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Abstract  

Physics-based simulations play a crucial role in 

the design and development of autonomous 

construction equipment. Currently, a key challenge in 

these simulations is the time-intensive task of 

preparing construction equipment models that 

accurately represent both the equipment's geometry 

and physics. Manual model creation for simulations 

becomes particularly laborious due to the integration 

of diverse mechanical data such as materials, joints, 

and drives with the geometric data. Extant methods 

for automatic physics-based modeling of standard 

modular robots are inadequate for addressing the 

complexities of construction equipment. Therefore, 

this paper investigates the feasibility of automating 

and streamlining the physics-based modeling process 

by fusing the construction equipment’s mechanical 

data into its 3D computer-aided design (CAD) model. 

The proposed method involves converting the 

construction equipment 3D CAD model into a 

universal scene description (USD) model for efficient 

data fusion. Subsequently, the method automatically 

configures material parameters, collision meshes, 

establishes component relations, and incorporates 

joints and drives for the USD model. To validate the 

efficacy of this approach, the proposed method is 

applied to create a physics-based model of a 

Caterpillar 390F LME excavator, and simulated in a 

scalable robotic simulator (NVIDIA Isaac Sim). The 

findings demonstrate that the proposed method 

significantly reduces the time required for physics-

based modeling compared to traditional manual 

methods.  
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1 Introduction  

Physics-based simulations play a pivotal role in 

facilitating the design and advancement of autonomous 

construction equipment such as automated excavators 

and trucks [1]. These simulations have provided an 

accelerated and safe approach to train, validate, and test 

the control algorithms and prototype designs of 

autonomous construction equipment before real-world 

implementation [1,2]. Moreover, in the quest to leverage 

deep learning for developing AI-enabled autonomous 

construction equipment, physics-based simulations can 

generate a wealth of annotated training data in a short 

amount of time [3]. This is particularly valuable in 

situations where data is difficult to obtain in the real 

world. In addition, physics-based simulations are 

increasingly employed by researchers to apply and refine 

reinforcement learning algorithms, thereby enhancing 

the operational intelligence of autonomous construction 

equipment [4,5]. 

Despite the advantages, a key challenge in utilizing 

physics-based simulations is the preparation and 

generation of construction equipment models that can 

accurately represent equipment geometry and physics. 

Inaccurate models can result in a sim-to-real gap, where 

algorithms and designs proven in simulations fail when 

applied in the real world [6]. Although simulation 

platforms such as Unity, Gazebo, and Isaac Sim offer 

environments to build these models, the physics-based 

modeling process is still time-consuming and requires 

modeling expertise [1,7]. This is because complex data 

required for the simulation, such as construction 

equipment materials, joints, drives, etc. need to be 

integrated during the modeling process, which requires a 

lot of manual work [2].  

Some studies have proposed the use of automatic 

physics-based modeling methods to reduce the manual 

effort in the context of modular robots. Modular robots 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

872

mailto:liqun.xu@wisc.edu
mailto:raj.veeramani@wisc.edu
mailto:zzhu286@wisc.edu


 

 

 

 

 

are systems composed of standardized modules, which 

can be combined in various ways to adapt to different 

tasks or environments [8]. Jace et. al [9] presented an 

automatic approach to model the robot kinematics and 

dynamics for modular robots, given only the module data 

and their arrangements. Maddalena et. al [7] proposed an 

algorithm that takes as input the Unified Robotics 

Description Format (URDF) files of the single modules 

with their desired arrangement and provides the final 

URDF of the assembled robot as a result. However, these 

methods still require manual configuration of modeling 

data such as materials and joints for each module. This is 

not a burden for modeling modular robots because only a 

few modules need to be configured and they can be 

reused for robot modeling. However, these methods are 

not effective in reducing the workload of physics-based 

modeling of construction equipment as they are far more 

complex and varied than standard modular robots.   

This paper introduces an automated physics-based 

modeling method through data fusion to streamline the 

process of creating equipment models for physics-based 

simulation. Inputs to this method include a construction 

equipment 3D CAD model along with required data for 

physics-based modeling, including materials, collision 

meshes, component relationships, joints, and drives. 

Initially, the 3D CAD model of construction equipment 

is converted into a universal scene description (USD) 

using Isaac Sim to facilitate data fusion. Then, our 

method automatically fuses the required data for 

simulation into the USD model. To demonstrate the 

effectiveness of our method, we created models of an 

excavator (Caterpillar 390F LME) using both the 

proposed method and the manual modeling method. Then 

we compared the time required by these two methods to 

complete the modeling. The results show that our method 

can greatly improve the modeling efficiency, and thereby 

can help promote the application of physics-based 

simulation in the development of autonomous 

construction equipment. 

2 Literature Review  

2.1 Physics-based Modeling and Simulation 

Platforms 

The evolution of simulation platforms such as Unity, 

Unreal Engine, Gazebo, Isaac Sim, and Webots has 

significantly impacted the field of robotics. These 

platforms offer diverse functionalities and environments 

for robot modeling, each with unique characteristics that 

distinguish them from one another [10]. 

Unity, primarily known for its widespread use in 

game development, has emerged as a versatile platform 

for robot simulation. Its user-friendly interface and robust 

physics engine make it an attractive choice for simulating 

complex robotic systems [11]. Unity's real-time 3D 

development capabilities enable the creation of detailed 

and dynamic environments, which are essential for 

testing the interaction of robots with their surroundings. 

The platform supports a wide range of robot models, 

from simple wheeled robots to more complex humanoid 

robots, allowing for extensive experimentation and 

research in robotics [10]. 

Unreal Engine stands out for its high-fidelity graphics 

and realistic simulation environments [12]. This platform 

is particularly favored for applications requiring 

photorealistic rendering, such as autonomous vehicle 

testing [13]. Unreal Engine's advanced lighting and 

shading capabilities contribute to creating highly 

immersive simulation scenarios. It is adept at simulating 

sophisticated robot models, including drones and 

autonomous vehicles, providing a realistic platform for 

testing sensors and navigation algorithms [14]. 

Gazebo, an open-source simulation platform, is 

renowned for its strong community support and extensive 

library of robot models and environments [15]. Its ability 

to simulate both indoor and outdoor environments with 

various physics engines makes it a versatile tool for 

robotics research. Gazebo is particularly popular for 

simulating multi-robot systems, such as swarm robots, 

and has been instrumental in numerous robotics 

competitions and research projects [16]. 

Webots is a user-friendly, cross-platform simulation 

software widely used in education and research. Its ease 

of use and comprehensive documentation make it 

accessible to both beginners and experienced users [17]. 

Webots support a broad range of robot models, from 

simple mobile robots to more advanced humanoid robots, 

making it versatile tool for various robotic applications. 

Isaac Sim, developed by NVIDIA, is tailored for 

robotics applications involving artificial intelligence (AI) 

and machine learning (ML). Its integration with 

NVIDIA's GPU technology enables high-performance 

simulations, crucial for training and testing AI algorithms 

[18]. Isaac Sim is adept at simulating complex robotic 

systems, such as robotic arms and mobile robots, and is 

particularly beneficial for scenarios involving ML and 

sensor processing. 

 

2.2 Physics-based Modeling of Construction 

Equipment 

Physics-based modeling has been widely used in 

autonomous construction equipment training and testing. 

To demonstrate control of large robots to perform 

construction tasks, Lei et al. [19] created a construction 

robot hand model in Isaac Sim, and trained it via 

reinforcement and imitation learning to conduct 

operations with 6 types of construction tools, such as 

power drill, flat screwdriver, adjustable wrench, etc. 
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Similarly, Sungjin et al. [20] employed Gazebo for 

dynamic modeling of spraying robots, evaluating their 

performance in construction tasks like indoor wall 

painting. Jaco et al., [21] built a wheeled robot model 

using Gazebo and then trained a map corner-based 

navigation model in a virtual world. Lofgren et al. [22] 

advanced this field by simulating an underground loader 

in Unity, training a deep reinforcement learning 

controller that autonomously adapts to varying terrains 

and soil conditions. Azulay and Shapiro [23] also used 

Gazebo for wheel loader modeling, achieving a controller 

adept at complex earthmoving tasks, and showcasing the 

potential for automation in construction. 

Furthermore, physics-based simulation is used for 

generating synthetic data. Wilfredo et al. [24] used Unity 

to simulate excavator postures, creating a dataset that 

bypasses the need for time-intensive manual annotation. 

Jia et al. [25] established a drone model in Unity for 

capturing simulated dam images, facilitating the training 

of dam defect detection algorithms. 

2.3 Automatic Physics-based Modeling 

Despite these available physics-based modeling and 

simulation platforms, manually building models in 

simulation platforms is still time-consuming and requires 

modeling expertise [7]. Some studies have proposed the 

use of automatic modeling methods to reduce manual 

modeling effort, and have investigated the automatic 

modeling process in the context of modular robots. For 

example, [9] introduced an automated approach for 

modeling robot kinematics and dynamics, requiring only 

module data such as joints, drives, etc. and their 

arrangements. Maddalena et. al [7] proposed an 

algorithm that takes as input the URDF files of the single 

modules with their desired arrangement and provides the 

final URDF of the assembled robot as a result.  

However, these methods have shortcomings that limit 

their use for modeling complex construction equipment. 

They require manual configuration of joints and 

additional data within the modeling software, obligating 

users to acquire proficiency in the software itself. 

Furthermore, for construction equipment lacking a 

substantial array of universal modules, these methods 

offer no advantage over direct manual modeling, thereby 

confining their applicability primarily to modular 

robotics. 

3 Methodology

 

 
 

Figure 1. Overview of the automatic physics-based modeling method
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The proposed method is designed to automate the 

physics-based modeling process of construction 

equipment. The inputs for the method include a 3D CAD 

model of construction equipment and other data required 

for physics-based modeling including materials, collision 

meshes, relations of components, joints, and drives. As 

shown in Figure 1, the 3D CAD model is initially 

converted into a universal scene description (USD) 

model using Isaac Sim to facilitate data fusion. Then, the 

various data are fused into the USD model. The overall 

fusion process comprises four steps: Firstly, the materials 

of components are set based on the materials data, which 

enables the components to have material information 

such as density and friction coefficient. Secondly, 

collision meshes are set to their corresponding 

components. This allows the components to emulate 

collision behaviors. Thirdly, motion dependencies 

between the components are established based on their 

relationships, which allows components to move with 

their dependent components accordingly. For example, 

bucket bolts will move with the bucket. Lastly, joints and 

drives are created based on their mechanical properties, 

which allows the components connected with the joints 

to move accordingly. At this point, the USD model 

integrated with the data is ready for simulation. 

3.1 Model Conversion 

To facilitate the fusion of data requisite for the 

simulation, the initial step involves converting the 3D 

CAD model of construction equipment into a USD model. 

USD is an open-source 3D scene description file format 

developed by Pixar. It can be used for 3D content creation 

and interchange among different tools [26,27].  

There are two reasons for choosing the USD format. 

The first is its dual support for both intricate construction 

equipment modeling and complex environmental 

constructs [28], thus facilitating the import of 

construction equipment models into its operating 

environment. Meanwhile, USD has a Python Application 

Programming Interface (API), and the USD model can be 

easily customized through Python script [29]. This 

conversion lays the groundwork for subsequent data 

fusion. Moreover, USD supports a variety of simulation 

platforms including Unity [30], Unreal [30], Isaac Sim 

[31], etc. 

3.2 Data Fusion 

Subsequent to the model conversion, data fusion can 

start. The first step of data fusion focuses on setting 

material properties to each component of the USD model. 

This involves a process where both the mechanical and 

aesthetic properties of materials are defined. Mechanical 

properties include aspects such as density, elasticity, and 

friction coefficients, which are crucial for accurate 

physical interactions in the simulation. These mechanical 

properties can be retrieved from technical specifications 

provided by construction equipment manufacturers. 

Aesthetic properties, on the other hand, involve visual 

characteristics like color, texture, and reflectivity, 

enhancing the visual realism of the model. Color codes 

and textures for construction equipment can be obtained 

through Internet search. Reflectivity can be determined 

by selecting the corresponding material from the 

rendering software, such as stainless steel, paint, etc. To 

organize and store these properties, a JavaScript Object 

Notation (JSON) document, designated as JSON-1, is 

compiled. This document serves as a comprehensive 

repository for the material attributes. Following this, an 

automated process retrieves the components and their 

material parameters from the document. The USD model 

is then systematically scanned, and the documented 

material parameters are applied to each respective 

component. This mapping ensures that each component 

of the USD model is a true-to-life representation of its 

physical counterpart, mirroring it in both functionality 

and appearance. 

The method then employs an automated process to 

parse JSON-1 and integrate the material properties into 

the USD model, ensuring each component reflects its 

real-world counterpart both in function and form. 

Following the materials setting, the second step 

focuses on setting collision meshes to components of the 

USD model. Collision meshes are simplified 

representations of the physical shape of each component. 

It provides an efficient way to detect and respond to 

collisions between robot components and/or their 

surrounding environment. The setting of collision 

meshes enables the construction equipment model to 

have realistic interaction within the simulation 

environment. Our method provides a range of collision 

mesh estimation methods for users to choose from, 

including triangle mesh, convex decomposition, convex 

hull, etc. In this step, JSON-2 document is created to 

encapsulate the collision mesh estimation method for 

each component in the USD model. The proposed 

method then systematically parses this document, 

extracting component names and their corresponding 

collision mesh estimation methods, and cataloging them 

into a Python dictionary structure where the component 

name is the key, and the collision mesh method is the 

value. Following this, all components in the USD model 

are traversed and collision meshes are set for the 

components listed in the dictionary accordingly. 

The third step involves setting up relationships 

between components. The mutual relationship amongst 

components determines which components can move 

together as a group. For example, the excavator bucket 

body and bolts on it move when the bucket moves, as the 

bolt and body are connected to the bucket, as shown in 
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Figure 1. In order to encapsulate the relationships among 

components, this method creates a relationship document 

JSON-3. This document employs a dictionary structure 

to chronicle the relationships among the various 

components. Keys are utilized to denote the names of 

dependent components, while values enumerate the 

associated followers. For example, the above relation is 

encoded as {“bucket”: [“bucket body”, “bucket bolt1”, 

“bucket bolt2” ... “bucket bolt6”]}. Within the USD 

model, these intercomponent relationships are depicted 

through parent-child hierarchies. All components that are 

children of a parent component are expected to move 

together when the parent component moves. Our 

technique proceeds to parse these relationships from the 

dictionary and then traverse all the components in the 

USD model hierarchically to check whether the current 

child-father relationship of each component is consistent 

with that in the dictionary. If any discrepancies are found, 

the parent and child designations are realigned 

accordingly. This iterative process continues until every 

component relationship in the USD model has been 

validated, guaranteeing an accurate representation of 

movement in the simulation environment. 

The last step is to add the joints and drives. In 

simulations, a joint refers to a functional connection 

between rigid bodies that facilitates a specific range of 

relative motion between them. This motion is typically 

enabled by a drive mechanism. For instance, the 

rotational movement of car wheels around an axle is 

attributed to revolute joints. If a wheel is designated as 

powered, a corresponding drive will be added to actuate 

it. In our approach, details pertaining to the joints and 

drives are stored in a document called JSON-4. This 

document includes the designation of the joint, the 

components it connects to, the associated drive 

mechanisms, and the physical parameters of the joint, 

such as damping coefficient, and stiffness, among others. 

These parameters can be obtained by from construction 

equipment manufacturers or by theoretical calculations. 

After obtaining this data, this method will add these joints 

and drives accordingly to the USD model. 

4 Implementation and Results  

To verify the effectiveness of the proposed method, 

we established the same excavator model on the Isaac 

Sim platform using both the manual modeling method 

and the proposed method. Then we compared the 

modeling time required by the two methods. 

4.1 Experimental Environment 

The experimental environment used in this study 

includes a server with an AMD Ryzen 9 5950X CPU 

running Ubuntu 20.04 system, NVIDIA GeForce RTX 

3090Ti GPU with 24G memory of a single graphics card, 

Nvidia Isaac Sim 23.01.  

The construction equipment selected for this 

experiment is a Caterpillar 390F LME excavator. Its 3D 

CAD model is downloaded from GRABCAD, as shown 

in Figure 2. This particular model is engineered with four 

hydraulic cylinders responsible for actuating the 

movement of its boom, arm, and bucket. Additionally, it 

features a swing joint that facilitates the rotation of its 

upper structure and two actuated sprockets that empower 

the excavator to advance, retreat, and turn. A breakdown 

of all the joints and drives incorporated in this model is 

systematically cataloged in Table 1. This excavator is 

composed of 142 joints, with a majority of 138 revolute 

joints that allow for rotational movements and 4 

prismatic joints that facilitate linear actions. In 

conjunction with this, the model incorporates 7 distinct 

drives, which are instrumental in actuating the various 

movements of this excavator. 

 
Figure 2. The 3D CAD model of Caterpillar 390F LME 

Table 1 Joints and drives statics 

Joint/drive type Number 

Revolute joint 138 

Prismatic joint 4 

Angular drive 3 

Linear drive 4 

4.2 Results 

Upon integrating the CAD model of the excavator 

with the JSON documents comprising the requisite data 

for physics-based modeling, we successfully generated 

an excavator model ready for simulation. Subsequently, 

in our evaluation conducted on the simulation platform, 

we tested an array of motion functions pertinent to the 

excavator. The outcomes of these tests demonstrated that 

our model is adept at replicating all the essential motion 

functions of the excavator. This is depicted in Figure 3, 

which showcases a sequence of video frames extracted 

from the simulation outcomes. These frames distinctly 

highlight the model's capability to accurately simulate the 

dynamic movements of critical components, including 

the boom, arm, bucket, track, and the excavator's upper 

body. 
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To determine the efficiency of our proposed method, 

we compared the modeling time required by the proposed 

method and the manual method. Before starting this 

modeling experiment, we had no experience in robot 

modeling. During the experiment, we recorded the time 

spent learning to model using Isaac Sim, which took a 

total of 28 hours. The duration of excavator modeling 

from start to completion was then recorded, which lasted 

72 hours. Finally, the time required for excavator 

modeling through the method proposed in this study was 

recorded, which was 8 hours. Almost all of these 8 hours 

were used to prepare the data required for modeling. The 

running time of the automatic modeling program was 

almost negligible, lasting less than 2 seconds. This 

comparison, shown in Table 2, reveals a stark contrast in 

time investment. The manual modeling process required 

approximately 100 hours. In contrast, our method needed 

only 8 hours to prepare documentation for materials, 

collision meshes, component relations, and joints and 

drives needed for physics-based modeling. Upon 

completion of this preparatory phase, the true efficacy of 

our approach becomes evident. It automatically fuses all 

the data from these documents into the final model, 

accomplishing this complex integration in an instant. 

This significant reduction in time, without compromising 

accuracy or detail, underscores the potential of our 

method to revolutionize the efficiency of physics-based 

modeling processes. 

 

 
Figure 3. Video frames of excavator simulation in Isaac Sim platform 

  

 

Table 2 Modeling time comparison 

Modeling method Time (hour) 

Manual modeling 100 

Our method 8 

5 Conclusion  

Physics-based simulations offer a rapid and secure 

platform for training, validating, and testing control 

algorithms, as well as prototyping designs for 

autonomous construction equipment. Our paper 

introduces an innovative method to automate the physics-

based modeling process using data fusion. This method 

transforms a 3D CAD model of construction equipment 

into a USD model, seamlessly integrating the necessary 

data for physics-based modeling through data fusion. 

When users apply the proposed method to build other 

construction equipment models for physics-based 

simulation, they only need to prepare the 3D CAD model 

of the construction equipment and the corresponding 

physical data. Our method can then be used to 

automatically integrate these data into the CAD model, 

enabling physics-based modeling. The study benchmarks 

the efficiency of this automated method against 

traditional manual modeling within an identical 

experimental setup, revealing marked enhancements in 

modeling efficiency.  

However, it is imperative to acknowledge certain 

limitations of our method. Firstly, it requires users to 

manually prepare the initial data required for physics-

based modeling. Additionally, as of now, the method 

does not possess the capability to incorporate sensors into 

the models. In the future, we will integrate a large 

language model such as ChatGPT, into the physics-based 

modeling pipeline. It will be used to extract and prepare 
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initial data from construction equipment technical 

specifications, eliminating the need for users to manually 

prepare this data. In addition, we will develop a function 

for adding sensors. Using this functions, users would 

only need to input the sensor type, location, and other 

parameters, and the sensor would be automatically 

integrated into the model. 
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