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Abstract 

This paper introduces a novel approach to crane 

path planning on construction sites through the 

utilization of Reinforcement Learning (RL) and 

Virtual Reality (VR) simulations. The strategy 

includes a comprehensive simulation model that 

incorporates an agent, actions, states, environment, 

and a reward system. After undergoing extensive 

training across millions of episodes, the crane agent 

has acquired optimal path-planning techniques that 

enhance lifting time, manage energy consumption, 

and improve collision detection. The results highlight 

the agent's impressive growth from initial exploration 

to peak efficiency, represented by cumulative rewards 

and evolving simulation times. The findings also 

demonstrate the effectiveness of RL-based path 

planning in maneuvering dynamic construction 

environments and optimizing crane operations.  
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1 Introduction 

The construction industry constantly evolves, aiming 

to maximize efficiency and minimize costs. Over the past 

few years, off-site construction has gained traction due to 

its ability to save time and money. This approach 

involves transporting prefabricated modules to the 

construction site for installation, making cranes an 

essential component.  

Despite numerous attempts to improve crane 

operations, outdated tools and planning methodologies 

still need to be used. According to [1,2], current practices 

involve lift engineers generating CAD-based 2D and 3D 

simulations of various lift scenarios in a static and time-

consuming manner. The planning process is often trial 

and error, with better alternatives not being discovered 

until later stages.  

To address the path planning problem, many studies 

have explored using automated planning tools and 

information technology to enhance current practices. The 

initial works focused on using deterministic algorithms 

for path planning, as [3] outlined. To automate the path 

planning task, they employed two heuristic search 

methods, hill climbing and A*. Hill climbing involves an 

iterative approach of adjusting a solution to minimize the 

distance or any desired cost function. In comparison, A* 

uses a nodes approach, where it tries to find the shortest 

path between the start and end nodes using a cost function 

similar to hill climbing. However, these methods proved 

time-consuming and often stuck in local optima instead 

of finding the optimal solution.  

Several studies have explored using metaheuristic 

algorithms to improve crane path planning. [4] used an 

ant colony to achieve collision-free path planning for 

mobile cranes, while [5] employed genetic algorithms to 

plan lifts in complex environments. However, 

metaheuristic algorithms are only sometimes the optimal 

solution and can be heavily influenced by initial 

conditions. At the same time, other works, such as [6], 

attempted to use hybrid approaches to tackle the issue, 

with similar results as previous works. 

Recently, many researchers have turned to 3D/4D 

simulations and Building Information Modelling (BIM) 

to simulate and generate feasible solutions for lift 

planning. [1] integrated 4D crane simulation and BIM to 

manage operations on a construction site, while [7] 

presented a data-driven crane management system for 

industrial projects. Although BIM-based simulations 

offer detailed visualization, they may struggle to handle 

dynamic scenarios, making them less adaptable. [8] 

developed a methodology that enables automatic re-

planning of lifting paths for robotized tower cranes in 

dynamic BIM environments to address this issue. They 

used a GPU-based parallelization approach for discrete 

and continuous collision detection. However, the 
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methodology was built using a genetic algorithm, which 

may generate premature solutions.  

According to [9], Reinforcement Learning (RL) is a type 

of machine learning that relies on learning through 

experience without needing previous data. The learner is 

tasked with discovering which actions yield the highest 

rewards by experimenting with different approaches, as 

explained by [10]. RL has been applied successfully to 

challenging tasks, such as game-solving. AlphaGo was 

developed to solve the game of Go by Silver et al.2017 

[11], notably self-driving and robotics. As for the 

implementation of RL in construction projects, there 

have been some works using it to enhance the overall 

planning process. [12]explored RL applications during 

the design phase for decision-making purposes. As for 

crane operations, [9] used a hybrid greedy and RL 

approach for crane mat layout optimization. The same 

techniques used to tackle these complex issues can also 

be used to address the crane path planning issue. 

This study identifies several areas of improvement 

where further work is needed, including the following:  

1. Better tools must be provided for crane operators 

to develop practical and achievable lifting paths where 

less redundant and efficient lifts are desired.   

2. Current path planning methodologies often fail to 

account for the unique complexities of mobile crane 

operations and their planning procedures. These 

complexities relate to the congested nature of 

construction sites and the requirements needed to 

perform a successful lift effectively. 

3. A fully automated path planning process that 

explores all possible lifting approaches while considering 

the changing nature of construction sites needs to be 

developed. 

4. There is a need for better-optimized procedures that 

can learn from the built environment and adjust to 

changes that occur during construction. Therefore, a 

framework with an adaptive learning approach is 

required. 

This methodology combines VR simulations with RL 

to address previously mentioned research gaps. This 

work aims to address a need for developing a more 

comprehensive understanding of optimal solutions in 

complex and dynamic environments. By integrating 3D 

environmental elements, the methodology aims to 

identify precise solutions that consider aspects such as 

time, complex movement, and realistic scenarios that 

previous methods have overlooked. Furthermore, using 

RL, the methodology seeks to enhance exploration within 

construction sites, particularly in the automated path 

planning of mobile cranes, which can be complex and 

challenging to adapt to dynamic site conditions. This 

integration of VR simulations and RL allows a thorough 

evaluation of diverse alternatives, ultimately selecting 

the most optimal solutions. The methodology fills the gap 

left by the absence of fully automated path-planning 

methods tailored specifically for mobile cranes and 

dynamic construction settings. Ultimately, this 

methodology aims to enhance the understanding of 

adapting to changes in the built environment during the 

construction phase, leading to better solutions for 

complex and dynamic building projects. 

2 Methodology 

In this section, a brief description of the methodology 

followed in developing the RL-based path planning 

framework. Figure 1 displays the main steps followed; 

where after identifying the lack of a realistic solution 

based on a 3D environment is needed to optimize the lift 

planning resources, data was collected to develop a 

simulation model that would assess various lift 

alternatives, and based on the main KPI the best solution 

is suggested for the user. 

 
 

Figure 1. The overall research methodology. 
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2.1. Data Collection 

In order to realistically replicate the lifting planning 

process, the authors determined that three main types of 

data are necessary: Crane data, Lifting Module data, and 

Building data. 

2.1.1. Crane Model 

The crane model used in the simulation is a highly 

accurate replica of a crawler crane widely used in 

industry. The model boasts a boom length of 36.5 

78meters, for which the 36 meters configuration was 

selected, a track length of 10.0 meters and a width of 7.85 

meters, and a maximum capacity of 300 tons, making it 

a highly versatile and reliable piece of machinery for a 

wide range of construction projects. The 3D rendition of 

the crane model is presented in Figure 2, showcasing the 

equipment's intricate details and precise specifications. 

 
 

Figure 2. The crawler crane 3D model. 

2.1.2. Modules and Buildings 

Regarding the modules, a diverse array of payloads 

was brought into a 3D format, each possessing unique 

dimensions, weight, and physical attributes. Figure 3 

contains a sample of a payload. A commonly used type 

of construction trailer is used, with dimensions of 

6.01×2.34×2.69 cubic meters and a total weight of 

2850kg. The trailer is transported to provide a suitable 

workshop area for welders and is needed in the vicinity 

of the construction site.  

 
A) Construction trailer 3D 

model. 

 
B) 3D representation 

of the lifting task. 

Figure 3. The 3D model of payload and construction 

site. 

 

As for the buildings were imported via a BIM format, 

with the models' measurements and characteristics 

preserved, albeit with simplified component properties 

and reduced detail to optimize simulation performance. 

A traditional construction project is selected to display 

the efficiency of the developed tool. The crane agent is 

assigned a task of lifting a payload from its pick location, 

highlighted in red, and delivering said payload to its set 

location, highlighted in green, effectively performing a 

single lift. 

2.2. Objectives Definition 

The main focus of this framework is to provide a lift 

plan that enhances the following components: 

2.2.1. Lifting Time 

Crane operators are responsible for ensuring the safe 

and efficient transport of payloads. To achieve this, they 

rely on lifting times as a crucial factor. The longer the 

payload spends in the air, the higher the risk of accidents, 

which is why keeping the lifting time to a minimum is 

essential. Additionally, the operator must follow the 

shortest and safest paths during transport to reduce the 

risk of damage to the payload or any surrounding 

structures. Maintaining the payload's elevation level 

throughout the lift is also preferred, as sudden changes in 

height can cause instability and increase the risk of 

accidents. According to a recent study by [13], heavy lifts 

are often planned to remain low until they're close to their 

destination, ensuring maximum safety and efficiency 

during transportation. 

2.2.2. Energy consumption 

There exist three distinct alternatives to move a load 

in a more sustainable manner. The first one is walking, 

which involves transporting the object from point A to 

point B while the mobile crane moves. This type of 

movement is deemed suboptimal, primarily because it 

significantly increases planning costs. The need for crane 

mats for crane movement is a major contributor to the 

high costs. To mitigate mat costs, one of the most 

common measures is to plan the lifts in a project such that 

the crane does not need to walk while performing the 

lifting procedure. This is according to [13].  

The duration of the lifting process is critical in 

ensuring a safe and efficient transport of the payload 

when operating a crane. The primary objective of the 

crane operator is to move the load from one location to 

another using the shortest and safest route possible while 

minimizing lifting time. To further enhance safety 

measures, it is recommended to keep the payload at a low 

elevation until it reaches its destination. A recent study 

by [13] revealed that heavy lifts are often planned to 
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maintain a low elevation during transport.  

The equipment's Hook Movement feature is equipped 

with a primary hook that offers a singular degree of 

freedom in the vertical direction. This exceptional feature 

allows the hook to effortlessly lift or lower attached 

objects, making it an incredibly versatile and efficient 

tool suitable for a wide range of applications. 

2.2.3. Collision Detection 

Typically, construction sites implement numerous 

safety measures to prevent collisions. However, for this 

particular project, it was determined that five types of 

collisions would be of particular concern. Two of these 

occur before lifting the load, including collisions between 

the crane and humans and between the crane and the 

building. An additional three types of collisions are 

considered once the load has been lifted, including 

collisions between the payload and the crane, collisions 

between the payload and humans, and collisions between 

the payload and the building. 

3 Simulation Model Development 

In this section a brief description of the methodology 

used to develop the simulation model is presented.it 

consists of five main components which are the agent, the 

actions, the states, the environment, and the rewards. The 

interaction between the different components is 

represented in Figure 6. 

 

 
Figure 4. The reinforcement learning model. 

3.1. The Agent 

Initially, a crane agent is needed to take different 

actions to transport the payload from its original loading 

point to a predetermined set point. To achieve this task, a 

proper locomotion system is needed. 

A mobile crane’s locomotion system is more complex 

than that of a tower crane. Where the crane is made up of 

many parts that the crane operator needs to coordinate in 

order to perform a lift using the crane’s full capacity. For 

the purposes of this work, three components’ movements 

were modeled and are used in the training process, which 

is seen in Figure 5. 

The main boom, where the boom is capable of 

rotation around the central axis of the crane. Both 

movements were taken into consideration, and the impact 

the angle has on the loading capacity was considered as 

well. 

 
A) Crane Tracks 

 
B) Main hook 

 
C) Crane Boom 

Figure 5. The main Crane Components 

The second comes the crane’s tracks, which enable 

the crane to move forwards, backwards and rotate around 

the it’s center. 

Finally, the crane’s hook’s movement was considered. 

This component has a relatively simple movement, where 

it moves either up or down depending on the lift phase. 

3.2. The Actions 

Since the agent is comprised of three main 

components, each component was given a degree of 

freedom (DOF). 

 
A) Crane Tracks 

 
B) Main hook 

 
C) Crane Boom 

Figure 6. The degrees of freedom of the main crane 

components. 

The tracks are given two DOFs, one rotation around the 

Y axis, and one translation along the x-axis, as seen in 
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Figure 6A. For the agent; this constitutes four different 

actions that can be taken. 

The main hook was given one degree of freedom 

along the Y axis as seen in figure 6B, which allows the 

agent to take two different additional actions. 

Finally, the main boom was given two DOFs, two 

rotations, one rotation around the Y axis and one around 

the Z axis, as seen in Figure 6C. This constitutes four 

additional actions. 

3.3 The environment 

Once, the crane agent is instantiated in the 3D 

environment it starts interacting with the different 

environment components to explore it. In order to 

improve the agent’s interaction, a set of sensors are 

attached to it. The sensors use collisions in with the 

different 3D models and collects data about the 

geometrical properties of 3D component found in the 

simulation environment. In the following training 

episodes, the agent uses the data collected through 

sensors to avoid colliding with the different components 

of the environment. for instance, when a sensor collides 

with a building, it can identify physical dimensions, 

velocity, and its tag. Where there are four main tags 

Human, Obstacle, and Objective, Crane.  

3.4. The states 

The simulation is run for a predefined number of 

iterations/episodes. In each episode, the location of each 

major element is stored alongside the element’s velocity 

local rotation.  

In the initial runs of the simulation, and prior to 

adding a penalty to the collision of the crane model with 

the payload, the agent could move the payload by 

pushing it towards the set point to gain the final reward. 

To penalize the suboptimal behaviour, an additional 

variable was added for the payload, which is a Boolean 

variable. The Boolean value represents whether the 

object is being lifted; once the object is connected to the 

hook, the Boolean value is turned to true. 

Finally, the environment is reset to its initial 

configuration in three cases: 

1. The episode will end if the maximum number 

of steps has been attained and the payload is 

yet to be delivered. 

2. If the agent leaves the environment, the 

episode will end. 

3. If the payload is delivered to the set location, 

the final reward is given, and the episode is 

terminated. 

3.5. Reward signal selection 

While the agent is training, it is essential to select the 

appropriate reward; this task is perhaps the most critical. 

Moreover, selecting a reward that balances penalties and 

rewards is necessary. For instance, if the agent is being 

over-penalized, the behavior resulting from the training 

would be suboptimal. For this work, various rewarding 

strategies were explored, and the final selected strategy 

was selected based on its merits and final training results. 

The reward pseudo code. 

Input: 

  Crane initial location (Cl), Payload initial location 

(PL), Crane capacity (Cc), Payload weight (Pw) 

  for steps = 1 to Number of iterations 

    for steps = 1 to max steps 

        if PL is disconnected 

           Compute D 

           if D > 0.5m 

               Act from possible actions  

               Apply Move penalty × D.    

               check for collision. 

               if a collision is true 

                  Apply collision penalty. 

            else if D < 0.5m 

                Apply connection. 

                Add Lift reward. 

        if PL is connected 

            Compute Dps. 

            If Dps > 0.5m: 

                Act from possible actions 

                Apply Move penalty × Dps 

                check for collision. 

                If a collision is true: 

                    Apply collision penalty. 

             Else if Dps < 0.5m: 

                 Set payload. 

                 Add Final reward. 

     Reset environment. 

 

Where:  

D: distance between from crane to the object. 

DPS: Distance between payload and set point. 

In order to attain the previously determined objectives, 

which are the optimization of the lifting time, energy 

consumption, and collision detection, three different 

types of rewards were built into the training process. The 

first reward is related to the lifting time, which is highly 

affected by the number of actions taken and the overall 

time needed to deliver the payload to its set location. 

Furthermore, each action has its parameters, such as 

movement speed, damping ratio, and interaction with the 

previous movement. For instance, when the crane is 

moving, no other action can be taken until the crane is at 

a complete stop. All the previously mentioned parameters 
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are combined to calculate the time needed to perform the 

lift, and the subsequent reward signal associated with the 

movement is developed to penalize the agent for each 

time spent lifting and transporting the object. This 

penalty ensures that the resulting lift uses the shortest 

lifting time. The penalty amount was selected after 

multiple iterations, where the initial penalties were severe 

enough to disable the agent from moving. 

The second reward signal used is related to collisions 

or leaving the training area. The objective of the training 

is to discover all of the possible alternatives that can be 

used to perform a lift. It was decided that the agent would 

leave to explore the whole construction site. However, in 

some instances, the agent would leave the training area; 

thus, in those instances, a significant penalty is used to 

prevent the agent from leaving the said area. Furthermore, 

the episode is instantly terminated since, based on the 

author's experience with the model, the agent does not 

find its way back to the payload once it has explored the 

extremities of the training area. 

Additionally, using the same approach, the agent 

sometimes collides with the surrounding obstacles and 

buildings despite the built-in sensors. An additional 

penalty is added based on the collision tag in those 

instances. The episode is terminated in some instances 

where the agent either collides with a human or a building. 

The other collisions are only penalized to allow the agent 

to train for an extended period. 

The third type of reward is related to the type of action 

taken, where specific actions are preferred. For instance, 

since pick-up and walk operations are less favorable due 

to their increased cost, crane movements are more 

penalized than boom and hook movements. Next, main 

boom movements are expected to consume more energy 

than hook movements. Thus, they penalized more than 

hook movements. Finally, hook movements are given the 

lowest penalty. 

Finally, the main reward signals for the crane are 

those related to lifting and delivering the payload. The 

first portion of the reward is connecting the payload to 

the hook; once the agent lifts the payload, it receives an 

enormous reward. The second portion relates to the agent 

setting the payload in the set place where the final reward 

is given and the episode is terminated. If the agent lifts 

the payload and fails to deliver it, the episode is 

terminated, and the environment is reset. 

4 Results 

The following section sheds light on the initial 

findings of our research and emphasizes the efficacy of 

our methodology. To quantify the impact of our 

methodology, three main indicators are used: cumulative 

rewards, episode length, and curiosity value indicators. 

The cumulative rewards graph displays the agent’s 

improved training, which starts with negative outcomes 

(no solutions) and improves in value until it reaches a 

298-point solution. To understand the cumulative 

rewards graph efficiently, the episode length indicator is 

used, which displays the number of steps needed by the 

agent to achieve the task; a lower number of steps 

indicates a more optimized solution. In order for the 

agent to decrease the number of episodes to achieve the 

lifting task, it must have a significant focus on exploring 

the actions, space, and the environment; this exploration 

task is achieved through curiosity, where the agent’s 

focus on exploration in later episodes coincides with the 

decreased episode length and as a result of the latter 

higher cumulative rewards. To get a better understanding, 

you can refer to Figure 7, which displays the cumulative 

rewards achieved per episode and reveals some 

intriguing insights. In the first 500,000 episodes, the 

agent encountered a formidable challenge due to the 

task's complexity, leading to a high number of 

exploratory and negative rewards resulting in penalties 

for every action. However, the agent discovered a 

promising solution around the 550,000th episode, which 

significantly improved the outcomes. Nonetheless, 

further refinements were necessary to optimize the 

training process. In the subsequent episodes, the agent 

consistently improved its approach, gradually climbing 

towards the optimal policy. Eventually, it peaked at 298 

total rewards before stabilizing at approximately 4 

million episodes. 

 

Figure 7. The cumulative reward value per episode. 

The study conducted by the researchers involved a 

comprehensive examination of various factors that 

influence the efficiency of an agent in executing tasks 

proficiently. Amongst these factors, the duration of each 

episode was given special consideration, as it is a crucial 

parameter used to evaluate an agent's overall 

performance. The researchers analyzed the simulation 

time of the agent during its initial million episodes and 
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found that it ranged from 1900 to 800 seconds, which is 

significantly longer than the desired duration. This 

indicates that the agent was in the exploratory phase, 

trying to identify the best possible path to achieve the 

assigned task. The researchers observed a significant 

decrease in the simulation time as the simulation 

progressed, which continued until the 3.5 millionth 

episode. This trend indicates that the agent had identified 

an optimal path and slightly improved the discovered 

solution. This discovery led the agent to find the most 

efficient path, which could be completed within 17.8 

seconds in the simulation environment. The agent's 

continuous improvement and progress ultimately 

revealed the most efficient and effective way to complete 

the task. The episode length results are highlighted in 

Figure 8. 

 

 

Figure 8. The episode length is in seconds per episode. 

To assess an agent's learning progress, it's vital to analyze 

its level of curiosity and how it interacts with the 

environment. Curiosity value estimates provide valuable 

insights into the agent's learning patterns, reflecting its 

interest in exploring information. Higher values indicate 

strong engagement and a deep desire to learn, while 

lower values suggest a lack of enthusiasm for exploration 

and learning. By measuring curiosity-driven behavior, 

we can gain valuable insights into the agent's interest 

levels and learning patterns, which help us understand its 

progress. Figure 9 presents a graphical representation of 

the curiosity value estimates for behavior analysis. The 

results indicate a clear pattern of curiosity value 

progression that aligns with expected trends. At the 

beginning of the learning process, the agent exhibits 

minimal curiosity, but its curiosity level gradually 

increases to larger values in later episodes.  

This indicates a notable surge in engagement or interest 

as the agent continues to learn. Statistical mean and 

standard deviation measures support this progression, 

demonstrating a distinct shift from initial disinterest to 

intense curiosity. Evaluating the agent's curiosity-driven 

behavior is crucial for understanding its learning patterns 

and progress. This leads to more effective learning by 

ensuring the agent actively engages with the environment 

and explores new information. After the lift was 

developed, the authors assessed its validation using two 

approaches, which are face validation and VR lift 

assessment.  

 

In the first approach, the authors used the computer 

model in the virtual environment and analyzed the 

different steps used to lift and deliver the payload. 

However, the computer version, although a 3D approach 

was deemed insufficient due to the presence of certain 

blind spots that the users could miss, to that extent a VR, 

the authors explored the lift using a gamified approach, 

where they moved along the environment during the lift’s 

execution and assessed the validity of the lift in the 

virtual environment. 

 

 

Figure 9. The curiosity value estimate per episode. 

5 Conclusion and Future Directions  

This work was used to develop a new tool for the 

construction industry that helps with crane path planning. 

The tool is designed to create lifting paths that are more 

comprehensive and take into account the changes that 

occur on a construction site. This leads to a smoother 

lifting process, which reduces planning time and 

produces more accurate results. The tool helps to 

improve collision detection, decrease lift complexity, and 

lower energy consumption. In addition, we have 

incorporated RL and VR simulations to make the 

planning process more resilient to unforeseen changes on 
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the construction site. Using a virtual environment 

enhances the planning process, allowing for updates to be 

made to the crane agent training and lifting capabilities 

based on changes in the construction site, resulting in 

more reliable and efficient lifting schemes. 

The authors developed a comprehensive simulation 

model to achieve our goal. This model included an agent, 

actions, states, environment, and a reward system. By 

training the crane agent through numerous episodes, the 

agent could detect optimal path-planning strategies. The 

agent's learning journey was tracked through cumulative 

rewards, which progressed from exploratory phases to 

achieving peak efficiency after approximately 4 million 

episodes. Analysis of simulation times highlighted the 

agent's evolving learning patterns, ultimately identifying 

the most efficient path within the environment. Face 

validation and VR-based assessment were performed to 

validate the developed approach's results. The results 

demonstrated the agent's ability to navigate complex 

environments, optimize lifting processes, and minimize 

simulation times. The insights gained through the agent's 

learning patterns and performance metrics validated the 

effectiveness of RL-based path planning in dynamic 

construction scenarios.  

Future works will involve conducting a comparative 

analysis with real-life path planning scenarios by testing 

the developed model in live construction settings. By 

aligning simulated results with real-world scenarios, we 

aim to refine and validate our methodology for seamless 

integration into actual crane operations. Ultimately, our 

approach will contribute to safer, more efficient, and 

adaptable construction practices. 

References 

[1] A.N. Tak, H. Taghaddos, A. Mousaei, A. 

Bolourani, U. Hermann, BIM-based 4D mobile 

crane simulation and onsite operation 

management, Autom Constr 128 (2021) 103766.  
[2] S. Hu, Y. Fang, Y. Bai, Automation and 

optimization in crane lift planning: A critical 

review, Advanced Engineering Informatics 49 

(2021) 101346. 

[3] P.L. Sivakumar, K. Varghese, N.R. Babu, 

Automated Path Planning of Cooperative Crane 

Lifts Using Heuristic Search, Journal of 

Computing in Civil Engineering 17 (2003) 197–

207.  

[4] X. Wang, Y.Y. Zhang, D. Wu, S. De Gao, 

Collision-Free Path Planning for Mobile Cranes 

Based on Ant Colony Algorithm, in: Materials, 

Mechatronics and Automation, Trans Tech 

Publications Ltd, 2011: pp. 1108–1115.  

[5] P. Cai, I. Chandrasekaran, J. Zheng, Y. Cai, 

Automatic Path Planning for Dual-Crane Lifting 

in Complex Environments Using a Prioritized 

Multiobjective PGA, IEEE Trans Industr Inform 

` (2018) 829–845.  

[6] K. Boutouhami, A. Bouferguene, R. Lemouchi, 

M. Assaf, M. AL-Hussein, J. Kosa, Hybrid 

Approaches For Handling Mobile Crane 

Location Problems In Construction Sites, in: 

2023 Winter Simulation Conference (WSC), 

2023: pp. 2722–2733. 

[7] S. Han, Z. Lei, U. (Rick) Hermann, A. 

Bouferguene, M. Al-Hussein, 4D-based 

automation of heavy lift planning in industrial 

construction projects, Canadian Journal of Civil 

Engineering 48 (2021) 1115–1129.  

[8] S. Dutta, Y. Cai, L. Huang, J. Zheng, Automatic 

re-planning of lifting paths for robotized tower 

cranes in dynamic BIM environments, Autom 

Constr 110 (2020) 102998.  

[9] G.M. Ali, A. Bouferguene, M. Al-Hussein, 

Crane Mat Layout Optimization Based on Agent-

Based Greedy and Reinforcement-Learning 

Approach, J Constr Eng Manag 149 (2023) 

4023067.  

[10] R.S. Sutton, A.G. Barto, Reinforcement 

Learning: An Introduction, A Bradford Book, 

Cambridge, MA, USA, 2018. 

[11] D. Silver, J. Schrittwieser, K. Simonyan, I. 

Antonoglou, A. Huang, A. Guez, T. Hubert, L. 

Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, 

F. Hui, L. Sifre, G. van den Driessche, T. Graepel, 

D. Hassabis, Mastering the game of Go without 

human knowledge, Nature 550 (2017) 354–359.  

[12] S. BuHamdan, A. Alwisy, A. Bouferguene, 

Explore the application of reinforced learning to 

support decision making during the design phase 

in the construction industry, in: Procedia Manuf, 

Elsevier B.V., 2020: pp. 181–187. 

[13] N. Kayhani, H. Taghaddos, A. Mousaei, S. 

Behzadipour, U. Hermann, Heavy mobile crane 

lift path planning in congested modular industrial 

plants using a robotics approach, Autom Constr 

122 (2021) 103508.  

  

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

887


