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Abstract -
Ground Penetrating Radar (GPR), known for its appli-

cations in diverse domains, demonstrates potential for non-
destructive diagnostic assessments on building rooftops. This
study delves into the unique characteristics and data struc-
ture of GPR, investigating the novel approach of processing
GPR as a “contextual neighborhood” of A-scans within their
respective B-scans as opposed to the typical pixel-based ap-
proach. Given the challenge of obtaining a large corpus
of annotated rooftop GPR data, we employ self-supervised
deep learning methods for GPR representation learning.
Experiments include training a vanilla Autoencoder, Vari-
ational Autoencoder, and a Transformer-based Autoencoder
on GPR A-scans. Additionally, we extend our analysis by
fine-tuning a pre-trained Masked Autoencoder on image
based GPR B-Scans to investigate the differences between
the conventional pixel-based approach and our proposed A-
scan-based approach. Through a meticulous analysis of the
learned latent spaces across these methods, we assess the
viability of self-supervised deep learning in encoding mean-
ingful GPR representations for downstream tasks. This re-
search contributes to the exploration of GPR’s applicability
in building rooftop diagnostics and underscores the potential
of self-supervised deep learning for efficient representation
learning in the absence of annotated data.
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1 Introduction

Ensuring the structural integrity of building rooftops
necessitates reliable assessment methods. Ground Pene-
trating Radar (GPR) emerges as a promising, cost-effective
alternative to traditional techniques like infrared thermog-
raphy and nuclear moisture gauges [1]. Utilizing electro-
magnetic waves, GPR captures changes in electromagnetic
properties within the scanned medium of the propagating
waves.

Figure 1. Contextual neighborhood of A-scans
within the same B-scan. A-scans from the same
B-scan share contextual information that may aid in
the identification of features of interest. The blue
scans indicate typical GPR readings that may not
be pertinent for analysis, and the red scans indicate
scans that contain features of interest.

GPR data is typically presented in the form of A-scans
and B-scans. An A-scan, a single-point, 1D scan collected
at each sampling interval, records amplitude variations of
reflected waves over travel time. Despite its 1D nature, an
A-scan encapsulates information beyond its precise loca-
tion due to the non-linear propagation of electromagnetic
waves. This distinction can be observed in the appearance
of point objects like pipes as hyperbolas in GPR B-scans.

In contrast, B-scans are a series of sequentially mea-
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sured A-scans often treated as images, offering a human-
interpretable view of subsurface features. In rooftop di-
agnostics, many applicable downstream tasks appreciate
higher levels of granularity in analyses. As B-scans may
span many meters in length compared to the centimeter-
scale offered by A-scans, we investigate approaches that
study GPR at the A-scan level. This allows us the oppor-
tunity to explore the potential advantages in studying GPR
scans through leveraging their inherent data structure – as
opposed to the conventional method of processing GPR
B-scans as images. Figure 1 illustrates the concept of con-
textual neighborhood membership of A-scans within the
same B-scan. Deep learning models may be able to ex-
tract richer semantics in GPR representations through the
exploit of intrinsic contextual information shared between
A-scans of the same B-scan, especially considering the
capability of A-scans to capture information adjacent to
the immediate position of the GPR sensor.

Despite GPR’s capabilities in producing high-resolution
radargrams, interpreting scans remains challenging even
for skilled technicians [2]. This challenge underscores
the motivation to integrate deep learning for automated
interpretation. While prior applications of deep learning
in GPR interpretation exist, such as for land mine detection
and utility identification [3, 4, 5], they primarily relied
on supervised training with annotated labels. Given the
scarcity of such labeled data for building rooftops, our
investigation centers on self-supervised methods.

Our contributions can be summarized as follows:

1. Exploration of Self-Supervised Deep Learning Mod-
els: We assess the efficacy of self-supervised deep
learning models in extracting meaningful features
within the latent space of GPR data.

2. Analysis of Inherent Data Structure: We investigate
the advantages of addressing GPR data through its
native data structure (A-scan, B-scan) as opposed to
treating it as a conventional image.

These contributions collectively aim to advance the un-
derstanding of GPR applications in building diagnostics,
particularly in the context of self-supervised learning.

2 Related Works
2.1 GPR for Subsurface Analysis

GPR has historically found great utility in imaging and
analyzing subsurface features in various outdoor environ-
ments. For example, the sensor has found use in moni-
toring the structural integrity of river embankments and
levees [6]. The non-destructive nature of GPR enabled the
visualization and detection of underground animal bur-
rows without disrupting the site. This advantage has also
been leveraged in the inspection of concrete bridges [7].

Similarly to [6], GPR was used to detect and identify the
different layers present in the composition of bridges, as
well as the thickness of each layer. We consider the suc-
cess in the use of GPR in these varied environments as an
indication of the potential viability in the use of GPR in
the building rooftop setting.

2.2 Use of GPR for Building Diagnostics

Though the use of GPR has predominantly existed out-
side of building diagnostics, investigations on the use of
GPR in various applications on buildings and similar struc-
tures exist. The technology has been used to study and
identify cracks and signs of moisture damage in historical
and heritage buildings [8, 9], and has even been used to
detect moisture within building walls in conjunction with a
thermal camera in [10]. However, many of these methods
rely on manual interpretation or an ensemble of process-
ing methods. These limitations affect the scalability and
generalizability of the methods, which are key factors to
consider when addressing the sheer variability in the types
of buildings, not to mention the number of buildings that
may need to be serviced.

2.3 Learning-Based GPR Analysis

Several works [1, 3, 4, 5, 11] have delved into learning-
based analysis of GPR scan data for feature detection.
For instance, [11] utilizes the mask R-CNN [12] architec-
ture to automatically detect and segment cracks in asphalt
pavement at the pixel-level. However, these approaches
predominantly rely on supervised learning methods, ne-
cessitating manual annotation of GPR scans. This reliance
on labeled data poses a challenge in terms of scalability due
to the labor-intensive nature of annotation. Additionally,
these works predominantly study GPR feature detection
from the perspective of GPR B-scans as images. To ad-
dress these limitations, our study explores the potential
of self-supervised learning, aiming to extract meaningful
features from GPR scans without the need for extensive
manual annotations. We also hope to differentiate our con-
tributions through a comprehensive analysis addressing
the utility of A-scans in context of B-scan neighborhoods
over the typical image-based approach.

2.4 Autoencoders for Self-Supervised Learning

The Autoencoder (AE) architecture is a popular ap-
proach to self-supervised learning. This architecture typ-
ically involves an Encoder block that learns to compress
the input into the latent space, and a Decoder block that
learns to extract the original input from the compressed
representation [13]. Over the years, many derivatives have
emerged from the original Autoencoder idea including the
Variational Autoencoder (VAE), which aims to encode the
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Figure 2. A simplified diagram describing the end-to-end training and testing procedure for each proposed
method.

input as a distribution over the latent space [14], and the
Masked Autoencoder (MAE), which motivates effective
self-supervised learning through the nontrivial task of un-
corrupting masked inputs [15]. Transformers [16] have
also been largely successful in challenging natural lan-
guage and computer vision tasks. Recalling the unique
property of A-scans sharing contextual information be-
tween their neighbors within the same B-scan, we consider
a Transformer-based Autoencoder (TAE) that takes a win-
dow of sequential A-scans as input. We aim to evaluate
these approaches to determine their capabilities in learn-
ing meaningful features from GPR data without the need
for signals from manually annotated labels.

2.5 Challenges in the Use of Synthetic GPR Data

gprMax [17] is a GPR simulation software that has been
leveraged in works such as [11, 18] to generate a large
corpus of synthetic scans for training deep learning mod-
els. While effective in certain applications, particularly
those requiring controlled environments, the use of syn-
thetic scans presents challenges in the context of building
rooftop diagnostics. Capturing the inherent variability in
rooftop composition and the diverse range of surface fea-
tures, such as pipes, vents, and walls, becomes complex.
The fidelity of synthetic scans may struggle to emulate
the nuanced characteristics of real-world GPR data from
building rooftops. Due to the present obstacles, we decide
against the use of synthetic GPR data in our analysis and
instead collect data from real-world commercial and retail
building rooftops.

3 Methodology
Our objective is to investigate various methods for learn-

ing representations of Ground Penetrating Radar data,
specifically focusing on:

1. Vanilla Autoencoder
2. Variational Autoencoder
3. Transformer-based Autoencoder
4. Image-level Masked Autoencoder

These methods are compared against a baseline ap-
proach, involving the analysis of preprocessed data with-
out a deep learning model. The Autoencoder, Varia-
tional Autoencoder, and Transformer-based Autoencoder
are trained from scratch on GPR A-scans, while the Im-
ageNet pretrained Masked Autoencoder will be finetuned
on GPR B-scans treated as images. This approach aims to
highlight any distinctions between leveraging the inherent
data structure of GPR and treating GPR scans as holistic
images. Evaluation of each method includes the presen-
tation of reconstruction samples, visualizations of latent
spaces using T-SNE for qualitative analysis, and quanti-
tative metrics utilizing KMeans clustering. Figure 2 pro-
vides a simplified illustration of the described procedure.

3.1 Dimensionality Reduction

T-SNE, a common dimensionality reduction technique,
is employed to visualize high-dimensional latent spaces.
For the deep learning models, T-SNE is applied to feature
vectors generated from the encoder block’s forward pass.
As is typically recommended to reduce the computation of
T-SNE, models that have encoders that output to relatively
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high dimensions use PCA to reduce the feature dimension
to 50 prior to the application of T-SNE. This procedure ap-
plies to the TAE and MAE, as well as the baseline. Feature
vectors for AE, VAE, and TAE represent encoded A-scans,
while those for MAE represent the 16x16 patches created
from resized B-scans. Despite differences in representa-
tion, patches are reasonably analogous to A-scans as they
capture local features from the entire B-scan. Indicators of
meaningful encoding include visible clustering of feature
vectors and separation between clusters.

3.2 Clustering

KMeans clustering is utilized to quantitatively evaluate
the quality of the learned latent spaces. The algorithm
is similarly applied to the generated feature vectors for
each method. Two metrics, the Silhouette Score [19] and
the average distance between cluster centroids, are em-
ployed for comparison. The Silhouette Score assesses
cluster well-definition, while the average distance mea-
sures cluster separation. These metrics are calculated over
a range of 𝑘 = [2, 3, ..., 15] clusters, as the appropriate
number of clusters needed to capture GPR representations
is unknown. The value of the Silhouette Score can range
between -1 and 1, inclusive, with a value closer to 1 in-
dicating high-quality clusters. A score greater than 0.5 is
generally interpreted as reasonable.

3.3 Data Collection

The dataset comprises diverse scans collected from real-
world building rooftops using the Proceq GP8800 SFCW
handheld GPR sensor. SFCW, or Stepped Frequency Con-
tinuous Wave, indicates that this sensor is capable of broad-
casting a wide range of frequencies to scan at both shallow
and deep depths. While capable of a broader range of
sampling rates, the sensor was set to record one scan per
centimeter traveled, focusing on an approximately 9 x 9 cm
area. The GPR is mounted on a user-controlled differen-
tial drive robot, seen in Figure 3 approximately 3cm from
the ground surface. The GPR employed a servo motor
to facilitate scanning by matching the GPR scanning rate
with the robot’s speed. During the data collection process,
the robot navigated the roof in a series of straight seg-
ments, limiting the GPR data to those linear paths. The
scanning process was intentionally paused during turns.
Multiple scans were performed per rooftop. The straight
segments were positioned approximately 0.9m apart from
one another, ensuring comprehensive coverage of the en-
tire roof surface. Multiple paths across each rooftop were
scanned, resulting in a dataset of over 1400 B-scans or
over 1.3 million A-scans. Each B-scan contains a variable
number of A-scans – from a few tens of scans to a few thou-
sand – and each A-scan records 655ns in two-way travel

time. The dataset covers a diverse range of roofing sur-
faces, including built-up roofing with gravel overburden,
Styrene-Butadiene-Styrene (SBS) modified asphalt roof-
ing, Ethylene Propylene Diene Monomer (EPDM) roofing,
Thermoplastic Polyolefin (TPO) roofing, and Polyvinyl
Chloride (PVC) roofing. In addition, scans were acquired
on both dry and moisture-saturated surfaces. The total
area scanned exceeds 50k square meters.

3.4 Preprocessing

The dataset is partitioned into train, validation, and test
sets (containing 1181, 144, and 144 B-scans, or over 1.1m,
136k, and 130k A-scans, respectively). While standard
preprocessing techniques including signal gain and de-
noising are employed for better manual interpretation of
GPR data, we have found that normalization by mean and
standard deviation across training A-scans accomplishes
the same as well as enhancing training performance.

Figure 3. Robot used for GPR Data Collection

3.5 Training

Each model is trained using varied regiments that are
best suited for the model. The AE and VAE is trained for
100 epochs using a starting learning rate of 1.5e-4 and a
batch size of 128. The batches are comprised of A-scans
that are randomly sampled from the training dataset. The
TAE is trained for 600 epochs using a starting learning
rate of 1.5e-4 and a batch size of 16. The batches for the
TAE are comprised of a random window of 64 sequential
A-scans from a randomly sampled B-scan. If the B-scan
is shorter than 64 in length, the scan is padded with the
mean A-scan to make up the difference. The MAE is
finetuned over 50 epochs using a starting learning rate of
1e-3 and a batch size of 16, with the masking ratio set to
the default 0.75 as described in the original paper. Dur-
ing inference, the masking ratio is set to 0 to ensure each
token is encoded, as the original architecture discards all
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masked tokens immediately after masking. Each batch is
comprised of randomly sampled B-scans that are resized
to (224 x 224). The resized scans are additionally nor-
malized using the mean and standard deviation calculated
from ImageNet. All models are trained using the AdamW
optimizer with decay = 0.05 and betas = (0.9, 0.95) and a
cosine decay learning rate schedule. Training is conducted
on a machine with an Nvidia RTX 8000 GPU and the code
is written using PyTorch.

Figure 4. Sample reconstruction outputs from all
trained deep learning methods. This scan is specifi-
cally chosen to study the diverse set of features that
may be present in GPR scan data.

4 Results
4.1 Reconstruction

As shown in Figure 4, every deep learning model trained
is successful in reconstructing GPR scans. To highlight
the various features that may be present in GPR scans, a
specific scan was chosen from the test dataset for visual-
ization. On the bottom left corner of the scan, there is a

reading of some sort of point object, possibly a pipe, and
on the right there is a response that is typical of “ponding”
or moisture on the surface. All models are successful in
reconstructing these features as well as the surrounding
responses without excessive artifacts or noise. This is to
demonstrate that the models are effective in encoding and
reconstructing GPR signals, which allows us to further our
investigation in determining whether anything meaningful
is being encoded in the latent spaces of each model.

Figure 5. Illustration of the learned latent spaces
generated from each method, with the inclusion of
the baseline for reference. We note the similarities
present in the baseline, AE, VAE, and TAE. This
figure is best viewed in color.

4.2 Qualitative Evaluation

T-SNE visualizations are created with perplexity set to
50 to account for the large number of A-scans. Two vi-
sualizations are provided, one displaying the latent space
using the entire test dataset and the other showing the en-
coded features of a single B-scan. This is done to examine
how the models are organizing the latent space, as well
as to provide a relevant visualization for interpretation.
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Through analyzing the latent space, we may be able to un-
derstand whether the models are encoding certain A-scans
similarly or if there is some latent structure to the data.
For instance, A-scans that indicate the presence of objects
like pipes would ideally be encoded closer together in a
cluster and separate from A-scans that indicate moisture.
Color is provided to further illustrate the location of points
in 3D space. In Figure 4 we observe similar behavior to
the baseline for the AE, VAE, and TAE models. While
not well defined, weak clustering is apparent. Notably,
the latent space appears to be organized similarly across
the mentioned methods, particularly in the large cluster
visible on the left. Despite the visible formation of weak
feature clusters, it is not immediately apparent whether
these groups are truly distinct or semantically meaningful.

This similarity is continued in Figure 6 where we ob-
serve the same pattern of a large cluster towards the left and
smaller, tighter clusters on the right in the latent space visu-
alizations. Displaying the latent spaces alongside the cor-
responding encoded scan provides additional visual cues
that aid in understanding how the scans are encoded. We
observe the possibility of a grouping of like A-scans which
is particularly evident in the TAE. The A-scans belonging
to the point object reading are encoded near each other,
with the same being observed for the A-scans pertaining
to the moisture-saturated surface.

The MAE stands out among the methods tested. The
latent space visualization shown in Figure 5 for the MAE
describes reasonably well-defined and separated clusters.
However, the MAE results in Figure 6 are not as intuitive
to interpret. The latent space appears sparse and there is no
visible pattern in the encoding visualization. Therefore, it
is uncertain whether the clustering exhibited in Figure 5 is
representative of meaningful encodings. This result also
suggests the validity of studying GPR scans as a collection
of A-scans in a neighborhood of their respective B-scans.

4.3 Quantitative Evaluation

The following metrics are calculated over a range of 𝑘 =

[2, 3, ..., 15] clusters, inclusive. This is done to ensure a
holistic understanding of method performance despite not
knowing intuitively how many clusters are appropriate for
GPR data. The number of clusters that adequately describe
the GPR signal behavior is unknown. As mentioned prior,
a positive Silhouette Score that is close to 1 and a large
Average Centroid Distance indicates clusters that are well
defined and distinct.

While the results in Figure 7 demonstrate the AE gener-
ating higher quality clusters among the methods tested, the
scores observed indicate fairly weak performance. Sim-
ilarly, the results shown in Figure 8 seem to suggest a
substantial separation of clusters from the AE. However,
the AE performs similarly to the MAE in this metric, which

Figure 6. Encoding visual of a specific scan through
all methods. The colors seen in the encoding visual
correspond to the colors of their respective points in
the 2D latent space. For the baseline, AE, VAE, and
TAE, the columns represent the encoded A-scans
from the sample scan. The MAE visual represents
the encoded 16 x 16 patches. This figure is best
viewed in color.
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measured a comparatively low Silhouette Score. Thus, the
quantitative results also remain inconclusive.
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Figure 7. Silhouette Score for 2-15 clusters. This
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Figure 8. Average Centroid Distance for 2-15 clus-
ters. This figure is best viewed in color.

5 Discussion and Conclusions
Self-supervision enables the possibility of leveraging

the vast capabilities of deep learning in GPR processing at

a massive scale. We believe that advancements in this area
can further refine the performance and generalizability of
works such as [1] and [4] through training on far larger
and more comprehensive unlabeled GPR datasets. Addi-
tionally, enabling self-supervised training on massive real-
world datasets reduces the reliance on simulated synthetic
data, whose characteristics may not translate accurately to
the real world. As such, we recognize the significance of
extending the utility of GPR in rooftop diagnostics through
self-supervised GPR representation learning. Our study,
however, reveals that this task is not without its complexi-
ties.

The challenges in learning meaningful representations
likely stem from the inherent variability in GPR scan data.
Rooftop scans encompass diverse materials, compositions,
and features distributed somewhat unpredictably. This
intricacy poses a substantial obstacle for models aiming to
autonomously derive semantically significant encodings.

Despite the inconclusive results in representation learn-
ing, we remain optimistic in the approach of studying GPR
as a sequence of A-scans within a shared B-scan context
based on the results demonstrated in Figure 6.

Moving forward, addressing these challenges may in-
volve exploring additional pre-processing techniques or
alternative model architectures. Future research should
investigate strategies to enhance the robustness of self-
supervised GPR representation learning, ensuring its
adaptability across diverse scenarios in building diagnos-
tics.
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