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Abstract -  

Manual excavator activity monitoring to evaluate 
their performance and productivity is laborious, 
time-consuming, and error-prone. To address these 
problems, many automated computer vision-based 
frameworks have been developed for the detection of 
excavators and the classification of their activities. 
Most of the current methods consist of several 
separately optimized modules that are applied to the 
input video sequentially. Recently, single-stage 
spatiotemporal activity recognition methods are 
gaining more popularity in the construction 
community. You Only Watch Once (YOWO) network 
and its variation (i.e., YOWO53) have proved to be 
superior to the three-stage approaches for activity 
recognition of construction workers. This paper 
investigates the benefits of using YOWO and 
YOWO53 over the three-stage methods for the 
activity recognition of excavators, by utilizing a large 
custom dataset of 1,060 video clips collected from 
both local construction sites and YouTube, with 
different camera angles, illuminations, occlusions, 
weather conditions, and video resolutions. The results 
demonstrate 88.9 and 88.7% classification accuracy 
and F1-score, respectively for the YOWO method 
compared to 70.4% and 69.8% classification 
accuracy and F1-score for the three-stage method. 
This indicates the feasibility and benefits of deploying 
the single-stage methods to near real-time 
applications. 

 
Keywords – 

Site monitoring, Activity recognition, Computer 
vision 

1 Introduction 

Nowadays, the growing demand for the completion 
of construction projects within schedule and under 
budget has resulted in the development of automated, 

continuous monitoring routines to provide project 
managers with vital productivity and safety information 
[2]. Traditionally, monitoring the activities of excavators 
and other earthmoving equipment is performed manually 
by superintendents on the site. However, such methods 
can be very time-consuming, labor-intensive, and error-
prone especially on large construction sites [1, 2]. 
Considering that excavators are at the core of 
earthmoving operations [3], monitoring their activities 
can provide information about work cycle duration and 
consequently productivity. This information in turn 
enables site managers to make more informed project-
related decisions, such as adjusting resource allocations. 
Considering that excavators are at the core of 
earthmoving operations [3], monitoring their activities 
can provide productivity and work cycle duration 
information, which in turn enables site managers to make 
more informed project-related decisions, such as 
resource allocations and scheduling [4, 5]. Videos can 
provide detailed information about the visual features 
and physical motions of equipment, and therefore 
increase the interpretability of the results and their 
shortcomings by viewing the recorded video and the 
detected activities [2, 6]. Before the rise of deep learning, 
vision-based methods generally relied on hand-crafted 
features to extract useful information for activity 
recognition from images and videos [7]. However, 
advances in deep learning methods demonstrated their 
superiority over traditional hand-crafted methods in 
different applications such as object detection [8] and 
activity recognition [9], which resulted in a 
corresponding change in the use of vision-based methods 
in the construction domain. 

Convolutional Neural Networks (CNN) are the main 
building blocks in all vision-based deep learning 
methods, and in the past few years, many 2D CNN-based 
construction equipment activity recognition methods 
have been proposed. For instance, Roberts et al. [1] used 
a combination of 2D CNN with Hidden Markov Models 
to detect, track, and identify the activities of excavators 
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and dump trucks. Luo et al. [10] used a combination of 
2D CNNs and relevance networks for detecting various 
construction-related objects and their associated set of 
interactive activities by exploiting the two-dimensional 
pixel proximity of the detected objects. Kim and Chi [11] 
also performed interaction analysis to identify the 
activities and operation cycles of excavators and dump 
trucks by combining 2D CNN and Long Short-Term 
Memory (LSTM) architectures. Similar combinations of 
2D CNNs and LSTMs, were also used by Slaton et al. 
[12] to detect the routine tasks of excavators and roller 
compactors, and by Kim et al. [6] to detect excavator 
activities via exploiting their sequential working patterns 
for automatic productivity analysis. 

While 2D CNN-based methods try to combine the 
spatial and temporal information using different 
methods, 3D CNN-based methods incorporate the 
spatiotemporal data extraction into a single architecture, 
which allows the deep learning models to extract relevant 
spatiotemporal data. Chen et al. [2, 13] proposed a three-
stage method in which excavators are first detected in the 
input frames. Then, the detected excavators are fed into a 
tracking algorithm, and finally, the tracked results are 
input to a 3D CNN network to classify the activities. A 
similar three-stage framework was also proposed by Lou 
et al. [14] in which workers were first detected using the 
You Only Look Once (YOLOv3) network. The detected 
workers were then tracked, and the activities performed 
by them were classified using a 3D CNN architecture. 
Although these frameworks can potentially extract more 
informative spatiotemporal features using 3D CNN 
architectures, their three-stage approach still limits their 
accuracy. The main limitations of three-stage methods 
are: (1) not being fully optimized, and (2) the propagation 
of errors from earlier stages to the later ones, which 
results in the degradation of the performance of the entire 
framework [14,15]. For example, if an equipment is not 
detected in a few frames or if it is not tracked properly 
through the frames in which an activity is occurring, the 
final 3D CNN stage cannot correctly classify the 
underlying activity. 

The benefits of using a single-stage method over the 
three-stage methods were studied for the case of 
detecting activities of construction workers by Torabi et 
al. [16]. They proposed a network called You Only 
Watch Once 53 (YOWO53) to jointly detect construction 
workers that appeared small in the video frames and 
classify their activities. YOWO53 is based on a general 
human activity recognition network called YOWO [17]. 
The results showed YOWO53 improves the detection 
recall of YOWO for small objects (e.g., workers) by at 
least 2%, and both single-stage networks (i.e., YOWO 
and YOWO53) improved the activity classification 
accuracy of one of the state-of-the-art three-stage 
methods [2] by at least 16%. Jung et al. [15] also 

proposed a single-stage architecture for detecting the 
activities of multiple construction equipment 
simultaneously. This framework uses a 3D CNN 
architecture and performs equipment detection and 
activity recognition in one stage to alleviate the 
limitations of the three-stage methods. However, 39% of 
the video clips in the reported dataset of seven activities 
correspond to the idling state of the equipment. Such a 
dataset, in addition to being unbalanced, limits the real-
world applicability of the trained model. 

The aim of this paper is to investigate whether the 
same improvement achieved by single-stage YOWO53 
method for workers [16] is achievable for the case of 
excavators. Furthermore, another important factor in the 
final performance and applicability of a developed 
activity recognition model is the size and variability of 
the data included in a dataset. To this end, a large 
balanced dataset of excavator activities with more than 
1,060 video clips, collected both from local construction 
sites and YouTube, has been gathered. The prepared 
dataset contains the three common excavator activities of 
digging, swinging, and loading the trucks under various 
camera angles, illuminations, occlusions, weather 
conditions, and video resolutions. Thus, enabling a 
thorough evaluation of the YOWO and YOWO53 
methods under various real-world conditions. 

2 Methods Used in The Case Study 

The single-stage YOWO [17] and YOWO53 [16] 
methods are compared in this study with a state-of-the-
art three-stage method proposed by Chen et al. [2]. The 
general architectures of the selected methods are shown 
in Figure 1, and a more detailed description of these 
methods is presented in the following sections. 

2.1 YOWO 

YOWO [17] is a spatiotemporal activity recognition 
method, which uses two branches in its architecture. One 
branch extracts 2D features from the current frame while 
the second branch extracts 3D features from a stack of 
successive frames. Afterwards, the outputs of the two 
branches are combined using a channel fusion and 
attention mechanism (CFAM), which provides the 
essential performance boost.  

The 3D CNN branch is utilized for extracting the 
spatiotemporal features. In this work, the 
ShuffleNetV2_2x [18] 3D CNN is chosen for this branch 
for comparison with the activity recognition results of 
workers [16]. The input to this network is a video clip 
comprised of a sequence of frames with the dimension of 
[𝐶 × 𝐷 × 𝐻 × 𝑊], with 𝐶 being equal to 3 (RGB 
channels), 𝐷 representing the number of input frames, 
and 𝐻 and 𝑤 representing the height and width of the 
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(a) Single-stage Methods 

 
(b) Three-stage Method 

Figure 1. The general architecture of the selected methods 

frames, respectively. The shape of the output is 
[𝐶′ × 𝐷′ × 𝐻′ × 𝑊′], with 𝐶ᇱ being the number of output 
channels, 𝐷ᇱ = 1, 𝐻ᇱ = 𝐻/32 , and 𝑊ᇱ =  𝑊/32. By 
default, the output of the 3D CNN branch is 4-
dimensional, while the output of the 2D CNN branch is 
3-dimensional. To make the output of these two branches 
compatible before combining, the output of the 3D CNN 
branch is designed to have a reduced depth component 
(𝐷ᇱ = 1), which can be dropped, hence becoming three-
dimensional in effect.  

While some studies only rely on a single 3D CNN 
network for simultaneous activity recognition and 
localization (e.g., [15]), the YOWO model also uses a 2D 
CNN branch in parallel to provide more accurate spatial 
information. YOWO uses the Darknet19 [19] network in 
the 2D CNN branch for object detection, which takes 
images of the form [𝐶 × 𝐻 × 𝑊] as input, while the 
shape of the output feature map is of the form of 
[𝐶" × 𝐻ᇱ × 𝑊ᇱ], where 𝐶" is the number of output 
channels.  

Afterwards, the output of the two branches is input 
into the CFAM module, which fuses the two 2D CNN 
and 3D CNN extracted information. Since the two 
branches are designed to have the same shape for their 
output feature maps, they can be easily concatenated 

along the channel dimension. The CFAM module then 
utilizes the fused feature maps to generate a combination 
of both motion and appearance data. Finally, the loss 
function used to train the YOWO model, is inspired by 
the losses defined in YOLO [19] and Fast R-CNN [20] 
models, and is comprised of the activity classification 
loss, and the localization loss between the bounding box 
predicted by the model and the ground truth bounding 
box. 

2.2 YOWO53  

The YOWO method has a modular architecture in 
which the networks in the 2D CNN branch and the 3D 
CNN branch can be replaced by other corresponding 
networks. The YOWO53 model exploits this architecture 
by applying the following modifications. As stated in 
Section 2.1, the YOWO method uses the Darknet19 
network in the 2D CNN branch for extracting spatial 
features from the current frame. While the Darknet19 
network is fast, its detection accuracy for small objects is 
not very high. To address this problem, the Darknet53 
network [21] is utilized in the YOWO53 method, which 
although slower, provides more accuracy for detecting 
small objects and hence is more suitable for applications 
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in the construction domain. Particularly, considering that 
most of the surveillance cameras on construction sites are 
installed at high altitudes and consequently, workers and 
construction equipment at a distance can appear very 
small in the recorded site videos. Following the above 
change in the 2D CNN branch, to keep the output shape 
of the 2D and the 3D branches consistent for fusion in 
CFAM, a single max-pooling layer is removed from the 
architecture of the network used in the 3D branch. Thus, 
doubling the size of the output feature maps of the two 
branches (𝐻ᇱ =  𝐻/16, and 𝑊ᇱ =  𝑊/16). This 
modification not only allows the concatenation of the two 
feature maps but also decreases the receptive field of 
YOWO53, which helps with the detection of small 
objects.  

The receptive field of a particular feature in the output 
feature map of a CNN is the region in the input image 
that this feature encodes. The size of this region depends 
on the depth of the feature as well as the combination of 
the previous layers. Usually as the size of the output 
feature map is reduced, its receptive field increases. For 
example, if an image is reduced to a single feature by a 
CNN, this feature encodes the important information of 
the entire input image. In object detection, the size of the 
object that can be detected by the network depends on the 
receptive field of the last layer (detection layer). If the 
size of the object is larger than the receptive field of a 
layer, it may not be correctly detected using the output 
feature map of that layer. Larger feature maps have 
smaller receptive fields and can be used to detect smaller 
objects.  

2.3 Three-stage method 

To investigate the benefits of using single-stage 
methods over the three-stage method for the activity 
recognition of excavators, YOWO and YOWO53 
methods are compared with the state-of-the-art three-
stage method proposed by Chen et al. [2]. This method is 
composed of detection using the YOLOv3 method, 
tracking using the Simple Online and Real-time Tracking 
(Deep SORT) method [22], and activity recognition 
using the 3D-ResNext-101 [23] network, with each stage 
optimized separately. The previous studies (e.g., [2,15]) 
did not fine-tune the Deep SORT module since it is one 
of the state-of-the-art methods capable of tracking 
multiple objects at the same time. The detection module 
can be trained using simple frame-level bounding box 
annotations. However, the activity recognition module 
used in the three-stage method requires the input video 
clip to contain only a single excavator performing a 
single activity. Thus, the detected and tracked excavators 
should be cropped before being input into the 3D CNN 
network for activity recognition. 

3 Dataset description 

Considering that the majority of publicly available 
datasets for the task of activity recognition are focused 
on human activities in various environments [24, 25], the 
first step in excavator activity recognition is to create a 
proper dataset. The video clips used in creating the 
dataset were manually collected from various sources 
including local construction sites and videos posted 
online on websites such as YouTube. Each video clip 
contains one or more excavators performing three types 
of activities: digging, swinging, and loading the trucks. 
To add to the diversity of the collected dataset and enable 
a thorough analysis of the selected methods, the videos 
are collected from 25 different construction sites, 
incorporating various site conditions, such as different 
camera angles, illuminations, occlusions, weather 
conditions, and video resolutions. The detailed statistics 
of the collected dataset are presented in Table 3. For 
labeling the collected dataset, the Computer Vision 
Annotation Toolbox (CVAT) [35], which is a free web-
based video and image annotation toolbox [35], was used 
in this paper. The ground truth for each labeled frame 
includes the type of the occurring activity and the top left 
and bottom right coordinates of the encompassing 
bounding box.  

4 Implementation details 

All of the models are trained on three RTX A6000 
GPUs in Ubuntu 20.04 and Python 3.7 environment and 
PyTorch 1.8, with 80% of the video clips randomly 
selected for training and the remaining 20% used for 
testing. The ShuffleNetV2_2x 3D CNN network was pre-
trained on the large-scale Kinetics-600 [26] dataset. Only 
the last layer of this network is fine-tuned on the collected 
excavator dataset. The 2D CNN networks, i.e., 
Darknet19 and Darknet53, are pre-trained on the COCO 
[27] dataset and only their last two layers are fine-tuned 
in this work. The models are trained for 20 epochs using 
the Adam optimizer [28] and their best results are saved. 

5 Experimental results 

Table 1 provides a comparative performance of the 
YOWO, YOWO53, and the three-stage methods. It can 
be seen that both YOWO and YOWO53 methods 
significantly outperform the three-stage method. The 
results in Table 1 show that the YOWO53 method 
obtains 15% improvement in classification accuracy and 
15.6% improvement in F1-score over the three-stage 
method, which aligns closely with the results reported in 
[16]. However, in contrast to the performance 
improvements of YOWO53 over YOWO for worker 
activity recognition [16], Table 1 shows that the YOWO 
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method obtains 3.5% improvement in classification 
accuracy and 3.3% improvement in F1-score over the 
YOWO53 method for excavator activity recognition.  

Table 1. Comparing YOWO, YOWO53, and the three-
stage method 

 
Classification 
accuracy (%) 

F1-score (%) 

YOWO 88.9 88.7 
YOWO53 85.4 85.4 

Three-stage method 70.4 69.8 

To further examine the difference in the performance 
of the YOWO and YOWO53 methods, Table 2 shows the 
classification accuracy, localization recall, overall 
precision, overall recall, and F1-score obtained by 
training and evaluating YOWO and YOWO53 methods 
on three different input sizes. The results for the smallest 
frame size (i.e., 128×128) agree with what was reported 
for workers in [16], with YOWO53 achieving better 
performance than YOWO in all of the metrics.  However, 
as the size of the input frame increases, the performance 
of YOWO53 drops lower than YOWO. Additionally, 
after the second smallest input size (i.e., 256×256), the 
performance of YOWO53 drops by around 1% in all 
metrics. This indicates that the smaller receptive field of 
the YOWO53 method (as stated in Section 2.2), while 
efficient for detecting workers, is not capable of covering 
big equipment such as excavators and consequently, 
adversely affects the model performance. Finally, the 
overall best result is obtained by the YOWO method 
using the largest input size (i.e., 448×448), with 88.9% 
classification accuracy, and 88.7% F1-score.  

To evaluate the real-world applicability of the 
YOWO and YOWO53 methods, the number of 
parameters of both methods, as well as the speed of 
processing each input size along with the highest batch 
size that can fit in the three RTX A6000 GPUs are 
presented in Table 2. It can be seen that the YOWO 
method processes 448×448 frames at 10.7 FPS, which is 
comparable to the processing speed of the YOWO53 
methods for the same frame size. However, it should be 
noted that YOWO is a smaller network compared to 
YOWO53 with 79 million parameters compared to 90 
million parameters, allowing higher batches to be 
processed at the same time by the network. 

5.1 Sensitivity analysis  

To further investigate the performance of the best 
YOWO model under various conditions, a sensitivity 

analysis was performed with different video conditions 
such as camera angles, illumination, occlusion, weather 
conditions, and video resolution. The results are 
presented in Table 3, demonstrating the high 
performance and applicability of the model for various 
real-world conditions.  

As mentioned in Section 4, 80% of the total number 
of video clips in the dataset was selected randomly for 
training, while the remaining 20% was used for testing 
the performance of the model. A consequence of this 
division strategy is the varying ratio between training and 
testing data for each of the considered sensitivity analysis 
cases, especially for cases in which the total amount of 
data in the dataset is relatively small. For example, for 
the high occlusion category there are 455 frames for 
testing compared to 1,493 frames for training, a ratio of 
almost 1:3, while for the snowfield category, the amount 
of training data is even less than that of testing, with 421 
frames available for training while 780 frames are used 
for testing. However, it should be noted that even in the 
snowfield category with such a train/test data imbalance, 
the model still achieves 94.7% activity classification 
accuracy and recall, showing its high accuracy even for 
cases with low training data, as long as the image quality 
is not severely degraded (e.g., high occlusion category).  

Another interesting example is the “Below ground 
level” category, with only 143 frames from one video clip 
for testing, for which due to the high quality of the input 
video clip, the performance is still high (82.6% activity 
classification accuracy and 82.5% recall). Another effect 
of the low amount of training data for some cases can be 
seen in the apparent performance contradiction for the 
low-resolution video clips only with 13,056 training and 
3,226 testing frames, which seems to outperform the 
high-resolution cases with 117,173 training and 29,840 
testing frames (about nine times more frames). However, 
after further investigation, the lower performance for 
high resolution video clips is found to be due to the 
inclusion of most other difficult cases, which resulted in 
almost the same performance for this category as the full 
dataset reported in Table 2. 

Finally, it can be seen from Table 3 that the worst 
performance of the model (66.4% activity classification 
accuracy) is in the high occlusion category, which is 
generally one of the biggest limitations of single-camera 
CV-based methods. However, considering that in these 
cases more than half of the excavator is not visible due to 
occlusion by other equipment, self-occlusion, or not 
being fully in the camera’s field of view, the results show 
the impressive performance of the model. 
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Table 2. Performance comparison for variants of YOWO and YOWO53 methods 

Model Input size Classification 
accuracy (%) 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

Speed 
(FPS) 

Batch 
size 

#param 

YOWO 448 × 448 88.9 88.7 88.7 88.7 10.7 64 
~79M YOWO 256 × 256 88.0 87.2 87.4 87.3 12 256 

YOWO 128 × 128 84.3 82.5 82.8 82.7 12.6 256 
YOWO53 448 × 448 85.4 85.4 85.4 85.4 10.4 32 

~90M YOWO53 256 × 256 86.8 86.3 86.3 86.3 10.9 32 
YOWO53 128 × 128 86.3 85.2 85.5 85.3 11.0 256 

Table 3. Results of the sensitivity analysis for the YOWO model 

Video clip condition 
Training Testing Classification 

accuracy (%) 
Precision 

(%) 
Recall 
(%) 

F1-score 
(%) #clips #frames #clips #frames 

Camera 
angle 

High altitude 41 5,872 12 1,288 76.5 75.8 75.8 75.8 
Mid altitude 520 80,571 130 21,601 89.3 89.2 89.2 89.2 
Ground level 284 43,296 68 10,034 76.5 75.8 75.8 75.8 

Below ground level 4 490 1 143 82.6 82.5 82.5 82.5 

Illumination 

Low 54 7,160 20 2,471 78.3 77.7 77.7 77.7 
Mid 562 91,784 133 22,469 93.6 93.6 93.6 93.6 
High 233 31,285 58 8,126 83.3 83.0 83.0 83.0 

Contre-jour 15 2,399 5 691 92.9 92.9 92.9 92.0 

Occlusion 
Low 221 31,875 62 10,445 87.6 87.6 87.6 87.6 
Mid 58 8,995 13 1,891 75.8 75.8 75.8 75.8 
High 11 1,493 2 455 66.4 66.4 66.4 66.4 

Weather 
condition 

Cloudy 117 12,870 35 4,316 80.9 80.3 80.3 80.3 
Sunny 714 114,539 170 27,279 90.2 90.1 90.1 90.1 

Snow field 3 421 1 780 94.7 94.7 94.7 94.7 

Resolution 
Low 96 13,056 22 3,226 96.4 96.4 96.4 96.4 
High 753 117,173 189 29,840 88.2 87.9 87.9 87.9 

6 Conclusions and future work 

This paper investigates the benefits of using YOWO 
and YOWO53 methods over the state-of-the-art three-
stage method for the activity recognition of excavators. 
The performance is evaluated using a custom dataset of 
1060 videos collected from local construction sites and 
YouTube videos. The obtained results show that the joint 
optimization of single-stage methods (i.e., YOWO, 
YOWO53), provides significant performance 
improvement over the three-stage method, in which each 
stage is optimized separately. In particular, the YOWO 
model achieved an activity classification accuracy of 
88.9% and an F1-score of 88.7%. In comparison, the 
YOWO53 model recorded slightly lower metrics, with 
both activity classification accuracy and F1-score at 
85.4%. However, the best performance of the three-stage 
method was the activity classification accuracy, and F1-
score of 70.4% and 69.8%, respectively. 

Although both single-stage methods proved to be 
superior to the three-stage method, however, in contrast 

to the results obtained in a previous study for workers 
[16], the performance of the YOWO53 method was 
lower than that of the YOWO method when increasing 
the input size. Considering that the YOWO53 method 
was developed to improve the detection performance for 
small objects (i.e., workers), the performance gain over 
the YOWO method is only for the cases where either the 
object of interest or the input size is small, while the 
opposite behavior is seen for excavators. Hence, 
indicating to a possible shortcoming of the current single-
stage methods and a possible future approach which is 
able to simultaneously recognize the activities of 
equipment and workers at different scales, especially for 
the interactive activities, which involve both workers and 
equipment. Therefore, a single network should be able to 
recognize both small (e.g., workers) as well as large (e.g., 
excavators) objects.  
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