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Abstract – 

Every year, accidental damage during excavation 

leads to numerous disruptions in utility services. 

These incidents cause not only financial losses but also 

injuries and fatalities. A major contributing factor to 

these incidents is the lack of accurate location data for 

utilities. The current practice involves a time-

consuming coordination process of obtaining utility 

maps from owners and field surveys, which is often 

hindered by delays and incomplete records. In 

response to these challenges, this paper proposes a 

novel method to predict underground utility lines in 

situations where records are unavailable or delayed. 

Our approach leverages visible utility anchor points, 

such as manholes, and the spatial context provided by 

nearby ground features like roads. The methodology 

involves three primary steps: constructing a 

relational data model of the utility network, 

transforming this data into graphs, and employing a 

graph neural network for prediction. This innovative 

approach demonstrates good performance, achieving 

a ROC AUC score of 95.24% in predicting sewer line 

connections between manholes. This method 

automates the inference of utility lines, providing 

utility owners and excavation contractors a solution 

for identifying unknown connections and reducing 

risks from inaccurate information. 
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1 Introduction 

The ongoing issue of inaccurate and incomplete 

information of buried utilities poses a significant 

challenge across the United States. Annually, numerous 

utility disruptions are caused by accidental excavation 

damage. These incidents impact communities and 

businesses, leading to injuries and tragically resulting in 

loss of life. According to Common Ground Alliance 

Damage Information Reporting Tool [1], 87.84% of 

these incidents occur due to missing or inaccurate 

location information. Current practice to mitigate these 

risks involves coordinating with utility owners to access 

utility maps and employ utility surveyors. The utility map 

serves as a crucial starting point, providing approximate 

line locations for further utility surveys. However, 

obtaining utility records faces prolonged delays in the 

coordination process, and some records may be entirely 

absent. Therefore, there's an urgent need to propose a 

method for inferring utility line locations when utility 

records are delayed or unavailable. 

When records are inaccessible, inferring some utility 

lines is possible by examining visible utility anchor 

points like manholes and nearby ground facilities such as 

roads and buildings. These visible features imply the 

presence and general locations of utilities. Acquiring 

information about these visible features is feasible 

through field surveys or high-resolution satellite imagery. 

However, this inference relies on scarce professional 

judgment and expertise, which can be time-consuming, 

error-prone, and may further complicate the process. 

This paper introduces a novel approach for 

automatically completing underground pipeline 

networks. It focuses on predicting utility line segments 

by using visible utility anchor points and ground facilities 

as spatial contextual cues. The objective is to aid users in 

inferring the existence and approximate locations of 

utility lines when utility records are not accessible. 

2 Literature Review 

2.1 Utility Parameters, Spatial Contexts, and 

Design Practices for Predicting Utilities 

Existing studies [2–6] address the design and 

completion of utility networks by predicting the presence 

of pipelines based on their endpoints, such as manholes, 

and assessing the extent to which the network conforms 
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to design criteria and practices. For instance, Afshar [2] 

suggested minimizing the cost function related to pipe 

diameters and excavation depths while adhering to 

certain constraints to reflect design criteria. He compiled 

a list of sewer design practices as constraints, such as the 

minimum flow velocity required to prevent sediment 

buildup and the minimum pipe slope necessary to avoid 

adverse slopes due to inaccurate construction. Similarly, 

Izquierdo [3] formulated the problem for hydraulic 

systems, akin to Afshar's approach, but also incorporated 

the continuity and energy equations of hydraulics into the 

model. These studies concentrate on using the parameters 

of the pipeline and pipe endpoints to aid in the design of 

the pipeline network. 

Furthermore, some research extends beyond the 

parameters of pipes and their endpoints. It also examines 

the relationship of these endpoints to visible ground 

elements and the surrounding environment, such as 

catchments, roads, and buildings near the pipes. For 

example, Bailly et al. [4] predicted the presence of 

pipelines based on the cumulative length of pipelines in 

relation to the catchment extent and network connectivity. 

Chahinian et al. [7] used manhole locations and 

elevations to predict the presence of pipelines and 

minimize instances of lines intersecting buildings and 

roads. Their top result achieved a precision and recall of 

0.92 each, alongside a critical success index of 0.85. 

These studies underscore the importance of spatial 

contexts in enhancing pipeline network predictions. 

2.2 Challenges and Limitations in Existing 

Studies 

Existing studies carefully consider the information 

crucial for completing or designing pipeline networks. 

However, they face challenges in both mathematically 

modeling and solving the problem as follows: 

1. One primary difficulty is the unknown correlation 

among pipe endpoint parameters, their connection 

parameters, spatial contexts, and pipeline presence. 

Existing studies simplify the problem by 

assumptions, leading to a lack of justification. 

2. Another challenge is capturing the interdependency 

of variables within a network solely through human 

knowledge. This limits current methods to focusing 

only on parameters directly connected to the 

pipelines or nearby ground facilities, overlooking 

broader interdependencies.  

3. Additionally, even when correlations and 

relationships are simplified and mathematically 

formulated, solving the model becomes 

computational expensive. These problems are often 

approached as combinatorial optimization, aiming 

to minimize costs while considering various 

constraints. The complexity of these problems is 

compounded by non-linear functions and 

constraints, resulting in a solution space filled with 

numerous local minima and discontinuities. 

Consequently, studies have resort to computational 

expensive optimization methods such as heuristic 

algorithms, particle swarm, ant colony optimization, 

and others, in pursuit of the global optimal solution. 

In summary, current research mainly utilizes rule-

based approaches to predict pipeline connections 

between two endpoints, considering both their 

parameters and spatial contexts. This body of research 

highlights the complexities involved in formulating and 

solving these problems, especially the challenges in 

converting industry practices into effective cost functions. 

It indicates that explicitly modeling this problem relying 

solely on human knowledge presents significant 

challenges. Additionally, the complexities hinder further 

exploration of factors, such as the detailed spatial 

relationships between manholes and their surrounding 

environment, related to pipeline prediction. 

2.3 Advantages of GNNs in Pipeline Network 

Completion 

In the context of pattern recognition, learning-based 

methods can overcome the limitations of previous studies 

that struggled with explicitly modeling cost functions. 

With sufficient data, machine learning can quickly adapt 

to data from diverse practices. 

Among the learning-based approaches, Deep Neural 

Networks (DNNs) [8,9] distinguish themselves from 

traditional machine learning methods by simultaneously 

learning features and objective functions. The advantages 

of using it for this problem lie in three aspects:  

1. Alignment with Graphical Data Structures: Pipeline 

networks are inherently structured in a graphical 

format, with manholes serving as nodes and 

pipelines as edges. This naturally aligns with the 

architecture of Graph Neural Networks (GNNs), 

facilitating the integration of information into a 

unified network for discerning data correlations. 

Additionally, this problem can be formulated as 

linkage prediction in GNN studies [10], a well-

established research area that is supported by a solid 

mathematical and statistical foundation. 

2. Feature Extraction from Subgraphs: GNNs 

specialize in handling graph-structured data, 

enabling the extraction of comprehensive features 

from subgraphs [11]. These methods, known as 

graph embeddings, allow for the representation of 

pipeline networks by aggregating information not 

just from direct connections but also from the 

broader network context.  

3. Discriminative Feature Learning: The concurrent 

learning of features and objective functions  lead to 
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learn discriminative implicit representations [8]. In 

contrast to traditional methods that linearly model 

relationships between handcrafted features, DNNs 

excel in learning implicit feature representations 

that encode complex relationships within the data. 

These features are specifically optimized for the 

downstream task, enhancing the accuracy and 

effectiveness of pipeline network predictions [12]. 

4. Recent advances in using GNN models in 

Geospatial Artificial Intelligence (GeoAI): GNN 

models are particularly adept at handling geospatial 

challenges that involve analyzing points of interest, 

their spatial relationships, and non-grid topologies. 

GNNs have shown notable effectiveness in 

applications such as traffic flow [13] and PM2.5 

level forecasting [14], where training and testing 

occur on the same nodes, referring to transductive 

learning. A significant challenge in GeoAI, 

however, is the application of models trained on one 

set of location data to completely new, unseen 

locations, known as inductive learning. To address 

this, significant advancements have been made in 

geospatial location encoding techniques [15]. These 

techniques transform location data, whether two- or 

three-dimensional, into a high-dimensional feature 

vector. This approach preserves relative distances 

and, optionally, directional relationships between 

locations, enhancing the model's ability to adapt to 

new locations not seen in the training phase.  

Therefore, there is a need to explore the potential to 

overcome the limitations of current utility network 

completion methods using data-driven approaches. This 

study mainly introduces the framework of utility line 

prediction, addressing the following two challenges: (1) 

identifying which spatial and semantic contexts to 

include along with their encoding techniques; and (2) 

designing GNN models capable of efficiently 

propagating information across a heterogeneous graph—

such as nodes representing manholes and roads—and 

learn features for network topology prediction.  

3 Methodology 

The overall framework is illustrated in Figure 1. The 

process begins with building a relational data model to 

organize information on utility anchor points, lines, and 

ground facilities and their spatial relationships. Second, 

all the records in the relational data model are represented 

as graphs, with anchor points and facilities as nodes, and 

utility lines and their relationships as edges. Finally, a 

GNN model is developed to predict utility lines, which 

are the links between anchor point nodes. 

 

Figure 1. Overall Framework 

3.1 Relational Data Model Construction 

Geospatial relational data modeling is a crucial step 

to present the properties and the relationships among 

different entities. It not only facilitates data extraction 

from existing databases but also aids in building the 

graph representations of the utility anchor points, lines 

and ground facilities. Figure 2 depicts the Entity-

Relationship (ER) diagram. 

 

Figure 2. Entity-Relationship Diagram 

In this diagram, three entities are used: 

1. Utility Anchor Point: These are visible utility line 

junctions, such as manholes and ground pumps, 

indicating the locations of underground lines. 

Attributes include ID, type, and geometry. 

2. Road: Roads, as a typical ground facility, provide 

spatial contextual cues for utility line prediction. 

The alignment of utility lines along roads makes 

this data a potential indicator. Additionally, roads 

are accessible from satellite imagery and digital 

        

            

    

           

         

    

           

    

    

        

  

  

      

        

        

              

        

    

            

  

        

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

938



road maps, which are widely available. Roads are 

characterized by their ID, length, and geometry. 

3. Utility Line. These are typically buried utility lines 

that are the focus of prediction in this research. Data 

on these lines are used for model training and for 

validation and testing in the evaluation stage. As 

this study focuses on predicting the existence of 

lines, only ID and geometry information are utilized. 

Three relationships are established based on spatial 

relationship analysis: 

1. Utility Line-Anchor Point Connection: The 

connection between utility lines and anchor points 

is determined by merging two tables through point-

line intersection analysis.  

2. Anchor Point-Road Proximity: Anchor point-road 

proximity is identified by locating the nearest line 

to the anchor point, considering only those within a 

100-meters radius as "close." Additionally, three 

attributes are extracted: the position of the nearest 

point on the road, the distance from the anchor point 

to this nearest road point, and the side of the road 

on which the anchor point is located. These 

attributes aid in predicting utility line placement, as 

most lines run parallel to, rather than across, roads. 

For instance, two connected manholes are likely to 

be on the same side of the road and in proximity.  

3. Road-Road Intersection: The road-road relationship 

is built by merging road tables through line-line 

intersection analysis.  

3.2 Graph Representation 

Building the graph representation of the utility 

network and its surroundings, based on the geospatial 

data model, involves three main steps: (1) establishing 

relationships between anchor points through their 

connections with utility lines; (2) converting the 

relational data model into a graph data model; (3) 

encoding the data with numerical values. 

3.2.1 Anchor Point to Anchor Point Relationship 

Establishment 

This step transforms the utility line entity into 

relationships between anchor points. It is designed to 

align with the objective of predicting utility lines, which 

will be modeled as the edges between anchor point nodes 

in the graph network. Typically, in the graph data model, 

edges represent relationships in the relational data model. 

The implementation process is straightforward. A list 

of anchor-point ID pairs is generated if they intersect 

with the same utility line segments. This action removes 

the utility line entity in the relational data model and 

establishes a many-to-many relationship between the 

anchor points themselves. 

3.2.2 Relational Data Model to Graph Data Model 

Conversion 

This step follows the typical process of transforming 

the relational database to graph database, including the 

following steps: (1) table to node label; (2) row to node; 

(2) column to node property; (3) foreign key to edge; (4) 

relationship attributes to edge properties. 

 

(a) Relational Data 

 

(b) Graph Data 

 

(c) Graphical Representations in ArcGIS map 

Figure 3. Utility Anchor Points and Roads, along 

with their Relationships 

                           

              

                        

                                                          

                

             

           

           

                   

         

                    

                    

              

               

                     

                             

               
               

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

939



Figure 3 presents an example illustrating utility 

anchor points and roads, along with their relationships, in 

three different formats: as relational data model 

representation, as graph data model representation, and 

as visualized data on an ArcGIS map. 

3.2.3 Data Encoding 

Data encoding is a step to transform the data in 

different formats into the numerical features fed into the 

neural networks to predict the links between anchor point 

nodes. Table 1 summarizes the features used in this 

research, along with data encoding methods.  

Table 1. Data Encoding Methods for Attributes 

Node / Edge Attribute Name Encoding Methods 

Utility 

Anchor 

Point 

Location Location Encoding 

Type One-Hot Encoding 

Road 

Centroid 

Location 
Location Encoding 

Type One-Hot Encoding 

Length 

Equal-Frequency 

Binning and One-

Hot Encoding 

Orientation 

Equal-Width 

Binning and One-

Hot Encoding 

Utility 

Anchor 

Point-Road 

Relationship 

Relative 

Position of 

Nearest Point 

on Road 

None 

Distance 

Equal Frequency 

Binning and One-

Hot Encoding 

Side None 

3.3 Utility Line Prediction using Graph 

Neural Networks 

This research develops a GNN model that consists of 

two main components: convolutional layers, and a 

classifier. Initially, it adopts a multi-scale location 

encoder [14] that applies sinusoidal functions of varying 

frequencies to transform location data. The convolutional 

layers include the GAT (Graph Attention Network [16]) 

and GraphSAGE (SAmple and aggreGatE [17]) as basic 

building blocks. GAT incorporates an attention 

mechanism, assigning importance weights to 

neighboring nodes that are learnable within the network. 

It processes node features, edge indices (indicating node 

connections), and edge attributes as inputs and generates 

updated node features and attention weights as outputs. 

GraphSAGE is a method of sampling neighboring nodes 

with specific weights and aggregating these neighboring 

node features into the weighted target node. Both layers 

focus on feature aggregation at the graph nodes. The final 

component of the network is a binary classifier, designed 

to predict connections between node pairs through the 

multiplication of their feature vectors. The loss function 

used is cross-entropy loss function, commonly applied in 

binary classification tasks. Figure 4 presents a detailed 

visualization of the GNN model, including its inputs, 

outputs, and overall architecture. 

 

Figure 4. Architecture of the GNN model and 

corresponding Inputs and Outputs 

3.3.1 Architecture Variants 

Since there are no existing GNNs for this application, 

several architectural variants are discussed, as illustrated 

in Figure 5. ReLU layers are not drawn for simplification. 

 

Figure 5. Architecture Variants 

The base model utilizes two GAT layers, which 

include dropout rates to prevent overfitting. The outputs 

from these GAT layers, which are the updated features of 

the nodes, along with the indices of the edges, are fed into 

two GraphSAGE layers. The first variant consists solely 

of four GraphSAGE layers. Unlike GAT layers, 

GraphSAGE layers do not process edge attributes, 

 
 
 

 
 
 
 

 
 
 

 
 
 
 

 
  
 

 
  
 

 
  
 

 

 

 

                 

             

                    

                     

               

             

              

                

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

940



meaning that this model variant does not include 

information on road-anchor point spatial relationships 

beyond connectivity. The second variant examines the 

impact of alternating positions of GAT and SAGE layers. 

The third variant investigates the effective integration of 

edge attributes by introducing skip connections, with FC 

referring to fully connected layers. 

4 Experimentation 

4.1 Data Description and Preprocessing 

This research utilizes two data sources: (1) The sewer 

network map provided by Urban Utilities, accessible at 

https://services3.arcgis.com/ocUCNI2h4moKOpKX/arc

gis/rest/services/UU_Sewer_OpenData/FeatureServer. 

In the ArcGIS sewer network map, the manhole and 

pump feature layers are utilized to represent utility 

anchor points, and the gravity sewer main lines are used 

as the utility lines. (2) The road network from the 

Brisbane City Council, which is available at 

https://services2.arcgis.com/dEKgZETqwmDAh1rP/arc 

gis/rest/services/Roads_hierarchy_overlay_Road_hierar

chy/FeatureServer. The road feature layer is employed as 

an example of ground facilities.  

The raw data about manholes, pumps, gravity sewer 

main lines, and road networks were exported from 

ArcGIS Pro software as individual shapefiles. 

Subsequently, these files were processed using Python 

geospatial data analysis and network analysis packages. 

The proximity analysis between manholes and roads was 

conducted using the QueryPointAndDistance function in 

ArcGIS Pro Python API. This function identifies the 

nearest point on a polyline to a given point and calculates 

the distance between them. Additionally, it provides 

details about which side of the line the point is located on 

and the distance along the line, expressed as a percentage. 

The data was preprocessed in two steps. First, the data 

was cleaned by removing utility lines that lack 

connections with any manhole or pump points or are 

linked to only one point. This is because the method 

assumes that each utility line connects to a minimum of 

two anchor points. Second, roads located more than 100 

meters from the manholes were filtered out, as roads not 

classified as "close" to the manholes do not contribute to 

link prediction. The statistics are summarized in Table 2. 

Table 2. Data statistics before and after pre-processing 

Name 
Count 

(Before) 

Count 

(After) 

Utility Line 243,773 203,203 

Utility Anchor Point 206,187 206,187 

Road 41,753 32,080 

4.2 Experiment Design 

4.2.1 Training, Validation, and Testing Data Split 

The data was divided into training, validation, and 

testing sets in three steps: (1) within the utility anchor 

point networks (excluding roads), connected components 

were identified, leading to a collection of subgraphs, each 

representing a distinct component; (2) the training, 

validation, and testing datasets were then randomly 

distributed in a 6:2:2 ratio from these subgraphs. (3) 

nodes representing roads were included in various 

datasets, determined by their connectivity to utility 

anchor points. Some road nodes might appear in multiple 

datasets if they are connected to anchor points belonging 

to different sets. This separation ensures that utility line 

edges and utility anchor point nodes from the training set 

do not appear in the validation or testing sets, and those 

from the validation set are excluded from the testing set. 

This approach of using connected components for 

dataset division was chosen because the distribution of 

unknown utility lines typically concentrates in specific 

areas rather than being evenly spread throughout a city. 

Figure 6 illustrates the distribution. 

 

Figure 6. Training, Validation and Testing Sets 

4.2.2 Evaluation Metrics 

The model outputs are numerical values representing 

classes assigned to each edge that connects two manhole 

nodes: “      ”    1 indicates the presence of a pipeline, 

“      ”      signifies its absence. A common threshold 

of 0.5 is used to separate these two classes. These studies 

adopt the following evaluation metrics for experiments: 

(1) Precision. Precision is the proportion of true positive 

predictions, correctly predicted pipeline presence, out of 
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all positive predictions made. (2) Recall. Recall is the 

proportion of true positives, correctly predicted pipeline 

presence, out of all actual pipeline presences. (3) AUC 

(Area Under the Curve) ROC (Receiver Operating 

Characteristics) score. The ROC curve is a plot of the 

TPR (True Positive Rate or Recall) against the FPR 

(False Positive Rate) at various threshold settings. It is 

the measure of separability of two classes. (4) F1-Score. 

F1-Score is the harmonic mean of precision and recall. (5) 

Accuracy. Accuracy is the total number of correct 

predictions among all the cases. (6) MCC (Matthews 

Correlation Coefficient). MCC is a correlation 

coefficient between the observed and predicted 

classifications for imbalanced dataset. It returns a value 

between -1 and 1, where 1 indicates a perfect prediction, 

0 means random prediction, and -1 indicates total 

disagreement between prediction and observations. 

4.2.3 Hyperparameter Tuning 

For model training, the number of epochs is 

determined using an early stopping approach. The 

maximum size of the epochs is 100, but once the 

validation loss does not decrease or decreases by less 

than 0.001 for five consecutive epochs, the training 

process will be stopped to prevent overfitting. Regarding 

optimization techniques, the Adam optimizer is used with 

a learning rate set at 0.001. 

The model fine-tuning focuses on two 

hyperparameters: the size of the hidden layers and the 

dropout rates. This approach is chosen due to an 

overfitting problem observed during the experimentation 

process. The options for the hidden layer size are set at 

four specific values: 32, 64, 128, and 256. The dropout 

rates range from 0 to 0.6, with increments of 0.2. The 

hyperparameter tuning process is guided by various 

evaluation metrics on the validation set, and the testing 

data is used only for evaluating the optimal model. Due 

to space constraints, the detailed evaluation metrics 

corresponding to each model variant and hyperparameter 

combination are stored in the GitHub repository. 

4.3 Experiment Results 

The hyperparameter tuning of the model is driven by 

its performance on various evaluation metrics using 

validation data. The best-performing models on the 

validation set for each metric are summarized in Table 2.  

For more detail, Variant 3a represents a model 

configuration with a hidden layer size of 32 and a dropout 

rate of 0; Variant 3b is configured with a hidden layer 

size of 128 and a dropout rate of 0; and Variant 3c 

features a hidden layer size of 32 with a dropout rate of 

0.4. Variant 1a, on the other hand, corresponds to a model 

with a hidden layer size of 64, utilizing only SAGE layers. 

The fine-tuned models, each selected for achieving 

the highest score for each evaluation metrics, are further 

evaluated using the testing data. The outcomes from 

these tests are compiled and presented in Table 3. 

Overall, Variants 1 and 3 demonstrate the most robust 

performance. Variant 3 excels in ROC AUC scores, 

accuracy, and MCC metrics, indicating its superior 

capability in differentiating the presence and absence of 

pipeline connections. On the other hand, Variant 1, which 

focuses solely on node attributes and connectivity and 

overlooks edge attributes such as the manhole's location 

relative to the road, achieves the highest recall and F1 

score. This outcome is reasonable since ignoring road-

crossing pipelines leads to more conservative predictions. 

This conservative approach is particularly advantageous 

in utility line detection scenarios, where the priority is to 

minimize the risk of missing lines. 

Table 3. Optimal Model Architectures and 

Hyperparameter Combinations on Validation Set  

Model Var.3a Var. 3b Var. 3c Var. 1a  

ROC AUC 0.9619 0.9616 0.9608 0.9572  

F1 0.8987 0.8980 0.8959 0.9001  

Precision  0.9137 0.9215 0.9265 0.8992  

Recall 0.8842 0.8756 0.8672 0.9010  

Accuracy 0.9004 0.9005 0.8992 0.9000  

MCC 0.8011 0.8020 0.8001 0.8000  

Table 4. Testing Results on the Tunned Models 

Model Var.3a Var. 3b Var. 3c Var. 1a  

ROC AUC 0.9520 0.9524 0.9488 0.9479  

F1 0.8855 0.8849 0.8790 0.8868  

Precision  0.8783 0.8884 0.8890 0.8687  

Recall 0.8927 0.8815 0.8692 0.9057  

Accuracy 0.8845 0.8854 0.8803 0.8844  

MCC 0.7692 0.7708 0.7608 0.7695  

5 Conclusion and Discussion 

This research presents an effective method for 

completing utility networks. The approach includes three 

steps: (1) build a relational data model to arrange the data 

regarding utility anchor points, lines, ground facilities, 

and their spatial relationships; (2) convert all records in 

the relational data model to graphs, with anchor points 

and facilities as nodes, and utility lines and their 

relationships as edges. (3) develop a GNN model to 

predict utility lines. The experimental results 

demonstrate good performance, achieving a 95.2% ROC 

AUC score in inferring sewer lines between manholes. 
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This novel approach offers advantages for utility owners 

and excavation contractors, providing a framework to 

deduce missing connections within utility networks. 

However, a limitation of the model is its lack of 

explainability, which impacts user trust. Furthermore, 

applying the model directly to varied datasets presents 

challenges due to the necessity for: (1) aligning context 

features with standardized utility network criteria, and (2) 

considering diverse practices that vary by time and 

geography. Ensuring model adaptability to different 

utility networks requires accurate, complete, and region-

specific utility network training data. Future research will 

focus on assessing the impact of data quality on model 

performance. Additionally, expanding the model to 

include more spatial contexts, such as buildings and legal 

boundaries, could further improve its utility and accuracy 

in real-world applications. Lastly, considering potential 

consequences of false alerts and missed detections in 

utility strike prevention and flexibilities in pipeline 

network design, presenting the likelihood with 

uncertainty could further improve decision making.  

6 Data and Code Availability 

The code, data, and supplemental materials are 

available in the GitHub repository: 

https://github.com/Yuxi0048/PipeNetworkCompletion.  
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