
 

Automated Decision Support System Based on 
Quantification of Defective Tubular Steel Temporary 

Materials for Quality Circles. 

James Mugo Njoroge1, Seojoon Lee2, Kyuhyup Lee3, Junsung Seol1, Younghee Chang2 and 
Soonwook Kwon4 

1Department of Civil, Architectural and Environmental System Engineering, SungKyunKwan University, Republic 
of Korea. 

2Department of Global Smart City, SungKyunKwan University, Republic of Korea.  
3Convergence Engineering for Future City, SungKyunKwan University, Republic of Korea.  

4School of Civil, Architectural Engineering and Landscape Architecture, SungKyunKwan University, Republic of 
Korea.    

mugojames254@gmail.com, sjlee8490@naver.com, leekyuhyup@naver.com, seol987@naver.com , 
yhyhchang@g.skku.edu,  swkwon@skku.edu  

 
Abstract 

Temporary materials are stored in construction 
warehouses after and before they are used in 
construction sites. Most of these materials are made 
of steel tubular sections such as square, circular, and 
rectangular sections. However, due to frequent reuse 
and their storage conditions they become subject to 
defects such as rust and bend which affect their 
quality for use in construction projects. Since these 
materials are stored in stacks or batches, checking the 
materials individually for defects can be time 
consuming making end point surface defect detection 
more efficient for construction workers. Deep 
learning techniques have proven to be more efficient 
than manual inspection. However, quantification of 
materials with defects for decision making on reusing, 
repairing, and disposing actions and documentation 
is still a challenge for construction workers. Hence, 
this paper quantifies temporary tubular steel 
materials; square hollow section, circular hollow 
section and rectangular hollow section with common 
cross section area defects using deep learning 
technique connected to a web platform for decision 
making by construction quality circle workers. The 
proposed system achieved an average precision of 
84.9 percent with 105.2 GFLOPS and a speed of 20 
seconds per inference.  
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1 Introduction 
Construction projects use temporary materials to 

provide support and safe working platforms for the 
workers. The dominant materials used for these 
structures are tubular steel materials such as square 
hollow sections, rectangular hollow sections, and steel 
pipes. However, with frequent reuse and storage 
conditions of these materials, they become subject to 
surface defects such as rust and bend which has the 
potential of causing accidents. These materials are 
stacked in batches as shown in figure 1 which makes end 
point surface defect detection faster and productive 
method of judging their quality.  

Monitoring these surface imperfections is done by 
quality circle workers. Quality control circles or simply 
quality circles encourages construction workers to 
actively participate in continuous improvement of 
material quality in construction [1]. However, these 
workers rely on manual inspection checklist and 
reporting which not only reduces productivity but also, is 
prone to human error.  Computer vision techniques such 
as object detection are being employed to replace manual 
inspection and identification of defects in areas such as 
concrete cracks and anomalies in dimensions and 
misalignment, however, there exist a gap on 
quantification of temporary tubular materials with 
surface defects for decision making by construction 
workers in quality circles for quality control.  
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Figure 1. End point surface of stacked steel 
sections. 

Hence, this paper proposes an automated decision 
support system based on quantified number of materials 
with surface defects; rust, bend and, rust and bend using 
deep learning object detection yoloV7 model. The model 
is deployed on flask web framework for visualization, 
with a rectification action and reporting of the results 
which can be used on mobile devices by quality circle 
construction workers. This is also visualized on local 
computer system by the management in real time.  

2 Background 

2.1 Tubular Steel Temporary Materials 
Temporary materials are very important for the 

erection of temporary structures such as scaffolding, 
falsework and formwork systems. Metal temporary 
materials such as steel and aluminium are frequently used 
in the construction industry for these temporary 
structures due to their guaranteed strength, rigidity, and 
the ability to erect and dismantle quickly. Additionally, 
they are easy to reuse which makes them much cheaper 
compared to other alternatives such as timber based 
temporary materials. However, due to frequent reuse and 
exposure to varied environmental conditions, these 
metal-based materials become subject to rust which 
undermine their structural strength creating unsafe 
working condition on construction sites. Additionally, 
hollow steel sections such as square hollow sections 
experience global and local deformation under excessive 
loading especially when stored in batches creating a warp 
or bend on the cross-section area. This undermines the 
hollow steel section’s aesthetic nature and their structural 
strength [2].  

2.2 Deep Learning-Based Inspection 
The quality inspection of these materials is mainly 

done manually, where workers or inspectors check these 
surface defects for quality control. However, use of deep 
learning techniques such convolutional neural networks 

(CNN) on identifying these surface defects have gained 
attention in the past decade. They involve extracting 
useful information from images and videos to reduce the 
involvement of human inspectors and construction 
workers. For instance, Hussein et al. [3] employed VGG-
16, a convolutional neural network on images to detect 
and localize defects such as mold and stains in buildings. 
Sergio et al. [4] used convolutional neural network to 
detect defects such as cracks on structural members of 
bridges through images. In terms of steel sections, 
Zhaoguo et al. [5] introduced new modules on the deep 
learning neural network such as multiscale feature 
extraction to improve extraction process of features on 
images and efficient feature fusion to improve the fusion 
mechanism on the neck layer for accurate detection and 
localization of surface defects such as crazing and 
patches. However, though there exists extensive research 
on detection of surface imperfections using computer 
vision techniques, quantification of materials with these 
defects is still lacking.  

2.3 Quality Control of Materials  
Checking the quality standard of individual materials 

in a batch can be expensive and time consuming, 
especially where the lot size is very large. This has led to 
the introduction of sampling plans to decide whether to 
accept or reject a lot based on a defined sample size 
which is a representative of the lot. The whole lot is either 
rejected or accepted based on whether a specific 
threshold of the number of defective items in the sample 
has been observed or not. The two main sampling 
techniques used to determine the acceptance of materials 
in a batch are sampling by attributes and sampling by 
variables. Sampling by attributes is based on whether 
there is presence or absence of a particular characteristic 
of a material, for example, whether a material contains 
defective patch or not. It is computed on the probability 
of accepting or rejecting a lot using the defective aspect 
of the batch. For instance, assuming we have a lot of N 
size, where the sample size is n, and the actual number of 
defective materials is M, the probability of getting x 
number of defective items in the sample is expressed as 
shown in equation (1) 

𝑝(𝑋 = 𝑥) =
!"# $%

& '			"
) '				#*
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                   (1) 

 
To compute the probability of accepting or rejecting 

the lot, we assume that the fraction of non-defective items 
in the lot to be q, and the fraction of defective items to be 
p. This is expressed in a binomial distribution equation as 
shown in equation (2).     
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Sampling by variables on the other hand is more 

quantitative in nature and is focused on measurement of 
actual values such as length, height, and weight. It is a 
continuous process used to determine the overall 
acceptability of the batch. The main goal of the two 
sampling techniques is to control quality of materials in 
the most economical and efficient way [6].  

However, this manual quality control system is prone 
to human errors and the documentation process is tedious 
for the workers especially when we have large number of 
materials.  

2.4 Normal Distribution 
Normal distribution or gaussian distribution is a 

probability distribution where an average distribution of 
random samples tends to converge towards the normal 
distribution creating a symmetric bell-shaped curve. This 
works under the concept of the central limit theorem. 
There are two broad techniques for monitoring quality in 
construction management: management techniques and 
statistical techniques. Management techniques involve 
quality control, quality assurance and total quality 
management concepts. Statistical techniques include 
gaussian distribution and hyperbolic distribution which 
use the 6-sigma concept on quality control. Gaussian 
distribution has been applied in many fields such as 
construction management, manufacturing, and civil 
engineering through estimation of statistical properties 
such as number of defects and defects per million 
opportunities [7]. For instance, Vivian et al. [7] compared 
the use of gaussian distribution and hyperbolic 
distribution on defect detection to improve the 
construction quality and the yield percentage. Diego and 
Peter [8] proposed gaussian process for predicting 
product quality based on defective products per unit 
(fault density). Silva et al. [9] employed the gaussian 
distribution to detect harmful conditions in aquatic life. 
The method used 2D image visualization on production 
of fish under three classifications: dangerous, warning, 
and normal conditions. Zhou et al. [10] solved the 
problem of clutters on 3D feature descriptors using 
histograms of gaussian normal distribution. This enabled 
capturing of conspicuous features creating a homogenous 
scene with the 3D model.  

2.5 Web Framework 
The era of information technology has seen a huge 

increase of data in the construction industry. However, 
the visualization of this data to help stakeholders make 
informed decision has always been a challenge. This is 
due to variations on the type of data produced which 
comes in different formats such as images, text and 
videos causing data driven decision making in the 

construction industry difficult. Additionally, the transfer 
of these data between project stakeholders has been slow 
affecting the project productivity. Hence, a cross 
integration platform such as a web framework system 
which can visualize and share construction information 
data in different formats rapidly has been of necessity.  

In order to improve access and sharing of integrated 
construction data, Chassiakos and Sakellaropoulos [11] 
proposed a web framework connected to a relational 
database for managing construction information. Gurmu 
et al. [12] developed a dashboard for visualization of 
building defects from inspection reports through data 
mining using python libraries and natural language 
toolkit. Changyoon et al. [13] made a construction 
management system for real time site monitoring and 
construction information sharing with the aim of 
visualizing on mobile devices. Do-Yeop et al. [14] used 
web system framework to link defective data with BIM 
environment for visualization. However, there is still a 
gap on a web framework which can visualize quantified 
defective materials from a deep learning algorithm 
through mobile devices and local computer and, report 
the output for documentation.  

3 Methodology 

3.1 Overview of the Proposed Methodology. 

Figure 2. 3-Stage overview of the methodology. 

The proposed methodology was divided into 3 main 
stages: computer vision, decision support and, reporting 
and visualization as shown in figure 2. 

3.2 Stage I: Computer Vision. 
3.2.1 Data Collection and Preprocessing  

The first stage was collection of tubular steel 
temporary materials image dataset from two storage sites. 
The data collected consisted of circular hollow sections 
hereby referred to as steel pipes, rectangular hollow 
sections, and square hollow sections. The images taken 
focused on the temporary materials in batches as shown 
in figure 3. In the process a total of 500 images were 
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collected for training the deep learning model.  

 
Figure 3. a). Square Hollow Sections, b). Steel 
Pipes, c). Rectangular Hollow Sections dataset 
collected in batches. 

The image dataset obtained had varied size in terms 
of the height and width pixel. Hence, before training the 
deep learning model, the data was preprocessed using a 
fixed height and width of 640 x 640 pixels. A custom 
labelling process using LabelMe software was adopted as 
shown in figure 4 employing a 2-tier naming 
nomenclature where the first part represented the 
material type: steel pipe, square hollow section, and 
rectangular hollow section, and the second part separated 
by the hyphen represented the state of the material: rust, 
bend, rust and bend, and non-defective state.  

 
Figure 3. Labelling nomenclature using LabelMe 
software. 

In the labelling process, occluded images such as 
those with concrete splatter on the cross-section area of 
hollow sections were included to make the model robust 
to occlusion. Additionally, before training, mosaic 
augmentation, mix-up augmentation and perspective 
transformation hyper parameters were adjusted to enable 
the model to generalize across various object 
configurations for occluded images. 

During inference of the deep learning model, an 
image output of the detected object and text output are 
generated. The text output contains the class label, x-
center, y-center, height and width of each detected box 
and confidence scores as shown in figure 4. A special 
python code was developed which converted the detected 
text results to python list. The listed results were 
separated using white spaces to extract the material type 
and the special hyphen character to extract the surface 
defect of the materials.  

 

 
Figure 4. Detection text results file. 
 

3.2.2 YoloV7 Deep Learning Model 

The dataset was then divided to a train set and 
validation set ratio of 4:1 and trained on the YoloV7 deep 
learning model. The model is typically made of three 
parts: backbone, neck and head as shown in figure 5. The 
backbone layer contains convolutional layers for feature 
extraction from an input image. Each convolutional layer 
has a kernel size, number of stride operation and the 
number of channels. The neck layer is used to fuse or 
connect the extracted features from the backbone layer 
while the head is used to make prediction using bounding 
boxes. The head is subdivided into 3 parts depending on 
the level of feature extraction on obtaining detection 
results for large, medium, or small objects [15]. 

Feature extraction process from the backbone layer is 
followed by a spatial pyramid pooling (SPP-net) layer in 
the neck layer. The SPP-net allows the use of input 
images with variable sizes which help maintain feature 
information from images without warping them. 
Additionally, the network contributes to improved 
accuracy on training [16]. There are additional plug-and-
play modules which can be used in place of the SPP-net 
such as the Ghost-net layer and the Bottleneck layer. The 
Ghost-net layer is aimed at reducing the computational 
cost of the deep learning model enabling a lighter model. 
This is achieved by stacking the ghost modules [17]. 
Bottleneck layer uses pointwise convolutions to make 
bottlenecks for reducing parameters and increasing the 
depth, enhancing efficiency and computational 
performance [18]. 

However, these layers still have the problem of heavy 
inference computation especially when deploying them 
on mobile devices and web platforms. To mitigate this 
problem the SPP-net, Ghost-net and Bottleneck layer are 
concatenated with Cross-Stage Partial network (CSP-net). 
This improves speed of inference and accuracy when 
deployed on various platforms. For instance, when using 
the Dense network, the base layer is concatenated with 
the subsequent layers directly to map the output assuming 
a network with k-layers of convolutional neural networks, 
with F as the mapping function using an input x0 to the 
target y, an equation can be derived as follows: 
 

y = F(x0) = Xk.                                                  (3) 
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Figure 5. Internal architecture of the YoloV7 
model. 

However, the cross stage partial network relies on 
optimization by dividing the F function for the base layer 
(x0 ) into two parts:  
 

x0 = [ x0’, x0” ]                                  (4) 

 
Figure 6. Cross stage partial network in the 
DenseNet. 

Hence, to map the target y, x0’ is connected to the end 
stage while the x0” undergoes the dense network 
operation under M transition function for combining the  
two separate parts of the network that is, F the mapping 
function and T the transition function from one layer in  

 
 

the dense network to another [19].   
 

y = M ([x0’, T(F(x0”))])                  (5) 
 
     Hence, to obtain a model which can perform inference 
fast with high accuracy, three networks with cross-stage 
partial networks were evaluated: SPPCSP-net, 
GhostCSP-net and BottleneckCSP-net. Their 
performances were assessed using Giga Floating Point 
per second, mean average precision and recall in order to 
determine the best network that could be integrated into 
the web framework. The training parameters were a batch 
size of 16, 150 epochs with a 0.01 initial learning rate. 
The model was trained on the pytorch framework, CuDA 
11.8, on the Tesla V100, 16GB graphical processing unit 
(GPU).  

3.3 Stage II: Decision Support System. 
To determine the threshold for different classification 

of batch materials based on whether to reuse, dispose or 
repair, a statistical distribution of the surface defects of 
different tubular steel materials in lots was performed on 
two storage sites. The equation for calculating 
distribution is normally based on two key parameters; 
mean ( 𝜇) 	 and standard deviation ( 𝜎)  with the 
normalization factor and natural logarithm base (e).  
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Figure 7. Normal distribution curves of different defective states of materials.  

 
Hence, the mean and standard deviation of different 
batches was computed for statistical distribution. 

 

									𝑓(𝑥Ι𝜇𝜎) = +
,-./!

𝑒'
(#$%)!

!'!                           (6) 
 

The normal distribution curve of different condition 
of materials was plotted as shown in figure 7 and an 
assumption was made where percentage values greater 
than the curve threshold line indicated that the cost of 
repair is more than the cost of disposing the defective 
materials hence the dispose decision should be employed 
on the defective materials in the batch. On the other hand, 
when the percentage value falls below the threshold line 
but is more than zero, the cost of repairing the defective 
material in the lot is cheaper compared to the cost of 
disposing. Hence, the repair decision is employed.  

Using the statistical distribution results, a degree of 
severity table was formulated to create a classification 
criterion as shown on table 1. The mean and standard 
deviation for the statistical distribution was based on the 
defective material count to total material count ratio 
expressed as a percentage. 

Table 1. Surface Imperfection Degree of Severity 
Criterion 

Defect Critical 
Imperfection 

(Dispose) 

Minor  
Imperfection 

(Repair) 

Perfect 
(Reuse) 

Rust >22% 0%<R≤22% 0% 
Bend >28% 0%<B≤28% 0% 

Rust and  
Bend 

>44% 0%<RB≤48% 0% 

*R – Rust, B – Bend, RB – Rust and Bend 

3.4 Stage III: Web Framework. 
The final phase connected the computer vision model 

with the classification criteria from the decision support 
stage using flask web framework. The web framework 
was used to visualize the detected image, the total count 
of materials for each individual lot, the count for detected 
materials with defects, the decision to reuse, dispose or 
repair the materials in the batch and reporting the 
information for documentation. The quality circle leader 
or the user is required to take an image of the temporary 
materials in a batch using a mobile device, the image is 
sent to the cloud server which runs inference based on the 
trained deep learning model. From the detected results a 
text file is generated as shown in figure 5 containing 
information on the type of material and their 
corresponding defective state. Python code embedded 
into the flask framework computes the total number of 
materials in a batch and the total number of materials 
with specific defective condition expressed as a 
percentage. The percentage obtained is then compared to 
the degree of severity criterion table 1 where a decision 
on whether to reuse, dispose or repair the materials in the 
lot is obtained. The results are rendered on an interactive 
webpage using hypertext mark- up language. The user 
interface has an input field for the quality circle leader to 
enable reporting and documentation.  The web 
framework plays a central role in connecting the front 
end which is the user interface and the back end which is 
the cloud server for hosting the deep learning model for 
inference and visualization on the actions to be applied 
on the defective materials. It ties almost all the nodes in 
the system which are illustrated in figure 8, creating a 
unified automated decision-making system for the 
management and the quality circle workers.  
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Table 2. Performance comparison of the selected deep learning neural network modules 
 
 
 

 
 

 
 

Figure 8. Web framework Concept. 

 

 
 

Figure 9. Visualization of the web framework user 
interface 

4  Results and Analysis 
Evaluation of the system was done based on average 

precision, precision, inference speed, Giga Floating Point 
per Second (GFLOPS) and the count accuracy of the 
materials. The spatial pyramid network with the cross 
stage partial network achieved the highest GFLOPS of 
105.2, mean precision of 82.9, precision of 84.9 with a 
speed of 20 seconds per inference. 

        
 
 
 
 
 

 

In terms of count accuracy, the material batches were 
divided into 3 classifications: 

1. Small batches – batches with materials in between 
1 to 100. 

2. Normal batch – batches with materials between 101 
to 250.  

3. Large batch – batches with materials over 250 

Different construction storage sites had specific 
number of materials to be stacked on an individual batch 
based on space availability. Hence, the classification was 
based on analysis of the stacking of materials at different 
temporary material warehouses and sites. Absolute error 
(Measured value – True Value) was calculated for each 
subgroup expressed as a percentage as shown in table 3.  

Table 3. Measure of absolute error of average count of 
different batch size.  

Batch 
Size 

Detected 
Count 

True 
Count 

Absolute 
Error 

Small 35 35 0% 
Normal 105 105 0% 
Large 300 500 40% 

 

5 Conclusion 
      This research proposed an automated decision 
support system which can be used to determine whether 
to dispose, reuse or repair of tubular steel materials based 
on their end point surface defects. Additionally, the study 
contributed to quantification of temporary steel tubular 
materials using deep learning and integration of the deep 
learning model to the web framework for management of 
materials. This can be further used to calculate the cost 
of repair and disposal of steel tubular temporary materials.  
     However, through the study, a very high absolute 
error was observed on large batch material sizes. This is 
because the target objects appear smaller during the 
detection process. In order to improve the accuracy on 
large batches, it is recommended to customize anchor 

Network Epochs GFLOPS Precision mAP@0.5 Recall F1 
Score 

SPPCSP-net 150 105.2 82.4 84.9 74.8 78 

GhostCSP-net 150 102.2 78.5 84.8 82.1 80 

BottleneckCSP-
net 

150 100.3 82.4 82 76.3 78 
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boxes responsible for detecting small objects in addition 
to adding dataset with large batches of materials. Hence, 
a robust deep learning model which is capable of 
accurately quantifying large batch size material is 
suggested as an area of further study.  

Acknowledgement 
This work is financially supported by Korea Ministry 

of Land, Infrastructure and Transport(MOLIT) as 
「 Innovative Talent Education Program for Smart 
City」.  

This research was conducted with the support of the 
“National R&D Project for Smart Construction 
Technology (No. RS-2020-KA156488)” funded by the 
Korea Agency for Infrastructure Technology 
Advancement under the Ministry of Land, Infrastructure 
and Transport, and managed by the Korea Expressway 
Corporation. 

References 
[1] Bruno G., Ali T and Toshiyuki A. Quality control 

circles in construction. ASCE Journal of 
Construction Engineering and Management, 
113(3):432, 1987.  

[2] Cosgun S.I. Experimental and computational study 
on local buckling of standard and improved cold-
formed square hollow sections under static and 
dynamic loading. Structures, 54:291, 2022.  

[3] Hussien P., Joseph T. and Amir M. Deep Learning 
for detecting building defects using convolutional 
neural networks. Sensor, 19(16):3556, 2019.  

[4] Sergio R., Angelo C. and Andrea N. Using machine 
learning approaches to perform defect detection of 
existing bridges. Procedia Structural Integrity, 
44:2028, 2023. 

[5] Zhaoguo L., Xiumei W., and Hassaballah M. A 
deep learning model for steel surface defect 
detection. Complex Intell. Syst. 2023. 

[6] Hendrickson C. Project management for 
construction: fundamentals concept for owners 
engineers, architects, and builders, 2nd ed., Version 
2.2. Carnegie Mellon University, Department of 
Civil and Environmental Engineering, Pittsburgh, 
PA, 2008. 

[7] Vivian T., Khoa L., and Hoang L. Using gaussian 
and hyperbolic distributions for quality 
improvement in construction: Case study approach. 
Journal of construction engineering and 
management, 134:7, 2008. 

[8] Diego R. and Peter G. Predicting product quality in 
continuous manufacturing processes using a 
scalable robust Gaussian Process approach. 
Engineering applications of artificial intelligence, 

127, 2024. 
[9] Silva L., Lopes B., Blanquet I. and Marques C. 

Gaussian distribution model for detecting 
dangerous operating conditions in industrial fish 
farming. Applied Sciences, 11(13):5875, 2021.   

[10] Zhou W., Ma C., Yao T. et al. The histograms of 
gaussian normal distribution for 3D feature 
matching in cluttered scenes. Vis. Comput, 35, 489-
505, 2019. 

[11] Chassiakos A. and Sakellaropolous S. A web-based 
system for managing construction information. 
Advances in engineering software, 39(11), 2008. 

[12] Gurmu A., Hosseini M.R., Arashpour M. and 
Lioeng W. Development of building defects 
dashboards and stochastic models for multi-storey 
buildings in victoria, Australia.  Construction 
Innovation. 2023. 

[13] Chanyoon K., Taeil P., Hyunsu L. and 
Hyoungkwan K. On-Site construction management 
using mobile computing technology. Automation in 
Construction. 35:415-423, 2013. 

[14] Do-Yeop L., Hung L.C., Jun W., Xiangyu W. and 
Chan S.K. A linked data system framework for 
sharing construction defect information using 
ontologies and BIM environments. Automation in 
Construction, 68:102-113, 2016.  

[15] Chien-Yao W., Alexey B. and Hong-Yuan M.L. 
YOLOv7: Trainable bag-of-freebies sets new state-
of-the-art for real-time object detectors. In 
Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), Pages 
7464 - 7475, Vancouver, BC, Canada, 2023. 

[16] Kaiming H., Xiangyu Z., Shaoqing R. and Jian S. 
Spatial pyramid pooling in deep convolutional 
networks for visual recognition. In Proceedings of 
the Computer Vision – ECCV, Pages 346 - 361, 
2014.   

[17] Kai H., Yunhe W., Qi T., Jianyuan G., Chungjin X., 
and Chang X. GhostNet: More features from cheap 
operations. In Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition 
(CVPR), Pages 1557-1586, Seattle, WA, USA, 
2020. 

[18] He K., Zhang X., Ren S and Sun J. Deep residual 
learning for image recognition. In Proceedings of 
the IEE Conference on Computer Vision and 
Pattern Recognition (CVPR), pages 770 -778, Las 
Vegas, NV, USA, 2016. 

[19] Wang C., Liao H., Wu Y., Chen P., Hsieh J. and 
Yeh I. CSPNet: A new backbone that can enhance 
learning capability of CNN. In Proceedings of the 
IEE Conference on Computer Vision and Pattern 
Recognition (CVPR), pages 1571 - 1580, Seattle, 
WA, USA, 2020 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

895


