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Abstract – 

In the context of real-time data acquisition and 

processing, dealing with missing data (MD) is a 

common challenge that can compromise the quality 

and effectiveness of machine learning (ML) 

algorithms. Previous research focuses on creating a 

real-time safety monitoring system that predicts 

safety conditions in scaffolds by analyzing strain 

measurements from sensors placed in the structure's 

columns. However, it does not address the effect of 

sensor failures and the resulting MD. This paper 

explores how the presence of MD, caused by faulty 

sensors, affects the performance of eight ML 

algorithms in a safety monitoring scaffolding system: 

gaussian naive Bayes (GNB), random forest (RF), 

multi-layer perceptron (MLP), support vector 

machine (SVM), decision tree (DT), XGBoost (XGB), 

logistic regression (LR), and linear support vector 

classification (LSVC). This study identifies how these 

algorithms perform when processing datasets with 

missing values. As the amount of MD in the datasets 

increases, there is a consistent negative influence on 

the performance of each algorithm, resulting in 

reduced predictive accuracy. Among all the tested 

ML algorithms, RF and DT have shown to be the most 

sensitive to MD. 
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1 Introduction 

Real-time data acquisition and processing often face 

the challenge of missing data (MD), impacting data 

quality and machine learning (ML) algorithm 

performance [1], impacting pattern identification [2]. 

Strategies to handle MD are crucial [3] because its 

presence introduces a risk of process failures, failing to 

accurately represent the true reality of the system [4]. The 

collective findings from several studies [5–8] underscore 

the significant influence of MD on the ML algorithms’ 

performances, and stress the necessity of handling MD 

effectively to ensure accurate and dependable ML results. 

Previous research focuses on real-time monitoring of 

intricate scaffolds using ML techniques to forecast safety 

conditions [9]. This study delves into a technique for 

categorizing instances of scaffold failure and accurately 

predicting safety conditions, using data from strains 

installed on the scaffold columns. The authors 

successfully improved the accuracy of ML classification 

through a self-multiplication technique [10]; nonetheless, 

prior research did not account for the influence of sensor 

failures and the subsequent absence of data on the 

system's acquisition. In this specific case, MD can cause 

an incorrect prediction in the scaffold structure’s safety 

conditions. For instance, if the scaffold structure is about 

to overturn due to unbalanced loads, the MD in a sensor 

measurement can result in a safe classification instead of 

an overturning one. 

These real-time sensing systems should demonstrate 

high accuracy in safety monitoring to promptly detect 

temporary structures’ potential structural failures. The 

primary purpose of research toward reliable safety 

predictions is to safeguard the lives of workers [10]. 

Accurate predictions help to identify potential hazards or 

structural failures in advance, allowing for timely 

interventions or preventive measures to protect workers 

from injuries. This could involve reinforcing a structure, 

evacuating an area, or adjusting working conditions to 

prevent accidents. In addition, an accurate safety 

prediction can save costs associated with medical 

expenses, structural or property damage, legal liabilities, 

and potential project delays. 

In response, this project studies the problem of MD in 

a scaffold dataset. It investigates MD effects on the 

performance of eight ML classification algorithms: 

gaussian naive Bayes (GNB), random forest (RF), multi-

layer perceptron (MLP), support vector machine (SVM), 

decision tree (DT), XGBoost (XGB), logistic regression 

(LR), and linear support vector classification (LSVC). 

2 Literature Review 

To study the effects of MD on data mining processes, 

it is crucial to understand MD mechanisms [11]. The 
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methods used to handle missing values are often based 

on assumptions tied to the underlying mechanisms 

causing the MD [12]. Four mechanisms of the occurrence 

of MD are defined [13]: when the entry is not supposed 

to have a value in a given field, it is said that it is 

structurally missing (SMD) [14]. Missing completely at 

random (MCAR) is when the cause of data absence is 

independent from the observed and unobserved entries. 

Missing at random (MAR) is when the cause of data 

absence is related to the other observed entries. Finally, 

missing not at random (MNAR) is when the cause of data 

absence is related to the missing entry and the other 

observed entries. According to the previous definitions, 

this study deals with MCAR data, because the missing 

values originate when a sensor failure occurs due to a 

communication error or device malfunction. This event 

is not related to any other measured variable in the system. 

The influence of MCAR on ML algorithms for safety 

monitoring cannot be overstated. Studies [5,8] highlight 

how the presence of MCAR significantly distorts the 

integrity of datasets, leading to biased predictions and 

compromised algorithmic performance. This bias stems 

from the randomness of MD, affecting the statistical 

properties of the dataset and, consequently, the MS 

models’ training and generalization capabilities [7]. 

In a comprehensive review [15] of 152 ML-based 

clinical prediction model studies, the reporting quality 

regarding MD was generally poor, aligning it with 

similar reviews. Excluding participants with MD and 

insufficient details was found to be a common practice of 

MD handling methods. Other studies [16] utilized 

techniques like mean imputation or complete-case 

analysis for healthcare data. The review highlighted the 

pressing need for improved reporting guidelines, 

adherence, and understanding the repercussions of 

improper MD handling in ML-based prediction studies in 

healthcare. 

The gaps and challenges related to MD are evident in 

ML-based heart disease prediction models [17]. The 

limited exploration of MD effects reveals a lack of 

comprehensive understanding regarding model 

performance. The study demonstrates by varying 

accuracy percentages in predicting heart disease, yet fail 

to explicitly address how to handle MD or its influence 

on these outcomes. This highlights the need for a more 

nuanced comprehension of data preprocessing methods. 

Another study [6] centers on how MD affects ML 

algorithms used in hydrologic predictions and proposes a 

method to fill in the gaps. A comprehensive overview [18] 

of MD in ML emphasizes the importance of 

appropriately addressing and evaluating various 

imputation techniques. Additionally, the study notes the 

use of smaller, domain-specific datasets, accenting the 

need for exploring MD handling in larger, real-world 

datasets with diverse features.  

Applications in construction [19] focus on critically 

evaluating concrete strength predictions for enhanced 

sustainability. However, challenges arise due to MD, 

noise, and model interpretability. The authors used a 

dataset of manufactured sand concrete and various ML 

algorithms to demonstrate predictive performance. They 

found it necessary to bridge MD concerns and enhance 

interpretability for reliable concrete strength predictions 

in construction applications. 

In safety applications, researchers addressed MD 

issues on high-plateau flights [20] by proposing an 

improved method based on least squares support vector 

machines (LS-SVM). This method approaches the 

challenges placed by missing or abnormal quick access 

recorder data due to harsh environmental conditions. 

Through advanced ML techniques, this method enhances 

the reliability and accuracy of flight data processing and 

analysis, contributing to improved aviation safety. 

Estimations of increased risk of crashes on freeways 

need to be accurate and reliable, but the utilization of 

real-time traffic data in proactive safety management 

systems is lacking due to MD. To fill these gaps, past 

research [21] has proposed a framework for real-time risk 

assessment on freeways by integrating data from multiple 

detection systems, real-time weather, and roadway 

geometry. The development of the framework mitigates 

the effects of MD, contributing to the system with high 

estimation accuracy, robustness, and reliability. 

To detect high-severity accidents in the construction 

industry, accurate prediction models are needed. While 

occupational accidents are common in construction, the 

challenge lies in determining the combination of 

preprocessing techniques that yield the most accurate 

severity prediction, considering issues such as MD, 

outliers, feature scaling, and imbalanced class 

distribution. Specifically, in dealing with MD, the 

researchers [22] have experimented with different 

scenarios of preprocessing techniques to determine the 

best combination. One of the scenarios involved not 

removing MD, indicating that missing values were 

retained in the dataset rather than being imputed or 

deleted. This approach allowed the model to learn from 

the available data without discarding potentially valuable 

information. 

Prior studies developed a real-time safety monitoring 

system [9] based on strain measurements from sensors 

installed in the columns of the structure but did not 

consider the implications of MD introduced by sensor 

malfunctions. The previous articles contribute to 

understanding the influence of MD and how to improve 

model accuracy, comparability, and reliability in 

different areas of study. These contributions are used as 

guidelines, as the nature of the described problems 

present similar challenges to the ones found when a 

faulty sensor generates MD in a scaffold safety 
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monitoring system’s dataset. Leveraging existing 

knowledge from various domains helps in developing 

strategies to handle MD effectively in the context of 

scaffold safety monitoring systems. Understanding how 

MD affects the performance of various ML algorithms 

contributes to the development of strategies to address 

specific types of MD and the mitigation of their impacts 

on algorithmic performance. 

3 Objective and Scope 

This research aims to assess the influence of MD, 

stemming from sensor failures, on the ML algorithms’ 

predictive accuracy and performance in a real-time safety 

monitoring system for scaffolds. This paper evaluates the 

performance of eight ML algorithms: GNB, RF, MLP, 

SVM, DT, XGB, LR, and LSVC when exposed to 

datasets that feature MD caused by the simulation of 

faulty sensors. This paper expands upon a previous study 

[10] through additional investigation, evaluation, and 

discussions of MD across various ML models. By 

employing a diverse set of classification algorithms, the 

study explores different modeling approaches to handle 

the same type of data and capture the patterns. While 

reviewing different safety-related studies conducted with 

ML application, it was observed that GNB [23–25], RF 

[26–28], MLP [26,28,29], SVM [26,28,30], DT 

[28,31,32], XGB [33–35], LR [32,36,37] and LSVC 

[26,28,38] are mostly employed by researchers. 

Therefore, these eight ML models are used in this 

investigation. 

4 Approach 

The proposed approach comprised four fundamental 

steps, as illustrated in Figure 1. General approach of the 

studyFirst, it conducts an in-depth analysis of the initial 

dataset, establishing a benchmark for understanding the 

complete data's characteristics. Subsequently, simulated 

MD is introduced to replicate sensor faults, enabling the 

evaluation of ML algorithms' performance under these 

conditions. Then, the algorithms are assessed for their 

predictive capabilities using both the original complete 

dataset and the data affected by missing values. 

A crucial aspect involves progressively evaluating 

algorithm performance as the number of faulty sensors or 

MD increases, highlighting the repercussions of sensor 

failures on algorithm accuracy. This comprehensive 

approach provides insights into the ML classification 

algorithms’ behavior in scenarios involving faulty 

sensors, aiding in understanding their robustness. 

The results may contribute to making decisions about 

algorithm selection and implementation in real-world 

applications. The previous steps are explained and 

justified as follows: 

 

Figure 1. General approach of the study. 

 

Step 1: Data analysis. This step involves thoroughly 

examining the characteristics of the original complete 

dataset. It is necessary to establish a baseline 

understanding of the nature of the system, including data 

distribution, variability of measurements, and any 

underlying patterns. This analysis provides essential 

context for subsequent steps and helps to identify 

potential issues or anomalies in the dataset. 

Step 2: Data amputation. Simulated MD is introduced 

to replicate sensor faults, replicating real-world scenarios 

where data may be incomplete due to sensor 

malfunctions. This step is crucial to evaluate ML 

algorithms’ performance in the presence of MD. By 

simulating sensor faults, it is possible to estimate how 

well the algorithms may handle these conditions and 

whether they can effectively make predictions despite 

incomplete information. 

Step 3: ML algorithm evaluation. In this step, ML 

algorithms are trained and tested using the original 

complete datasets. This allows the evaluation of the 

algorithms ability to make accurate predictions, while 

operating under ideal conditions before introducing MD. 

This step is a starting point assessment to compare 

algorithm performance under different conditions and 

determine how MD affects predictive accuracy. It 

provides a quantifiable perception of the algorithms’ 

robustness and their reliability in real-world applications. 
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Step 4: Progressive evaluation with increasing MD. 
As the number of faulty sensors or MD increases, 

algorithm performance is progressively evaluated. This 

step is essential to understand how algorithm accuracy 

changes as data quality deteriorates due to sensor failures. 

By systematically increasing the severity of MD 

scenarios, it is possible to identify thresholds where 

algorithm performance significantly degrades. This 

evidence helps to understand the limitations of ML 

algorithms in handling MD and informs decision-making 

regarding algorithm selection and deployment. 

4.1 Real-time safety monitoring system 

This study incorporates a real-time safety monitoring 

system designed for scaffold structures, based on a 

previous investigation [10]. The system relies on strain 

sensors embedded within the columns to gather crucial 

data indicative of potential scaffold failures. Figure 2 

(Figure 5 in [10]), illustrates the scaffold's configuration, 

comprising 10 columns distributed across 3 stories with 

20 sensors strategically positioned at various locations. 

The sensor measurements are used to predict the scaffold 

safety condition as overload, uneven, sideways, and safe 

by processing the data with ML classification algorithms 

in Python (GNB, RF, MLP, SVM, DT, XGB, LR, and 

LSVC). The algorithms are a built-in function from 

sklearn package, except for XGB, which has its own 

package called xgboost. Training was carried out with 

complete datasets without including MD. 

 

Figure 2. Scaffolding Structure with sensor 

measurement (Figure 5 in [10]). 

4.2 Dataset 

The original complete dataset was obtained from a 

previous study [9]. The dataset for strain measurement 

was created based on structural conditions observed in 

scaffold usage and distinguished between safe and unsafe 

conditions. The unsafe category was divided into global 

and local failures. Global failures involved overturning in 

both lateral X and Y directions. Local failures included 

uneven settlement and overloading issues. The scaffold 

model comprised 10 vertical members, each equipped 

with 20 evenly distributed strain-measuring sensors 

placed on them, as shown in Figure 2 (Figure 5 in [10]). 

The output is divided into 23 classes representing 

different safety conditions. The dataset contains 1,000 

samples for each of the 23 classes. 

4.3  MD generation and follow-up analysis 

The initial dataset was generated based on the 

automated monitoring system’s optimal operation 

conditions without accounting for MD [10]. Therefore, 

data amputation is needed to simulate the MCAR 

scenario. 

This paper considers the progressive occurrence of 

failure. In this progression, the number of failing sensors 

starts from 1 to 20, equal to the entire sensors. While this 

may not make sense in a practical manner, it is important 

that this research investigates the effect of incremental 

sensor failures on the classification accuracy from a 

theoretical perspective. To simulate faulty sensors, or 

MD, null values were introduced, which are considered 

as 0.000με as an indication of absence of measurement. 

The conducted analysis involved observing how 

different ML algorithms responded to the introduced 

failure cases in the dataset and thus overall prediction 

performance. By systematically introducing these cases 

across all sensors progressively, how each algorithm 

adapted to and handled the simulated errors was 

evaluated. algorithm presents a summary of the analysis 

output by showing the prediction accuracy in relation to 

the number of faulty sensors the entire dataset across all 

the tested ML algorithms. 

The evaluation metric used for ML classification 

algorithms is accuracy instead of other metrics because is 

straightforward to understand. It represents the 

proportion of correctly predicted classes out of the total 

classes in the dataset and intuitively captures how well 

the ML model performs overall. In this specific case of 

study, accuracy is an appropriate metric due to the 

balanced dataset, i.e., the dataset contains 1,000 samples 

for each of the 23 classes. 

Accuracy is evaluated by dividing the strain dataset 

into two portions: a training set and a testing set. This 

splitting is done to assess how well the ML algorithms 

perform in making predictions on new, unseen data. 

Specifically, the testing set comprises 20% of the entire 

dataset. The purpose of this separation is to use the larger 

portion (80%) as the training data to teach the model how 
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to make predictions based on patterns and information 

within that data. The remaining 20% is set aside as the 

testing data, which is kept separate and not used during 

the training phase. 

After training with the training dataset, the obtained 

model is then evaluated using the testing dataset. The 

predictive accuracy is determined based on how well it 

predicts or classifies the outcomes within this separate 

testing data. 

The following sections further discuss these results. 

5 Results and Discussion 

Prior to discussing the results, Table 1. ML algorithm 

performance in optimal operation conditions shows the 

accuracy achieved by each studied ML classification 

algorithm on a complete strain dataset. As this is based 

on a complete dataset, high accuracies are anticipated. 

Table 1. ML algorithm performance in optimal 

operation conditions. 

ML Algorithm Accuracy 

RF 0.9998 

XGB 0.9998 

DT 0.9991 

SVM 0.9989 

LR 0.9974 

MLP 0.9941 

GNB 0.9937 

LSVC 0.9937 

The high accuracy percentages reported in the study 

for various ML algorithms indicate their effectiveness in 

correctly classifying a complete dataset without MD 

presence. The reported accuracies in Table 1 are achieved 

under optimal operating conditions without any faulty 

sensor performing. In such conditions, these algorithms 

perform up to 99%, achieving near-perfect accuracy 

(100%). Note that more complex algorithms with a larger 

number of hyperparameters are prone to overfitting and 

have difficulty handling MD, especially if not 

appropriately tuned or validated. 

Figure 3. Effect of MD generated from faulty sensors 

on the performance of ML classification algorithms 

while processing a strain dataset of a scaffold 

structure.illustrates how the accuracy of the ML 

classification algorithms is negatively affected by the 

inclusion of MD in the dataset. The accuracy of GNB 

drops gradually as the number of faulty sensors increases. 

With all sensors functioning, it achieves an accuracy of 

99.37%. However, as the number of faulty sensors 

increases, the accuracy decreases progressively, reaching 

4% when all sensors are faulty. It still presents at least 50% 

accuracy with about 8 faulty sensors out of 20 sensors. 

RF shows a similar trend, but after the second sensor 

fails, the accuracy is more negatively affected than that 

of GNB. 

 

Figure 3. Effect of MD generated from faulty 

sensors on the performance of ML classification 

algorithms while processing a strain dataset of a 

scaffold structure. 

 

DT shows a pattern where accuracy significantly 

drops from the third faulty sensor. The accuracy drops 

from analyzing with 2 sensors in failure to 3 sensors in 

failure, exhibiting the most detrimental rate at about 50%. 

In general, all ML algorithms experience a decrease 

in accuracy as the number of faulty sensors increases. 

Except for DT’s case, about 50% accuracy was still 

achieved when 5-7 failing sensors were included in the 

analysis. Overall, GNB and LSVC appear to be relatively 

more robust against MD compared to the other 

algorithms listed here. DT and RF exhibit higher 

sensitivity to MD, showing a significant decrease in 

accuracy as the number of faulty sensors increases. 

Several reasons could contribute to RF and DT being 

more sensitive to MD compared to other algorithms, and 

they can be more susceptible to noisy or inconsistent data. 

DT create biased nodes when encountering MD, 

affecting subsequent decision-making and accuracy. MD, 

which can be considered a form of noise, might be 

challenging for these algorithms to handle effectively. 

These algorithms might lack the robustness to handle MD 

compared to other algorithms like GNB or LSVC, which 

can handle missing values more effectively due to their 

underlying mechanisms. 

The study also evidences the decline in accuracy as 

the number of faulty sensors or amount of MD increases. 

This decrease in accuracy indicates that the algorithms 

are sensitive to MD, which may be due to their inability 
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to effectively handle such inconsistencies. 

It is important to note that the behavior of these ML 

algorithms concerning MD can depend on various factors, 

including the specific dataset used in training. Tuning 

hyperparameters or using specific techniques for MD 

handling might help to mitigate these algorithms’ 

sensitivity to missing values. 

6 Conclusions 

This study investigates the effect of MD caused by 

simulated sensor failures on the performance of ML 

classification algorithms used in a real-time safety 

monitoring system for scaffolds. The research focuses on 

assessing the predictive accuracy of eight ML algorithms 

when confronted with a dataset containing different 

amounts of MD. 

It was evident that MD has a significant negative 

influence on ML algorithms’ performance, and there is a 

need to effectively handle it to ensure accurate results. 

Previous studies in various domains have stated the 

challenges posed by MD and the need for improved 

reporting guidelines and understanding the repercussions 

of improper MD handling in ML-based prediction studies. 

In the context of scaffold safety monitoring systems, 

developing strategies to handle MD effectively is 

required, considering the influence MD has on 

algorithmic performance. 

Results indicate that most ML algorithms achieve 

over 99% accuracy on the complete dataset, and RF, DT, 

and XGB exhibit the highest accuracy. However, when 

introducing progressively incremental MD, all ML 

algorithms experience a decrease in accuracy. Notably, 

GNB and LSVC appear relatively robust to MD, while 

DT and RF exhibit higher sensitivities to MD, showing a 

significant decrease in accuracy as the number of faulty 

sensors increases. 

To conclude, MD significantly affects ML algorithms’ 

performance, particularly DT and RF, which show higher 

sensitivity to MD. Possible reasons for this sensitivity 

include susceptibility to noisy data and a lack of 

robustness in handling MD compared to that of other 

algorithms. Dataset characteristics and proper handling 

techniques must be considered to mitigate the algorithms’ 

sensitivities to MD. 

7 Limitations 

The study primarily focuses on theoretical 

simulations of sensor failures, introducing null values to 

simulate MD. This approach allows for controlled 

experimentation and may not fully capture the 

complexities of real-world sensor malfunctions. 

Although the assumption of sensor failing one by one 

does not reflect a realistic scenario, this study conducts a 

progressive analysis to systematically assess MD’s 

effects. By simulating failures in a progressive manner, 

the study can observe the incremental degradation in 

algorithm performance with each additional failing 

sensor. This helps to understand MD’s cumulative effect 

on the algorithms’ reliability for safety monitoring 

applications. 

As the study’s primary objective is to investigate 

MD’s influence on ML algorithms’ performance, the 

hyperparameter tuning is not considered. The 

performance comparison of the ML algorithms is made 

with default hyperparameter settings; this approach 

provides a baseline for comparison and allows for 

assessing the algorithms' robustness without additional 

tuning.  To extend and generalize the results, validation 

with real-time acquisition systems and actual sensor 

failures are required. 

8 Future Work 

As future work, MD handling techniques like 

imputation could be applied to fill in the MD. The real-

time safety monitoring system’s accuracy and precision 

could be improved by optimizing these methods. To do 

this, tuning hyperparameters or data preprocessing could 

be used. Once the imputation stage is complete, it would 

be possible to evaluate the imputed values’ effects on the 

predicted safety conditions in the real-time safety 

monitoring system. 
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