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Abstract -
With increasingly complex construction projects, im-

proving inspection efficiency and accuracy is an important
challenge. This paper proposes a novel MR-based con-
struction inspection framework that integrates BIM, MR,
and AI technologies to achieve automatic inspection tasks.
The framework comprises object detection, 2D to 3D pro-
jection, and digital twin-based object recognition and MR-
based visualisation to provide an efficient inspection pro-
cess. The framework is evaluated in an indoor construction
environment with common elements like electrical sockets
and switches as a typical example to validate our approach
in real-world applications.
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1 Introduction
In the construction industry, the importance of ef-

ficiency and precision in construction inspection pro-
cesses cannot be overstated. Traditional inspection ap-
proaches, predominantly manual and reliant on 2D draw-
ings and physical presence, are increasingly challenged
by the complexity and scale of modern construction
projects [1]. Therefore, exploration of digital technolo-
gies for enhancing efficiency in these steps is necessary.

Building Information Modeling (BIM), and now Dig-
ital Twinning (DT), have emerged as a foundational
element in the evolution of construction technologies,
offering detailed 3D representations and facilitating ef-
fective planning and management. Mixed Reality (MR)
blends digital information with the physical environ-
ment, which offers an immersive platform that enhances
the visualisation of BIM model directly on construction
sites. Concurrently, computer Vision (CV) technolo-
gies leveraging Artificial Intelligence (AI) are emerging
as transformative tools for automating the detection and
analysis of site elements and anomalies. Thus, an inte-
grated approach that synergises the detailed visualisa-
tion of BIM, the immersive experience of MR, and the
analytical capabilities of CV could address the current
limitations of traditional inspection methods, including

issues with accuracy, efficiency, and safety.
This paper proposes a smart and automatic construc-

tion inspection framework that integrates the strengths
of BIM, MR, and AI. In the framework, construction
inspectors use MR glasses that autonomously perform
inspection tasks based on the inspector’s location. This
system is uniquely optimised to work in a automatic way
and with computational efficiency, ensuring effective
performance with minimal power consumption during
site inspections.

The rest of the paper is organised as follows. Section 2
reviews the relevant literature on BIM, MR and AI in
the context of construction inspection applications. Sec-
tion 3 introduces our automatic inspection framework,
detailing its design specifically for integration with BIM,
MR and AI technologies. Section 4 illustrates and eval-
uates the performance of this framework. Section 5
discusses performance and limitations of our method.
Section 6 proposes current challenges and future devel-
opments. The paper concludes in section 7.

2 Related work
The potential of combining BIM and MR for real-time

data processing in construction site inspections is exem-
plified in Feng and Chen [2]. They propose a system
combining BIM and MR, specifically using the head-
mounted MR device HoloLens. This system allows con-
struction engineers to visualise the BIM model overlaid
at the actual construction site, facilitating real-time com-
parison between planned and actual work, and enabling
efficient inspection. Riedlinger et al. [3] demonstrate the
potential benefits of the combination of BIM and MR
for bridge inspection, including increased precision in
locating damages and time-saving potential in damage
recording. Ammari and Hammad [4] further extend this
integration to multisource facilities information, BIM
models, and feature-based tracking in an MR-based set-
ting to enhance collaboration and visual communication
between field workers and managers. Similarly, Nguyen
et al. [5] design a MR-based system for bridge inspec-
tion and maintenance. The system is designed to overlay
relevant data and information directly onto the physical
bridge structure as viewed through MR devices. This
feature enables inspectors to see and assess real-time
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information about the bridge’s condition, maintenance
requirements, and other critical data in situ.

The incorporation of AI into MR marks a signif-
icant step towards automating inspection processes.
Karaaslan et al. [6] and Zakaria et al. [7] discuss the
integration of MR and real-time machine learning to
enhance structural inspections, particularly for concrete
infrastructures like bridges. They use deep learning
models that can localise and quantify concrete defects
in real-time using MR device. These studies under-
score AI’s role in analysing BIM data to detect defects
and predict maintenance needs, showcasing the potential
for more intelligent and proactive construction manage-
ment.

The existing research primarily focuses on the pair-
wise combination of these technologies, such as BIM
with MR or MR with AI, without fully harnessing the
synergistic potential of combining all three. Moreover,
current systems still largely depend on manual user in-
put for tasks like locating specific areas or activating the
system, which undermines efficiency. There is a need
to develop a more autonomous MR system, empowered
by BIM and AI, that can independently, automatically
and passively identify and process construction site data
without extensive user intervention.

3 Method
3.1 Method overview

Our proposed system architecture encompasses two
primary components: MR device, specifically chosen as
the Hololens2 (HL2), and a Computation Centre (CC),
which can be either a local computer or a cloud-based
platform. This framework is notably effective in two
key use cases within a fully developed BIM context:
Facilities Management (FM) inventory and construc-
tion project progress and quality monitoring. Firstly,
for FM inventory, it enables dynamic interaction with
the facility’s digital twin, allowing managers to visu-
alise, track, and manage assets efficiently. Secondly, for
project progress and quality monitoring, it provides a
real-time inspection tool for ensuring construction ad-
heres to planned works. This aids in identifying and
rectifying deviations, thus maintaining project integrity
and facilitating quality control.

The comprehensive workflow of our proposed frame-
work is depicted in fig. 1. In operation, users equipped
with HL2 navigate the construction site. The HL2 (red
rectangle) maintains real-time communication with the
computation centre, continuously transmitting spatial
data regarding the user’s position and orientation. Upon
receiving this spatial data, the CC (blue rectangle) ini-
tiates a series of processes, and send result back to the
HL2. Key stages include:

1. Detection zone analysis. The system first evaluates

whether the user is situated within a specially pre-
defined detection zone for each element in the BIM
model that needs to be controlled, thereby facilitat-
ing a focused and efficient inspection process. The
design of the zone is discussed in Section 3.2. It
is completed in an offline setting, with the zones
stored in the database of CC.

2. Camera activation and data acquisition. If the user
is within the detection zone, the computation cen-
tre sends an activation command to the HL2, which
then starts capturing video frames in real-time and
transmits them and the camera’s intrinsic parame-
ters back to the centre.

3. Object detection. The object detector runs in real-
time on camera frames to detect target objects (e.g.
building components or defects) within that detec-
tion zone.

4. Orientation validation. The system ensures that
user faces the target objects and incident angles
between user orientation and wall are within ac-
ceptable thresholds, to increase the accuracy of the
subsequent camera projection and matching calcu-
lations (see next step).

5. 2D to 3D Projection. Utilising the 2D detection
boxes coordinates, the system computes their pro-
jected coordinates in the BIM model (or Digital
Twin), through 3D projection using the pinhole
camera model.

6. Deviation assessment. The projected 3D coordi-
nates are then compared against the as-planned ob-
ject positions. Compliance is determined based
on predefined deviation thresholds, and the results
recorded and linked to the project BIM model.

7. Visualisation. The inspection results are simulta-
neously reported to the user visually, highlighting
non-compliant from compliant objects, providing
an intuitive and immediate visual cue for inspec-
tion outcomes.

The following sub-sections provide mode details
about the whole process.

3.2 Detection zone analysis

The detection zones are created to focus on specific
areas that need inspection or monitoring. When setting
up these zones for electrical elements like switches and
sockets (which are the focus of the validation presented
later), walls are used as primary reference points, with
the zones defined as bounding boxes extending from the
walls. Parameters for each detection zone are estab-
lished based on the inspection requirements. Here, the
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Figure 1. Real time workflow of the system

primary parameter is the distance between the inspector
and the target element. We set the maximum distance
at 2 meters, aligning with the optimal range of the HL2
front camera. This distance ensures that the camera cap-
tures images of sufficient quality for the computer vision
algorithm to perform reliable object detection.

Each detection zone stores their essential information,
including: the precise locations and categories of target
elements and relevant geometrical data, such as targets’
surface normal lines. By pre-storing this data, the sys-
tem can rapidly process and analyse the images captured
by the inspector, significantly speeding up the inspection
process.

3.3 Camera activation and data acquisition

HL2 is equipped with an array of sensors that capture
spatial and visual data [8]. This includes a depth sen-
sor, an RGB camera, and sensors dedicated to tracking
head, hand, and eye movements. Spatial sensors capture
spatial information like position, orientation, and move-
ment of the user’s head and hands. The front-facing RGB
camera captures conventional colour imagery. This can
be used for applications requiring visual data from the
user’s perspective.

Zaccardi et al. [9] provides insights into using Unity’s
Barracuda on HoloLens 2 for real-time medical AR sys-
tems. They found that simpler models like Lenet5 can
achieve over 30 fps. In contrast, more complex models

like EfficientNetB0 result in a much lower frame rate,
highlighting the balance between model complexity and
performance. Therefore, in theory, the computational
capabilities of current MR hardware are sufficient to
support the execution of deep learning models, includ-
ing the projection of 3D objects. However, for more
effective communication with digital twins and to assess
the framework’s performance more accurately, we per-
form both the detection and projection processes in CC.
Dibene and Dunn [10] propose a HL2 server application
to facilitate the real-time streaming of sensor data over
TCP (Transmission Control Protocol). This protocol
ensures reliable, ordered, and error-checked delivery of
a stream of bytes between applications running on hosts
communicating via an IP network. In this project, we
implement a multiprocessing approach to efficiently di-
rect the streams of front camera and spatial input data
towards a centralised computational hub. This approach
facilitates the concurrent processing of diverse data in-
puts, enhancing the overall efficiency and throughput of
the system.

3.4 Object detection

In this study, the overall system is illustrated using
the inspection of sockets and switches as an example.
But, the method is naturally adaptable to other objects
(e.g. fire safety equipment [11]). To detect sockets
and switches in images captured by the HL2 camera, a
deep learning model is developed, based on YOLOv5m
[12], noted for its rapid and precise performance. The
pre-trained YOLOv5m model is then retrained (transfer
learning) using a dataset comprising 2,026 indoor im-
ages featuring sockets and switches, enhanced through
various augmentation techniques such as rotation, shear-
ing, and mosaic effects to mimic lens distortion and
complex indoor scenarios. The evaluation of the system
involved the analysis of 73 images, incorporating 163
instances, and yielded a precision rate of 95% and a re-
call rate of 86.6%. The system has an inference time
of 8.4 milliseconds, and a Non-Maximum Suppression
(NMS) time of 2.5 milliseconds per image for an image
dimension of (32, 3, 640, 640). This processing speed
is particularly advantageous for real-time applications in
construction inspection, highlighting the system’s capa-
bility in both accuracy and efficiency in object detection
tasks.

3.5 Real-time position and orientation

In the HL2, image and video streams undergo distor-
tion correction within the image-processing framework
prior to application accessibility [13]. Thus we assume
that the transmitted image frames conform to a perfect
pinhole camera model without distortion. It satisfies the
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perspective projection equation [14]:

𝑝𝑖 = 𝐾 [R|t]𝑃𝑖 (1)

The value of camera’s intrinsic matrix 𝐾 , which en-
capsulates the camera’s focal length and the principal
point offset, is computed in real-time by the HL2 auto
focus-length system and communicated to the computa-
tion centre. The extrinsic matrix E = [R|t], encapsu-
lating the rotation and translation vectors of the camera,
represents the camera’s pose relative to the world co-
ordinates. It undergoes real-time updates to reflect the
changes in the camera’s position and orientation as the
user navigates through the site.

3.5.1 Initialisation

The camera’s initial pose E0 = [R0 |t0] can be mea-
sured by various methods, including QR code scan-
ning [15], or visual analysis of recognisable structures or
features [16]. In this study, the initialisation of the cam-
era’s pose is conducted through the scanning of a QR
code, strategically affixed to a predetermined location (a
wall in the case of the experiments reported below).

The QR code is identified, and the coordinates of
its corners are extracted, denoted as 𝑞𝑖 in the image
coordinates. Their corresponding 3D coordinates in a
local world coordinate system, designated as 𝑄𝑖 , are
known from the pose of the matching twin QR code in
the BIM model.

Using the 2D-3D point correspondences (𝑞𝑖 and 𝑄𝑖),
the rotation vector (R) and translation vector (t) of the
camera coordinate relative to the world coordinate is cal-
culated. This computation is grounded in the principles
outlined in eq. (1).

3.5.2 Real-time updating

HL2 transmits real-time orientation (ΔR) and position
(ΔT) changes relative to the initial pose. This data is
used to update the user’s pose and the camera’s extrinsic
matrix.

Rotation update: The new orientation matrix Rnew is
computed by multiplying the initial orientation R0 with
the change in orientation ΔR:

Rnew = R0 · ΔR (2)

Position update: The new position vector Pnew is up-
dated by applying the change in position ΔT relative
to the initial orientation R0, and adding it to the initial
position P0:

Pnew = R0 · ΔT + P0 (3)
Extrinsic matrix update: The extrinsic matrix Enew

of the camera, which transforms points from the world
coordinates to the camera coordinates, is updated using
the new orientation and position:

Enew =
[
Rnew

�� −Rnew · Pnew
]

(4)

3.6 2D to 3D projection

Given the 2D image coordinates set (𝑢, 𝑣) of the ver-
tices of the bounding box enclosing the detected object
from section 3.4, the first step is to normalise these
coordinates to the camera’s coordinate system. The nor-
malised camera coordinates (𝑥, 𝑦) are obtained by:

𝑥

𝑦

1

 = 𝐾−1 ·

𝑢

𝑣

1

 , (7)

In each frame, the detection target is identified based
on the camera-object angle, defined as the angle formed
between the camera’s line of sight and the normal to the
object’s surface. This process involves measuring the
camera-object angle for every object within the desig-
nated detection zone. The object exhibiting the smallest
such angle is then selected as the primary detection tar-
get for that specific frame. The orthogonal distance,
represented as 𝑑, between this selected object and the
camera, is effectively the z-coordinate value of the object
within the camera’s coordinate system.

Subsequently, the camera coordinates are transformed
by applying a scaling factor equal to 𝑑. This step trans-
lates the 2D coordinates into 3D camera coordinates
(𝑋𝑐, 𝑌𝑐, 𝑍𝑐):

𝑋𝑐 = 𝑥 · 𝑑, 𝑌𝑐 = 𝑦 · 𝑑, 𝑍𝑐 = 𝑑. (8)

The final step involves transforming these camera co-
ordinates into 3D world coordinates. This transforma-
tion is accomplished using the camera’s extrinsic matrix
Enew obtained in section 3.5.2:

𝑋𝑤

𝑌𝑤
𝑍𝑤
1

 = Enew ·


𝑋𝑐

𝑌𝑐
𝑍𝑐
1

 . (9)

3.7 Deviation assessment and Visualisation

Section 3.6 calculates in real-time the projection of
3D bounding boxes that captures the ‘as-is’ location
of elements within the detection zone. For each de-
tected ‘as-is’ element, we compute the centroid of its 3D
bounding box. This centroid serves as a representative
point for comparing the ‘as-is’ element with correspond-
ing ‘as-designed’ elements of the same category within
the detection zone. The comparison process involves
identifying the ‘as-designed’ element whose centroid is
closest to that of the ‘as-is’ element. This proximity-
based selection aims to match each ‘as-is’ element to
the most relevant ‘as-designed’ counterpart.

Given the dynamic and continuous operation of the
camera, multiple 3D bounding boxes are projected for
the same target over time. These projections may ex-
hibit variations due to factors such as noise, distortion,
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and limitations inherent to the sensing equipment. To
account for these variations, we compute an average cen-
troid for the ‘as-is’ element across all captured frames.
This averaged centroid is then compared to the centroid
of the closest ‘as-designed’ element.

The spatial deviation between the averaged ‘as-is’ cen-
troid and the ‘as-designed’ centroid is quantitatively as-
sessed against a predefined threshold. This assessment
determines whether the ‘as-is’ element conforms to the
planned design specifications.

The detection and conformance checking results are
recorded in the Digital Twin as the average of the pro-
jected bounding boxes.

Finally, the result is sent back to the HL2 where the
detected bounding box are shown coloured in:

• green, if the element is matched and found con-
forming;

• red, if the element is matched and found non-
conforming;

• grey, if the element is not matched.

4 Experimental result

4.1 Result visualisation

Figure 2 and fig. 3 show the digital twin as updated
in real time in the CC. The grey mesh is the BIM of
room. Within this virtual representation of the room,
four different coloured squares are observable; these are
designated as detection zones. The HL2 in its current
pose (updated in real time) is shown in black. As in-
troduced in section 3.1, the front camera on the HL2
is only activated when the HL2 is situated within these
coloured detection zones. If the target object is detected
and checked as conforming, the target object is shown
with a small green sphere, representing the ‘as-is’ posi-
tion. In the digital twin screenshot in fig. 2, three green
spheres can be seen on the wall next to the blue detec-
tion zone, representing three detected and conforming
objects.

The HL2 screen interface, shown in fig. 4 and fig. 5,
reports essential information to the user during the in-
spection process. It reports when the user enters a de-
tection zone and the designated targets for inspection.
Objects that align with the as-planned design are ex-
plicitly listed on the screen, and for enhanced visual
clarity, these compliant objects are highlighted within
green bounding boxes. Conversely, objects detected but
found to deviate from the as-planned design are enclosed
within grey boxes, indicating that their projected 3D po-
sitions do not match any element’s as-planned position.

4.2 Performance analysis

4.2.1 Initialisation

Using scanning QR codes for determining camera
position and orientation is a cost-effective and accessi-
ble method. However, this approach has its limitations.
The accuracy can be significantly affected by factors
such as poor lighting, low camera resolution, and en-
vironmental interference. To enhance the accuracy of
the initialisation of the camera’s position and orienta-
tion, we continuous scan the QR code for a duration of 5
seconds while remaining stationary. Then we calculate
the mean value of the position and orientation collected
during this period. Therefore, transient errors caused
by sudden changes in the environment or by the initial
positioning of the camera can be averaged out.

In our experiment, a comparative evaluation is con-
ducted between the computed camera position derived
from the pin hole model and the position obtained
through manual measurements. This comparison re-
vealed that the average position deviation in this initial-
isation step is approximately 3.49 cm.

This discrepancy can be attributed to two significant
factors. Firstly, lens distortion, particularly in the form
of radial and tangential distortions, can alter the per-
ceived geometry of the scanned QR code, leading to in-
accuracies in the calculation of the camera’s position and
orientation. Secondly, during the process of breathing,
subtle but impactful body movements occur, which can
inadvertently shift the camera’s position, albeit slightly.

4.3 Real-time projection

During 2D to 3D projection, the method casts rays
from the camera’s origin through the image plane and
into the 3D world. The precision of the projection pro-
cess is subject to variation due to several factors, includ-
ing the camera-object angle, the distance between the
camera and the object, and the camera’s incidence an-
gle, which is defined as the angle between the camera’s
optical axis and the normal of the surface. To eluci-
date the correlation between these factors and projec-
tion errors, we conducted an experimental study using
a single socket target. The experiment is initialised by
scanning QR code and then detection and projection are
performed at varying angles and distances

We define deviation as the spatial distance calculated
from the centre point of the ’as-designed’ socket to the
centroid of the 3D projected bounding box. In total
12,507 data points are acquired for analysis. In the
analysis, the controlled variable method is utilised to
ensure rigour and accuracy in the interpretation of the
data.

Initially, we fix the camera incidence angles at 0◦ or
5◦, given that the majority of the data fall within this
range. Additionally, these angles are chosen due to their
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Figure 2. Screenshot of the Digital Twin
(switch#1, socket#1, socket#2)

Figure 3. Screenshot of the Digital Twin 2
(socket#4)

Figure 4. HL2 Screen Interface 1
(switch#1, socket#1)

Figure 5. HL2 Screen Interface 2
(socket#4)

minimal distortion impact on the projection, ensuring
they did not significantly affect the analysis of other
parameters. Employing the set parameter of camera in-
cidence angle to select the test subdataset( 4,586 data),
we analyse the relationship between the camera-object
distance and the observed deviations. The results are
summarised in the 2D scatter plot shown in fig. 6. Our
findings indicate that the deviation maintains a consis-
tent level of stability, remaining below 0.25 m, up to a
camera-object distance of 1.1 m. Beyond this threshold,
the deviation increases significantly and becomes more
erratic. This phenomenon can be attributed primarily
to two factors: (1) the amplification of errors in pre-
ceding stages, such as sensor measurement or QR code
initialisation, due to longer distances; and (2) the in-
herent limitations of the camera’s capabilities adversely
affecting detection at extended ranges.

Setting the specified range, where the camera-object
distance is less than 1.1 m, result in minimal deviation,
as evidenced by prior findings. Then, we investigate
the relationship between camera-object incidence angle
and deviation, as illustrated in Figure 7. The analysis
demonstrates that there is a direct correlation between
the deviation and camera-object incidence angle within
a range of less than 10◦ . As this angle surpasses 10◦,
we observe that the deviation becomes both unstable
and significantly higher. Within the angle range of 0◦
to 5◦, deviation remains below 0.22 m, with an average
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Figure 6. Relationship between the camera-object
distance and 3D projection deviation.

deviation of 0.16 m. This can be attributed to two pos-
sible reasons: (1) camera-object incidence angle affects
image distortion and perspective projection, leading to
greater deviations at wider angles; and (2) the Inertial
Measurement Unit (IMU) sensor measurement inside
HL2 is not accurate and stable and thus accumulates
errors during calculations.

5 Discussion
In light of the aforementioned findings, it can be de-

duced that optimal system performance is attained when
the camera-object incidence angle is less than 5◦ and
camera-object distance is under 1.1 m. Under these spe-
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Figure 7. Relationship between the camera-object
incidence angle and 3D projection deviation.

cific conditions, the system demonstrates enhanced effi-
cacy, as evidenced by a mean deviation of approximately
16 cm. That deviation can be ascribed to the following
factors.

First, there is an inherent error in the process of ini-
tialising the camera’s location and orientation using QR
code scanning. As discussed in section 4.2.1, this error
results in a positional deviation of approximately 3.5 cm.
Additionally, a deviation in orientation has been iden-
tified, further investigation into which is considered for
future research endeavours.

Second, several types of distortions can affect the
outcome. Firstly, perspective and lens distortions im-
pact how the sizes and shapes in an image are seen,
which can lead to errors in the final 3D model. Then,
the way lighting and shadows appear in the image can
also change how accurately objects are detected and rep-
resented. Additionally, sensor errors, particularly from
devices like inertial measurement units (IMUs), intro-
duce further errors. These sensors sometimes struggle
to track the exact position and movement of the camera,
especially during quick motions.

Considering the various challenges inherent in the
process of 2D to 3D projection, and the technological
capability of HL2, it appears that using that system,
construction positioning conformance can only be con-
firmed with a threshold of 16 cm. To improve the ac-
curacy of our object detection and projection, two main
strategies can be employed. First, we can train our object
detection model with images taken in different lighting
conditions. This approach would make the model more
versatile and accurate in varying lighting environments.
Second, we can use additional tools like external sen-
sors to support and enhance the initialisation of camera
position and orientation.

6 Future development
It is important to note that our methodology currently

assumes a singular detection object per frame. In scenar-

ios involving multiple objects, the projection outcomes
for objects other than the primary target are prone to de-
viations. To address this issue, our future research will
develop and integrate an algorithm capable of filtering
outliers and averaging projection results.

In construction site management, accurately identify-
ing complex elements like multifunctional media sockets
is challenging due to their diverse designs and the need
to distinguish their specific types and orientations. A
strategy to address this would be to utilise sophisticated
object detection technologies, trained on an extensive
array of socket designs and configurations.

Besides, construction sites often involve situations
where materials and equipment that partially occlude
crucial elements. The compact placement of items on
sites complicates the identification process. To over-
come these obstacles, applying data augmentation meth-
ods such as cutout and mosaic in the training phase can
enhance the model’s ability to handle occlusions. Ad-
ditionally, enhancing the network design with attention
mechanisms enables the model to pinpoint more nu-
anced features, boosting its detection performance.

The proposed system is designed to automate the pro-
cess of (progress and) quality control in construction
projects, ensuring that all installed components, such
as sockets, switches, and structural elements, adhere to
the project’s specifications and quality standards. This
application can significantly reduce human error and
increase the efficiency of the inspection process. The
system holds potential for other applications, such as
monitoring and ensuring compliance with safety reg-
ulations on construction sites. By detecting potential
hazards or non-compliance with safety standards (e.g.,
improper installation of safety equipment, obstruction
of emergency exits), the system can contribute to a safer
work environment.

7 Conclusion

This paper presents a novel MR-based construction
inspection framework. The framework integrates AI-
based object detection with 2D to 3D projection tech-
niques and matching against the facility’s DT to achieve
automatic and passive inspection work, facilitated by
the communication system between the MR device and
computation centre. The results are stored in the DT and
can be reviewed in an interactive, and user-friendly way
by the MR user on site. The framework’s practicality
and effectiveness were evaluated in an indoor construc-
tion environment. The results from these tests demon-
strate the system’s feasibility in real-world inspection
processes, albeit with limitations on the quality of the
results that can reasonably be achieved.
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