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Abstract 

The accurate segmentation of tile peeling on building 

facades holds considerable significance for effective 

building maintenance, particularly in regions like 

Taiwan, where tiles are the predominant facade 

protection. This research introduces YOLOM, a 

novel deep-learning-based segmentation model 

designed to address this challenge. YOLOM 

harnesses the capabilities of You Only Look Once 

version 7 (YOLOv7) and incorporates the 

BlendMask-based segmentation technique, further 

augmented by the Efficient Layer Aggregation 

Network (ELAN) to enhance feature discrimination 

and extraction capabilities specifically tailored for 

scenarios involving tile peeling. Employing a dataset 

comprising 400 images featuring 758 instances of 

peeling and 525 instances of sealed tiles observed 

during on-site surveys of public buildings, YOLOM 

exhibits outstanding segmentation performance. It 

outperforms the Resnet-BlendMask50 FPN with 

improvements of 7.1% of mean average percentage 

(mAP) and 0.4% of the average precision (AP) at the 

intersection over union (IoU) of 50%. Remarkably, 

YOLOM consistently surpasses other models, 

showcasing a 19.5% and 2.2% lead in AP for small 

and large objects, respectively. In a noteworthy 

advancement, YOLOM seamlessly integrates with 

drone technology, enhancing its capabilities for aerial 

surveying of building facades. This integrated 

approach proves invaluable for building maintenance 

teams, enabling proactive and cost-effective 

interventions. The study introduces a distinctive 

framework seamlessly integrating cutting-edge 

backbone and neck modules, particularly 

emphasizing the ALAN. The innovative YOLOM 

model establishes a new standard in artificial 

intelligence (AI) techniques for building maintenance, 

contributing significantly to academic discussions 

surrounding AI-enhanced image segmentation. 

 

Keywords – 

Tile peeling; Building façade; Building 

maintenance; Computer vision; YOLOv7; Deep 

learning; BlendMask technique; ALAN. 

1 Introduction 

While tile peeling may initially seem like a cosmetic 

concern in aging buildings, its ramifications are far-

reaching. Beyond aesthetics, the detachment of tiles 

poses a direct threat to residents, risking falling accidents 

and compromising structural stability. The erosion of 

safety extends to the building's core, disrupting 

waterproofing and insulation capabilities. Exposed areas 

become susceptible to rainwater and humidity, 

accelerating material degradation and jeopardizing the 

adhesion between tiles and the structure. Recognizing tile 

peeling as more than a visual issue is crucial; it's a 

fundamental step in safeguarding both the safety and 

longevity of the built environment. 

Routine inspections of building facades are 

imperative to address these risks. However, traditional 

inspection methods, involving manual surveys, 

photographic documentation, and physical condition 

recording, are labor-intensive and expensive and pose 

safety hazards for surveyors—particularly when 

navigating precarious sections of buildings such as high-

rise rooftops and sidewalls [1]. Given the many buildings 

necessitating inspection, there is an urgent need to refine 

traditional methods to mitigate prolonged risks to 

structures and residents. 

In response to the challenges inherent in 

infrastructure inspection, researchers and industry 

professionals are collaborating to explore innovative 

solutions. They are turning to advanced image analysis 

techniques, driven by the synergy of computer vision and 

artificial intelligence (AI), as a promising avenue for 

automating the assessment of damaged components in 

buildings and infrastructure [2-5]. Various models, 

including Faster R-CNN, SSD, SSD_Lite, and different 
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iterations of You Only Look Once (YOLO), have proven 

successful in detecting and categorizing damage on 

surfaces such as concrete structures, metro tunnels, 

bridges [6, 7] and road surfaces [8]. 

Despite numerous studies on defect survey work, a 

literature gap exists regarding advanced deep learning 

(DL) methods for identifying damage to architectural 

components, such as tile peeling on building facades. 

Existing methodologies lack practical modifications, 

potentially compromising accuracy or processing time. 

Additionally, the intricate context of captured images and 

constraints in drone-to-building surface access pose 

challenges in feature extraction for recognizing areas 

with peeling. The synergy between potent segmentation 

models and drone-powered technologies holds immense 

potential for revolutionizing building facade 

maintenance practices. 

Addressing these literature gaps in problem-solving 

and methodology, this study introduces YOLOM, a 

pioneering segmentation model meticulously crafted to 

address the challenge of segmenting tile peeling areas on 

building facades. YOLOM leverages the strengths of 

YOLO version 7 [9] and integrates the segmentation 

framework of the BlendMask technique [10, augmented 

by efficient layer aggregation network (ELAN) blocks 

[10]. These ELAN blocks enhance feature discrimination 

and counteract gradual convergence deterioration, 

bolstering the model's performance in identifying and 

delineating tile peeling instances. Operating within a one-

stage framework for pixel-wise segmentation, YOLOM 

capitalizes on the BlendMask-based segmentation 

mechanism, offering a robust solution to overcome 

identified limitations in the literature. By synergistically 

combining YOLOv7 with BlendMask, our aim is to 

establish a resilient segmentation model that significantly 

enhances the effectiveness and comprehensiveness of tile 

peeling inspection on building facades. 

2 Literature review 

In contemporary scholarly discourse, a discernible 

focus exists on harnessing AI and computer vision 

methodologies to facilitate scrutinizing structural 

components within buildings. These advancements have 

yielded significant benefits by furnishing tools 

identifying nuanced features such as subtle cracks, 

deformations, and structural irregularities. These 

imperceptible nuances might elude the human eye or 

escape manual inspections, making technological 

interventions indispensable for transforming the efficacy, 

precision, and inclusivity of inspections of building 

structures [11]. 

Despite the predominant emphasis on structural 

elements, a noticeable lack of attention has been directed 

towards architectural components, specifically facades 

and exterior wall cladding. This oversight is significant 

considering that, similar to their structural counterparts, 

architectural elements are vulnerable to wear, damage, 

and degradation as time progresses. The consequences of 

their decline extend beyond aesthetic considerations, 

influencing the overall functionality of a building and 

contributing to heightened maintenance expenses [12]. It 

becomes imperative to customize AI and computer vision 

techniques for architectural inspections, presenting a 

more comprehensive strategy to ensure the optimal 

condition of every aspect of a building, encompassing 

both structural and architectural facets. 

Within the domain of computer vision applications 

for building inspections, especially in examining 

architectural components, enduring challenges persist 

despite recent advancements. A notable example is 

illustrated in the study undertaken by Kung, Pan [13], 

where a VGG-16 classifier [14] successfully classified 

damage on exterior wall tiles, attaining commendable 

accuracy. However, practical apprehensions regarding 

the viability of such a system emerge, particularly 

concerning capturing images at elevated heights and 

acquiring detailed images encompassing entire wall 

spans. 

Expanding upon the initial research efforts, Guo, 

Wang [15] delved into applying a semi-supervised 

convolutional neural network (CNN) to classify façade 

damage, particularly under constraints of limited training 

datasets. Subsequent advancements were realized by Guo, 

Wang [11], who employed the Mask Region-based 

Convolutional Neural Network (Mask R-CNN) model to 

delineate plastered and painted façades. This application 

exhibited promising segmentation accuracy, with a mean 

average precision (mAP) of 58.4%. In a more 

comprehensive inquiry, Lee, Hong [16] scrutinized the 

efficacy of a Faster R-CNN architecture in the 

segmentation and categorization of defects on building 

facades. Notably, an average precision (AP) of 62.7% 

was achieved across all trained defects, employing an 

intersection over union (IoU) threshold of 0.5. Despite 

the laudable predictive performance, it is pertinent to 

acknowledge a significant limitation inherent in the Mask 

R-CNN model—its protracted inference time. 

In recent research endeavors, Junior, Ferreira [17] 

made notable contributions by introducing the U-net, 

coupled with diverse Residual networks as the backbone 

architectures, to track crack lines in ceramic tiles. 

Extending the application of computer vision to address 

issues related to building facades, scholars have 

employed Faster R-CNN and Mask R-CNN models to 

identify and segment scratches on building glass panels 

[18]. The experimental results presented by Dais, Bal [19] 

compellingly support the effectiveness of DL on the 

crack segmentation on masonry surfaces. These findings, 

in conjunction with the previously mentioned studies, 
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underscore the growing potential of computer vision and 

DL in advancing methodologies for assessing facade 

defects. 

The knowledge extracted from existing literature 

emphasizes that DL methods for detecting or segmenting 

defects on building facades largely align with 

conventional approaches. This observation underscores a 

notable gap, indicating an urgent necessity to innovate 

and enhance advanced DL models tailored to the intricate 

challenges of detecting building facade defects, including 

issues like tile peeling. Models prioritizing speed, 

robustness, and user-friendliness are essential to address 

practical concerns faced by building maintenance 

agencies. Beyond the immediacy of pragmatic 

considerations, the prospective trajectory and widespread 

integration of sophisticated DL-based computer vision 

models hold transformative potential for the building 

engineering sector. This paradigm shift can endow 

professionals with heightened levels of precision, 

efficiency, and comprehensiveness in the realm of facade 

inspections and the formulation of intervention strategies. 

3 BlendMask-based YOLOv7 model 

3.1 BlendMask-based image segmentation 

procedure 

Introduced by Chen, Sun [20], BlendMask is a one-

stage instance segmentation model within the Fully 

Convolutional One-Stage Object Detection (FCOS) 

framework. Its departure from the pre-defined anchor 

boxes employed in YOLO family models or region 

proposals like Mask R-CNN sets it apart, contributing to 

BlendMask's notably swift inference time. The 

architecture of the BlendMask model is composed of a 

feature extraction network and a mask prediction branch. 

The feature extraction network integrates a fusion of a 

residual network (Resnet) and a feature pyramid network 

(FPN). Concurrently, the mask branch incorporates three 

crucial components: 1) a bottom module determining the 

relative position of object instances, denoted as score 

maps; 2) a top layer generating specific attention maps 

for a detected region, concentrating on relationships 

between pixel pairs within the same instance by learning 

an embedding space, and 3) a blender module aligning 

the score maps with attention tensors (refer to Figure 1). 

The bottom module, known as a "score map," predicts 

the location of a target object. Consequently, the output 

of the bottom module comprises bases (𝐵) with a shape 

of 𝑏 × 𝑛 × 𝐻
𝑠⁄ × 𝑊

𝑠⁄ , where b represents the batch size, 

n is the number of bases, and s is the output stride. The 

feature pyramid network output, including P3, P4, and 

P5, serves as the input for the bottom module. P4 and P5 

undergo interpolation using the DeepLabV3+ decoder to 

match the size of P3, followed by concatenation through 

stacking. The loss function in this phase, termed semantic 

segmentation loss, is computed using the cross-entropy 

function. 

Obtaining the feature pyramid network output (P3 ~ 

P7) involves applying a convolutional layer to the tower's 

output. The tower is then expanded with a solitary 

convolutional layer, responsible for producing the 

bounding box size, center coordinates of the bounding 

box (center-nest), and determining the object class 

confined within the bounding box. Additionally, 

attention A is provided as the bounding box score, where 

the shape of this attention is 𝑛 × 𝑀 × 𝑀 , with 𝑀 × 𝑀 

denoting the resolution set at 14×14 in this study, and 

n=4. To finalize the bounding boxes for subsequent steps, 

the post-processing technique of FCOS [21] is applied to 

refine the bounding boxes 𝑃 = {𝑝𝑑 ∈ ℝ+
0 |𝑑 = 1, … , 𝐷|} 

with the highest scores 𝐴 = {𝑎𝑑 ∈ ℝ+
𝐾×𝑀×𝑀|𝑑 =

1, … , 𝐷|} . Two components contribute to the loss 

function in this phase, namely focal loss (𝐿𝑐𝑙𝑠) and IoU 

regression loss (𝐿𝑟𝑒𝑔). 

𝐿({𝑝𝑥,𝑦}, {𝑡𝑥,𝑦})

=
1

𝑁𝑝𝑜𝑠

∑ 𝐿𝑐𝑙𝑠(𝑝𝑥,𝑦, 𝑐𝑥,𝑦
∗ )

𝑥,𝑦

+
𝜆

𝑁𝑝𝑜𝑠

∑ 𝕝{𝑐𝑥,𝑦
∗ >0}𝐿𝑟𝑒𝑔(𝑡𝑥,𝑦 , 𝑡𝑥,𝑦

∗ )

𝑥,𝑦

 

(1) 

where 𝑁𝑝𝑜𝑠  is positive samples, 𝜆  is the weight of 

regression loss (𝐿𝑟𝑒𝑔)  term, 𝕝 = 1 𝑖𝑓 𝑐𝑥,𝑦
∗ > 0 , and 𝕝 =

0 𝑖𝑓 𝑐𝑥,𝑦
∗ ≤ 0 

Classification

HxWxC

Center-ness

HxWx1

Bbox regression

HxWx4

Conv block

Received 

Feature map 

 

Figure 1. Content of tower block 

The pivotal element within BlendMask is the blender 

module, which plays a crucial role in assimilating 

information from the bottom-level bases (B) and region 

proposals accompanied by corresponding top attention 

(A). During the training process, ground truth boxes serve 

as the region proposals, while in the prediction process, 

the bounding box is deduced. Given the varying sizes of 

the proposals, the Blender module employs the 

RoIPooler function to extract the area of the K bases 

associated with each proposal (𝑝𝑑 ). Subsequently, this 

area is resized to a fixed size (R×R) with the feature shape 

denoted as 𝑟𝑑, as outlined in Equation (2). In executing 

this task, the RoIAlign technique was adopted, 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

786



implementing bilinear poolers. 

𝑟𝑑 = 𝑅𝑜𝐼𝑃𝑜𝑜𝑙𝑅×𝑅(𝐵, 𝑝𝑑),    ∀𝑑 ∈ {1, … , 𝐷} (2) 

The attention resolution, denoted as 𝑀 × 𝑀 , 

undergoes interpolation to match the size of the proposals 

(R×R), forming a shape set 𝑅 = {𝑟𝑑|𝑑 = 1, … , 𝐷} . 

Subsequently, 𝑎𝑑
′  is subjected to normalization using the 

SoftMax function across the K bases, yielding the score 

map set 𝑆 = {𝑠𝑑|𝑑 = 1, … , 𝐷} . The next step involves 

the element-wise product between each entity  𝑟𝑑of the 

region proposal set R and the corresponding  𝑠𝑑  of the 

score set S. This operation is performed for each of the K 

bases, and the results are summed to determine the mask 

logit (𝑚𝑑), as outlined in Equation (3). The parameter K 

is consistently set at a value of 4, while R assumes values 

of 28 and 56, as proposed by Chen, Sun [20]. 

𝑎𝑑
′ = 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑀×𝑀→𝑅×𝑅(𝑎𝑑),

∀𝑑 ∈ {1, … , 𝐷} 

(3) 

𝑠𝑑 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑑
′ ),   ∀𝑑 ∈ {1, … , 𝐷} (4) 

𝑚𝑑 = ∑ 𝑠𝑑
𝑘

𝐾

𝑘=1

°𝑟𝑑
𝑘 ,      ∀𝑑 ∈ {1, … , 𝐷} (5) 

3.2 ELAN-backbone and CSP-SPP + ELAN-

PAN integration 

Effective extraction and processing of features hold a 

central role in the analysis of image data. The advent of 

big data and advancements in convolutional neural 

networks (CNNs) and high-performance computers have 

facilitated the practicality of analyzing extensive image 

datasets. Using random trials is deemed impractical for 

developing efficient CNN networks tailored to extract 

specific task-related features. Therefore, a meticulous 

analysis of the particular task, incorporating intricate 

adjustments, becomes imperative. 
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Figure 2. BlendMask with ELAN-base backbone and CSP-SPP+ELAN-PAN 
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After the YOLOv7 operations are completed, 

applying the SiLU activation function follows all batch 

normalizations. In a departure from conventional 

methods, this study introduces a unique network based 

on the ELAN [10]. ELAN, designed to counteract 

gradient deterioration in larger networks, combines 

elements from VoVNet [22] and CSPNet [23] to optimize 

the gradient length within a computational block. 

Notably, the layer aggregation network is trainable 

independently of the backbone network, facilitating 

faster training and experimentation, rendering it highly 

efficient for real-time operations. 

Concerning the construction of the backbone, the 

ELAN is strategically incorporated between the 

downsampling blocks, as depicted in Figure 2. Diverging 

from YOLOv7, a deviation occurs by splitting two 

adjacent Cross-Stage Partial (CSP) blocks, and the output 

of all six CSP blocks in ELAN is directly concatenated, 

forming a structure referred to as ELAN-6. This ELAN-

6 output, spanning C2 to C5, serves as the input at the 

forefront of the network. Moreover, ELAN-6 is 

employed at the head of the network to enhance feature 

extraction in CSP-SPP + ELAN-PAN, with PAN 

representing the Path Aggregation Network. 

In this investigation, the Feature Pyramid Network 

(FPN) is substituted with the Pyramid Attention Network 

based on the Efficient Layer Aggregation Network 

(ELAN-PAN). ELAN is integrated into the layer scaling 

of PAN, processing backbone features before entering 

ELAN-PAN. In contrast to BlendMask, ELAN-PAN's 

scaling progresses from P2 to P7, as opposed to P7 to P2. 

ELAN is introduced into the transformation between the 

layers of ELAN-PAN. Due to a significant increase in the 

number of parameters in the P6 and P7 generations 

without substantially enhancing the segmentation 

model's inference power, ELAN avoids the downscaling 

task for P6 and P7. To align with the foundational 

structure of the BlendMask operating system, the channel 

number for each layer in ELAN-PAN is standardized. As 

a result, this study designates the proposed model as 

YOLOM. 

4 Data collection and processing 

Emphasizing the concern for public safety posed by 

peeling tiles, the surveyed buildings were strategically 

selected in high pedestrian-traffic zones. These 

encompassed various structures such as university 

campus buildings, apartment complexes, hospitals, 

government offices, and activity centers. Image data 

collection employed a Nikon D3200 digital camera, 

Autel Robotic EVO Lite+ unmanned aerial vehicle 

(UAV), Canon EOS M10, and iPhone 12 Pro, capturing 

photos across different seasons, times of day, and lighting 

conditions (e.g., cloudy days, shadows, high and low 

light, and reflected light). Over a year, the survey team 

conducted fieldwork, ensuring diverse images with 

complex backgrounds to enhance the model's 

applicability in real-world scenarios. Each object was 

documented from various angles and within randomly 

sized rooms, contributing to the model's adaptability. The 

survey team utilized maximum zoom settings, especially 

for images capturing tile peeling at elevated heights. 

Following model training, an Autel Robotic EVO Lite+ 

unmanned aerial vehicle (UAV) was deployed to survey 

tile peeling in high-rise buildings. 

A dataset comprising 400 surveyed images was 

employed in developing the tile peeling segmentation 

model, encompassing 758 instances of peeling and 529 

instances of sealed tiles (refer to Figure 3 for 

representative samples). Upholding the quality of the 

dataset was a meticulous process involving labeling and 

verification by two additional members of the research 

team to annotate object instances. This rigorous approach 

ensured that the DL models were trained on a dataset of 

superior quality. Table 1 details the number of images 

and instances at each survey location for a 

comprehensive overview of the dataset. The primary 

survey locations across northern Taiwan are visually 

represented in Figure 4, accompanied by image samples 

collected from these regions. 

 

Tile peeling

Sealed area

 

Figure 3. Surveying locations in the northern Taiwan 

 

 

Figure 4. Surveying locations in northern Taiwan 
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Table 1. Experimental dataset  

Location Images Phase 
instances 

Peeling Sealed 

8 400 
Training 638 410 

Test 120 119 

5 Experimental results and discussions 

In object segmentation, the assessment of model 

performance extends to metrics such as AP across 

varying IoU thresholds and mAP considering different 

object sizes. These metrics are pivotal for gaining a 

nuanced comprehension of the capabilities inherent in an 

object segmentation model. IoU is a critical gauge, 

elucidating the accuracy with which the predicted 

bounding box aligns with the actual object. The 

exploration of diverse thresholds, including AP50 (IoU > 

0.5) and AP75 (IoU > 0.75), for small (APs), medium 

(APm), and large (APl) objects enables a nuanced 

evaluation of the model's precision across distinct levels. 

The models in this comparative analysis underwent 

training on a sophisticated computing setup featuring an 

NVIDIA GeForce RTX 4090 24G GDDR6, RAM DDR5 

5600MHz (2x32G), SSD Samsung 970 EVO Plus NVMe 

M.2, and an Intel CPU i7-13700-Core Processor. 

Hardware selection plays a substantial role in influencing 

training outcomes, particularly in DL models where GPU 

capabilities are paramount. A standardized image input 

size of 640x640 was maintained, and batch sizes of six 

were employed during the training process. Each model 

underwent an extensive training regimen encompassing 

10,000 iterations, with meticulous fine-tuning to ensure 

optimal segmentation precision. These values were 

empirically chosen to yield the most favorable outcomes 

in the experiments, enhancing the model's proficiency in 

accurately segmenting tile peeling. 

The experimental results of comparative models are 

presented in Table 2. Regarding segmentation, YOLOM 

stands out as the dominant model because it achieves the 

greatest values of all evaluation metrics. 

The YOLOM obtained at least a 7.1% improvement 

compared with the second-best model, BlendMask–

Resnet50 FPN, in terms of increasing the strictest AP 

value. The segmentation difference between the 

proposed model and other models incrementally 

increases as the complex challenge increases from large 

to small objects. As seen in Table 2, the YOLOM attained 

2.2%, 11,9%, and 19.5% improvements in segmenting 

small, medium, and large objects compared with the 

remaining models, respectively. 

YOLOM dominates the YOLOv7 mask that was 

published along with the YOLOv7 detection model by 

Wang et al. [25], boosting the AP50 and mAP values by 

4.6% and 14.0% improvements. YOLOMASK is 

established by integrating CSP-SPP + ELAN-PAN and 

substituting the Resnet backbone with the YOLOv7 

backbone while preserving the FPN found in BlendMask. 

This model structure was not streamlined, which is 

proven by the large segmentation accuracy drop of 16.7% 

and 14.0% of AP50 and mAP values. However, there is 

still an appraisal for its performance in segmenting small 

objects compared with BlendMask–Resnet50 FPN 

because it is supported by ELAN blocks. This study also 

uses BlendMask–CSPDarknet FPN to compare with the 

proposed model by substituting the YOLOv7 backbone 

with CSP Darknet. This model does not work efficiently, 

as proven by yielding much lower AP values than 

YOLOM and BlendMask-Resnet50 FPN with different 

IoU challenges.

Table 2. Experimental results of comparative models  

 Model AP50 AP75 𝑚𝐴𝑃 𝐴𝑃𝑠 𝐴𝑃𝑚 𝐴𝑃𝑙  

S
eg

m
en

ta
ti

o
n

 

re
su

lt
s 

BlendMask–Resnet50 FPN 0.799 0.537 0.496 0.181 0.399 0.652 

BlendMask–CSPDarknet FPN 0.639 0.386 0.367 0.107 0.385 0.471 

YOLOv7 mask by Wang, Bochkovskiy [24] 0.757 NA 0.427 NA NA NA 

YOLOMASK 0.636 0.348 0.352 0.125 0.307 0.473 

YOLOM 0.803 0.699 0.567 0.376 0.518 0.674 

B
o

u
n

d
in

g
 b

o
x
 

re
su

lt
s 

BlendMask–Resnet50 FPN 0.811 0.611 0.543 0.334 0.475 0.662 

BlendMask–CSPDarknet FPN 0.650 0.433 0.402 0.187 0.431 0.475 

YOLOv7 mask by Wang, Bochkovskiy [24] NA NA NA NA NA NA 

YOLOMASK 0.650 0.420 0.387 0.162 0.366 0.476 

YOLOM 0.807 0.736 0.622 0.540 0.583 0.702 
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6 Conclusions 

In the realm of building façade recognition, the early 

identification and precise delineation of issues emerge as 

pivotal factors. This study introduces a cutting-edge 

deep-learning-based segmentation tool named the 

YOLOM model, meticulously crafted to discern 

instances of tile peeling on building exteriors. Its 

application extends valuable support to building owners, 

aiding in proactive maintenance and resource 

conservation endeavors. 

The YOLOM model has set a performance 

benchmark by incorporating state-of-the-art backbone 

and neck modules. A comparison with the BlendMask–

Resnet50 FPN underscores its superiority, boasting a 

remarkable 7.1% increase in superior mean (mAP) and a 

notable 16.2% enhancement in AP75 values. 

Furthermore, it exhibits substantial leads in various 

precision metrics—APs, APm, and APl—with 

improvements of 19.5%, 11.9%, and 2.2%, respectively. 

These outcomes stem from a diligently curated dataset 

featuring 400 building façade images containing 1287 

instances of peeling and sealed tiles. These validations 

affirm the model's robustness and propel academic and 

practical advancements. 

Future endeavors will focus on integrating global 

building visuals and collecting tile-peeling images with 

diverse resolutions, enhancing the adaptability of 

YOLOM for improved training dynamics without 

compromising accuracy. Subsequent research will 

involve an ablation analysis to comprehensively assess 

the impact of various model components on the 

performance of the YOLOM, offering valuable insights 

for future enhancements. 

Future studies could explore how variations in 

photographic datasets, including facade-distance, camera 

angle, lighting conditions, and image resolution, affect 

the performance of YOLOM, with a focus on strategies 

to mitigate challenges and optimize model performance 

across diverse real-world scenarios. Integration of 

augmented and synthetic data could augment dataset 

diversity and size, enhancing the model's generalization 

capabilities. Additionally, investigating transfer learning 

and domain adaptation techniques could improve 

YOLOM's adaptability to different datasets and mitigate 

domain shift issues. Evaluation of real-world deployment 

challenges should also be conducted to ensure successful 

implementation and adoption of YOLOM in building 

facade maintenance workflows, advancing its 

effectiveness and impact in practical applications. 

Beyond its role as a mere model, this research 

contributes a robust framework to the academic 

community, accentuated by the ELAN-based structure. 

This foundation encourages researchers to explore 

advanced segmentation models. In conclusion, YOLOM 

is a guiding light in academic exploration, symbolizing 

AI's transformative potential in practical spheres, 

particularly building façade maintenance. As the journey 

forward unfolds with an array of improvements and 

expansions, collective efforts hold the potential to 

reshape façade maintenance narratives. 
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