a
total of 6,523 images, divided into training, validation,
and testing subsets in a ratio of 5,877:600:46 for use in
training.

4.3 Train the model

The training of the YOLOv8m-seg model followed the
default settings suggested in [18], with the only modifi-
cation being an increase in the maximum epochs to 300.
This model pretrained on the MS COCO dataset, and uti-
lized transfer learning in this research to develop a fast and
high-performing model. The dataset used was the one in-
troduced in 4.2, focusing on learning and locating features
of workers, hardhats, straps, and hooks.

4.4 Evaluation matric

The evaluation metric used was the mask AP. It as-
sesses instance segmentation by calculating the Intersec-
tion over Union (IoU) between the predicted mask and the
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true mask, considering instances with IoU over 50% as
True Positives (TP). This method of evaluating instance
segmentation performance centered on masks incorpo-
rates both recall and precision of predictions, offering a
comprehensive evaluation of the segmentation’s accuracy.

4.5 Lab test of developted PTZ control

Figure 10. (Left) Zoom-out view and (Right) Zoom-
in view

Video data of workers and PPE was collected from tem-
porary structures at Yonsei University. This data com-
prises 230 images, simulating zoomed-in and zoomed-out
states as shown in Figure 10. The images were polygon
labeled for the same four classes as mentioned in 4.2. This
dataset is utilized to assess the practical effectiveness of
the zoom-in.

5 Results and Discussion
5.1 Performance of the PPE instance segmentation

model

The training results on the dataset from 4.2 showed
outcomes as in Table1. High mask mAP performances
of 97.1% for ’Worker’ and 95.2% for ’Hardhat’ were
achieved, whereas ’Strap’ and ’Hook’ exhibited lower per-
formances at 60% and 48.2%, respectively. This reaffirms
the difficulty in recognizing small PPE in far field situa-
tions.

Table 1. Performance of the model
Class mask mAP@50

Worker 97.1
Hardhat 95.2

Strap 60.0
Hook 48.2

The developed model was applied to the small-scale
dataset of zoomed-in and zoomed-out images in 4.5, and
its performance was evaluated. As seen in Table2, sig-
nificant performance improvements were noted for ’Strap’
and ’Hook’. In zoomed-out situations, ’Strap’ and ’Hook’
showed lower performances of 49.4% and 39.8%, respec-
tively, while zoomed-in, they exhibited remarkable im-
provements with 71.8% and 88.3%.

Table 2. Performance of the model between zoom-in
and zoom-out

Class mask mAP@50
Zoom-out Zoom-in

Worker 99.5 99.5
Hardhat 99.5 99.5

Strap 49.4 71.8
Hook 39.8 88.3

5.2 Qualitative results of automated PTZ system

It was observed that according to the pre-determined
rules of the finite state machine, the transition from the
Zoom-out state to Zoom-in and Tracking a target occurs
as illustrated in Figure 11. With each activation of the
zoom, making small PPE more detectable by eye becomes
apparent. In contrast, without PTZ control, detection is
limited to workers or hardhats only.

Figure 11. Comparison of situations with and with-
out automated PTZ peration

Applying these experimental findings to real construc-
tion sites could greatly improve the accuracy of detecting
whether PPE is worn, thereby significantly boosting site
safety. Moreover, the capability to automatically track
workers from a distance allows for effective monitoring of
the site, regardless of CCTV camera placement.

6 Conclusion
This study presented a comprehensive examination of

the implementation and efficacy of an automated PTZ
CCTV system for enhancing safety monitoring on con-
struction sites. Our research found that zooming in on
small objects such as hooks or straps significantly en-
hances detection capabilities. Laboratory experiments
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with zoomed-in and zoomed-out footage, analyzed using
the same model, indicated a substantial improvement in
performance—by approximately 1.6 to 2 times. More-
over, the zoom-in and tracking states proved effective in
detecting small PPE items previously undetectable.

Still, there are limitations to be addressed for further
advancement of the proposed PTZ control method:

1. Need for Field Data Validation: Testing in real
construction environments is necessary to validate
the PTZ control system’s efficacy, thereby revealing
unknown issues that hamper the reliable monitoring
system.

2. Improvement in Coordinate Calculation at Lower
Tilt Values: Future study should focus on enhancing
the accuracy of coordinate calculations, especially at
lower Tilt angles which are the error sources reducing
the current system’s precision.

3. Delays in Video Transmission Over Wireless Net-
works: Future study should explore the integration
of edge computing and the PTZ CCTV. These efforts
are intended to reduce the data transmission time,
improving the system’s responsiveness.

4. Efficient Zoom-In Target Selection: Additionally,
identifying a systematic and efficient method for de-
termining zoom-in targets will be essential. This will
ensure the PTZ control system can focus on relevant
areas quickly and accurately, enhancing its utility in
monitoring safety equipment on construction sites.

By addressing these issues and possible solutions, fu-
ture study aims to significantly improve the PTZ control
method’s reliability and effectiveness.

The research contributes valuable insights into the field
of construction safety and lays the groundwork for future
innovations that could potentially automate and improve
safety measures, thereby reducing the risk of accidents
and enhancing worker protection in construction environ-
ments.
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