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Abstract –  

Concrete 3D printing is a digital fabrication 

technology that has the potential to increase the level 

of automation in construction. However, getting 

consistent output quality is a challenge in concrete 3D 

printing because of the change in material properties 

with time and the influence of environmental 

parameters. A robust quality monitoring and control 

system is required to control the variations and obtain 

good-quality output. In this study, computer vision 

techniques are used to monitor the 3D printing 

process. Image features such as temporal variations 

in layer thickness and textural changes are used to 

assess the buildability properties. Two metrics have 

been developed for quantifying these features: 

entropy standard deviation and maximum layer 

thickness deformation. A significant correlation is 

found between the two metrics, and this relationship 

can be used to re-confirm the buildability assessment. 

For a given concrete mix, limiting values can be 

computed for the metrics to effectively classify an 

element into a stable type or one that is likely to 

collapse. This data can also be used as feedback to the 

printing system to make corrective actions to increase 

the quality of the print output. Thus, a real-time, non-

intrusive buildability assessment system for concrete 

3DP elements is demonstrated in this study.  
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1 Introduction and background 

Concrete 3D printing (3DP) is a freeform technology 

that aims to realize the benefits of digital fabrication. It 

has been found to reduce construction time, material, and 

labor usage while improving sustainability. However, 

due to the dependency of material properties on multiple 

input parameters, 3D printed elements are found to have 

variations in the output quality. 3D printing challenges 

include proper extrusion and limiting dimensional 

changes with time [1]. One of the critical parameters of 

3DP is buildability, which determines the number of 

layers that can be printed without significant dimensional 

changes in individual layers due to the weight of the top 

layers. The common buildability failures in 3D printing 

are plastic and buckling collapse [2]. It depends mainly 

on the workability of the concrete, and many studies have 

used fresh-state property tests to find a printable region.  

There are very few real-time techniques that help in 

monitoring the variations during the printing process. 

Studies on quality monitoring and control techniques are 

increasing in the additive manufacturing industry [3]. 

However, studies on quality monitoring in concrete 3DP 

are relatively less. Monitoring using 2D camera images 

and computer vision techniques is gaining prominence in 

industry applications. In this study, a computer vision 

methodology for quality monitoring is developed that 

helps assess the buildability properties of 3D printed 

elements. Significant dimensional changes affect the 

print quality and long-term structural properties [4,5]; 

hence these are monitored in this methodology. In 

addition, new image features have been identified that 

can effectively assess the buildability properties of 3DP 

elements.  
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2 Methodology 

 

Figure 1. Methodology of buildability assessment 

using image features extracted through computer 

vision techniques 

 Figure 1 shows the overall methodology for 

buildability assessment of 3D printed elements using 

Computer Vision (CV). It consists of the following three 

parts: 

• Input data collection 

• Image pre-processing 

• Study of temporal image features  

In the input data collection phase, 2D images of the 

3D-printed elements are collected using a camera during 

printing. The input data is preprocessed in the second 

stage to remove all the background data, reducing the 

computational complexity and increasing accuracy. The 

final phase involves the usage of computer vision 

techniques to extract image features and understand the 

temporal variations of the image features. The temporal 

variations are used to assess the buildability and the 

dimensional changes in the printed elements.  

3 Materials and Methods 

3.1 Experimental procedure 

To demonstrate the methodology for buildability 

assessment using computer vision, a series of elements 

were printed in a laboratory setting. The experimental 

details are described in this section. 

This study uses a new LC2-OPC mix, which uses 

Limestone Calcined Clay (LC2) and Ordinary Portland 

Cement (OPC) cement as binders with manufactured 

sand as aggregate. Super-plasticizers (SP) and viscosity 

modifying agents (VMA) are used to control the 

rheological properties of the printed elements. In general, 

buildability properties depend on the rheological 

properties, especially the workability of the printing 

concrete. The initial workability of concrete varies with 

super-plasticizer dosage. However, the workability 

during the printing process is dynamic, with variations 

occurring due to hydration or evaporation with time.  

Hence, elements are printed under different initial 

workability conditions and at different times of printing 

(time from the point of mixing water to the dry concrete 

mix) to understand the impact of the changes in 

rheological properties on the buildability of 3DP 

elements.   

Table 1. 3DP elements printed with different 

Super-Plasticizer (SP) and Time Of Printing (TOP) 

as per experimental procedures 

Category 

No. 

SP 

(%) 

TOP 

(min) 
Status of Print 

1 

0.50 

10-15 Collapsed 

2 25-30 Collapsed 

3 40-45 

Good quality print with slight 

expansion/distortion in the 

middle 

4 

0.40 

10-15 
Good print with minor voids 

in the top layers 

5 25-30 
Fair print with many voids in 

the top layers 

6 40-45 Non-extrudable 

7 

0.30 

10-15 
Good print with a fair amount 

of voids in the top layers 

8 25-30 Non-extrudable 

9 40-45 Non-extrudable 

Table 1 shows the elements printed with different 

super-plasticizer values of 0.50%, 0.40%, and 0.30% to 

account for initial workability changes. For every super-

plasticizer (SP) dosage, the Time of Printing (TOP) is 

varied in three ranges, 10-15, 25-30, and 40-45 mins. The 

different TOP values account for dynamic workability 

changes during the printing process. Nine different 

categories of printing were done as part of the 

experimental procedure. For every category, three prints 

were done to capture the variation in the data. For 
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Category 1 and 2, the super-plasticizer dosage was very 

high, resulting in collapse before reaching the target 

height of 500 mm. The super-plasticizer value was very 

low for categories 6, 8, and 9, making the concrete non-

extrudable and non-printable. Since this is a buildability 

study, the non-extrudable categories are not considered.  

A Canon 1300D 18MP camera was kept directly at 

the printing palette at a horizontal distance of 1000 mm 

from the printed element to capture the 2D video/images 

of the 3DP element. An illumination lamp was kept 

above the camera, which provides a constant illumination 

of 6500 (+/-100) Lux on the surface of the printed 

elements. The same camera and lighting setup were 

followed for all the print elements.  

A stable element that retained shape and could be 

printed to a target height of 500 mm without collapse is 

designated as a good buildable element. If the element 

collapsed before the target height, it is classified as a 

collapsed or bad buildable element.  

3.2 Image Data Collection and Pre-

processing 

 

Figure 2. Input image of a stable 3D-printed 

Element - A 

Figure 2 shows the input images of the 3D-printed 

element that reached the target height of 500 mm 

(Element A). Individual snapshots were taken from the 

video after the completion of every layer (layer time 

instances). The layers are designated as L01, L02, and so 

on, numbered from bottom to top. The two bottom layers, 

L01 and L02, were intentionally compressed against the 

printing palette to act as the base for printing. Hence, the 

analysis is done from layers L03 to L10. Image 01 refers 

to the image instance captured after the completion of 

layer L03. Image 02 refers to the image instance captured 

after the completion of layer L04 and so on. The Image 

numbers – Image 01, Image 02, and so on refer to the 

image instances taken after the completion of every layer, 

and they indirectly represent the time of printing 

containing information about temporal changes in the 

overall printed element.  

The input images are pre-processed to remove all the 

background data. It is first processed through Salient 

Object Detection (SOD) to segment only the objects in 

focus. All the objects outside the focus were removed and 

were converted into black pixels. Individual layers are 

cropped out, and their temporal changes are studied to 

extract useful image features.  

 

Figure 3. Hough Transform output after pre-

processing of images of Element A 

Each layer is characterized by the top and bottom 

layer boundaries, which are effectively horizontal for 

linear elements. Hence, the Hough Transform technique 

is used to identify the layer boundary [6]. Then, 

additional rows of pixels are added to the top and bottom 

boundaries to account for undulations in layer boundaries 

to crop the individual layers.  Figure 3 shows the pre-

processing output where all the background data is 

removed, and only the printed element is cropped out. It 

also shows the Hough Transform output, where all the 

layer boundaries are identified as horizontal red lines.  

The image of each layer is obtained by cropping the 

initial image of the layer instance using the boundaries 

identified through Hough Transform. The temporal 

changes in each layer after the printing of subsequent top 

layers are captured within the crop window. 
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Figure 4. Temporal images of layer L03 of a good, 

stable printed Element A 

 

 

Figure 5. Temporal images of layer L03 of a 

collapsed Element B 

Figure 4 and Figure 5 show the temporal changes of 

layer L03 within a crop window for Elements A and B, 

respectively. The individual layer images are processed 

through two different computer vision techniques - 

texture analysis and layer thickness extraction; these are 

discussed in later sections.  

It is found that the dimensional stability and the 

buildability of the printed element can be evaluated by 

assessing the bottom ten layers of every 3D printed 

element. Hence, only the bottom ten layers are used in 

the analysis.  

3.3 Texture extraction – Modified Histogram 

of Oriented Gradients (HOG) 

The texture is the tangible feel on the surface of the 

material. In the case of an image, it is computed as the 

variations in the brightness intensity of the pixels. This 

study uses a modified version of the Histogram of 

Oriented Gradients (HOG) concept. The modified HOG 

computes the gradient changes in three directions. The 

details of the concept and methods of the modified HOG 

algorithm are discussed in [7].  

3.4 Entropy value calculation 

Entropy is a measure of uniformity in a distribution. 

It was first introduced by Shannon and is given by the 

following formula, 

Entropy = -∑ Pi * log2 Pi                                    (1) 

Where Pi is the probability of the i-th value in the 

distribution. Entropy can be used for quantifying the 

textural changes within an individual layer image [7,8]. 

The higher the entropy value, the higher the textural 

value, and vice versa.  

3.5 Canny edge detection  

Canny edge detection is an edge detection method 

that looks for sudden changes in the pixel brightness 

intensities.  

 

Figure 6. Canny edge detection output of L03 of 

Element A 

Figure 6 shows the Canny edge detection output of 

layer L03 of Element A at a particular instance. It shows 

that the boundary lines between two layers are captured. 

The layer thickness is the vertical distance between the 

top and bottom boundaries of the layer identified from 

the Canny edge detection output. Two edge lines are 

determined for every boundary because the pixel 

intensity changes on both sides of a layer boundary. The 

layer thickness is computed as the vertical distance 

between the top surface boundary of the target layer to 

the bottom layer. It is done to avoid the impact of voids 

on the bottom surface boundary of individual layers. 

4 Results and Discussions 

4.1 Temporal textural variation 

Figure 7 shows the temporal changes in the texture of 

the layer L03 of Element A. It is found that layer L03 

deforms minimally from Image 02 to Image 20. Beyond 

that, no significant dimensional changes are visible 

within the crop window. The black pixels in Figure 7 

represent the gradient (change in pixel intensities) 

observed within the layer L03 crop window, as obtained 

from the modified HOG algorithm. The number of black 

pixels within the L03 crop window is found to be 

changing from Image 02 to Image 20. Beyond that, it is 

consistent. This trend matches the pattern found in the 

actual dimensional changes within the crop window. 
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Figure 7. Temporal changes in the textural output 

of layer L03 of Element A 

 

 

Figure 8. Temporal changes in the texture of 

layers L03 to L10 of Element A 

The variations in the pixel intensities (gradient/black 

pixels) are captured as a single entropy value for each 

image instance. Its temporal changes are given in Figure 

8. It is seen that the entropy values have minor variations 

until Image 20. Beyond that point, the values are constant, 

indicating that layer L03 has become stable by achieving 

the initial stiffness/yield strength.  

 

Figure 9. Temporal changes in the textural output 

of layer L03 of Element B 

Figure 9 shows the modified HOG output of layer 

L03 of Element B. In contrast to Figure 7, the layer L03 

of element B is continuously compressed with time. In 

Image 21, even the top layer has come into the crop 

window. This element eventually collapsed due to large 

deformations. The same is visible in the textural changes 

in terms of the number of black pixels varying with time 

(image instances). 

 

Figure 10. Temporal changes in the texture output 

of layers L03 to L10 of Element B 

The temporal change in the texture of Element B is 

captured in terms of entropy value variations, as shown 

in Figure 10. Unlike Figure 8, the entropy values keep 

changing drastically and do not seem to consolidate.  

Entropy Standard Deviation (ESD), or the standard 

deviation of the entropy values over time, is introduced 

in this study as a single measure of the temporal changes 

in entropy value for every individual layer. The standard 

deviation of entropy values (ESD) of layer L04 of 

element B is 0.1148, whereas the ESD value of layer L04 

of element A is 0.0172. Similarly, ESD values for layers 

L03 to L10 of all the print elements. It is found that the 

ESD values are low for a stable print element and high 

for a collapsed print element. It proves that the ESD is a 

good measure of the dimensional stability or the 

buildability collapse assessment of the 3DP elements.  

4.2 Temporal layer thickness variation 

In continuation to section 3.5, the layer thickness is 

measured as the vertical distance between the two 

boundary edge lines identified from the Canny edge 

detection output. The layer thickness is found at thirty 

different sections along the line of printing. It is done to 

understand the layer thickness changes at different local 

sections rather than the overall average layer thickness. 

Figure 11 shows the layer thickness found in thirty 

different sections of layer L03 of Element A, identifying 

the layer boundaries and the vertical distance between 

them in terms of pixel points. Also, the changes in layer 

thickness over time are obtained by following the same 

steps on individual layer images taken at different time 
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instances.  

 
Figure 11. Layer thickness extracted at 30 

different sections of layer L03 of Element A 

 
Figure 12. Layer thickness extracted at different 

sections of layer L03 of Element A 

The changes in layer thickness are captured and 

shown in terms of a graph in Figure 12. The x-axis shows 

the different section points along the line of printing 

(where layer thickness is measured), and the y-axis 

shows the layer thickness in terms of pixel point units of 

layer L03 of element A measured at different time 

instances (Image numbers). The figure shows that the 

layer thickness initially reduces with time (increase in 

Image numbers). However, the layers gain initial 

stiffness/ yield strength with time, and the thickness 

reduction stabilizes. 

 

Figure 13. Layer thickness extracted at different 

sections of layer L03 of Element B 

The layer thickness found for layer L03 of Element B 

is given in Figure 13. Since the printed elements have 

high workability, the layer thickness continuously 

reduces with time, ultimately leading to the element's 

collapse.  

 
Figure 14. Layer thickness extracted at different 

sections of layer L03 of Element B 

The temporal layer thickness changes of layer L03 of 

element B are given in Figure 14. Unlike Figure 12, the 

layer thickness value reduces continuously with time. 

Beyond Image 19, there is a sudden decrease in the layer 

thickness, ultimately leading to the element's collapse 

beyond the time instance - Image 22.  

 

Figure 15. Layer Deformation (%) (LTD) of layer 

L03 of Element B 

To have a single metric for layer thickness reduction, 

the concept of maximum Layer Thickness Deformation 

(LTD) (%) is introduced, where LTD is measured using 

the following formula: 

LTD (%) = (Layer thickness at initial instance – layer 

thickness at instance X) / Layer thickness at 

initial instance X 100.                              (2) 

The LTD is calculated at every section and every time 

instance X. The maximum deformation value across the 

different sections and the time instances is considered the 

Maximum LTD (MLTD) value. The LTD values found 
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at different sections and different time instances of layer 

L03 of Element B are given in Figure 15. It shows the 

LTD values and their temporal changes (image numbers) 

across different sections along the printing line. It is 

found that the LTD values increase even beyond Image 

16 and reached the maximum value at section 07 (MLTD) 

before the element's collapse.  The MLTD value for layer 

L03 of Element B is 45.47%, but in the case of layer L03 

of Element A, it is only 12.50%. The MLTD values are 

found for layers L03 to L10 of all the experimental print 

elements. It is found that the MLTD values of layers from 

a stable printed element are low. And for the collapsed 

element, the MLTD values are drastically high. Hence, 

MLTD also serves as a good image feature to assess the 

buildability collapse or dimensional stability of 3D 

printed elements.  

4.3 Limiting value for entropy standard 

deviation (ESD) 

 

Figure 16. ESD vs. QOP plot showing the 

individual layer data points of good and bad 

quality printed element layers. 

To find a limiting value that classifies a print element 

as a stable or collapsed element, each layer (L03 to L10) 

of all the experimental prints is considered as individual 

data points and analyzed. The layers L03 to L10 of a 

stable printed element are tagged as good-quality data 

points (Quality of Printing). In the case of collapsed print, 

all the individual layer data points (L03 to L10) are 

designated as bad-quality data points (Quality of 

Printing). Figure 16 shows the plot of the Entropy 

Standard Deviation (ESD) vs the Quality of Printing 

(QOP) designated based on the dimensional stability of 

every individual layer data point. The limiting value 

(discriminant) is found to be 0.065 (black dotted line) for 

ESD, which differentiates a stable and collapsed print 

element.  The overall misclassification is 8.432% for the 

130 individual layer data points assessed in this study. 

4.4 Limiting value for maximum layer 

thickness deformation (MLTD)  

Figure 17 shows the MLTD vs. QOP plot showing the 

maximum layer thickness deformation (MLTD) (%) of 

the individual layers (L03 to L10) of stable and collapsed 

printed elements. Similar to finding the limiting value for 

ESD, the layers of collapsed elements are designated as 

bad-quality data points, and the layers of stable elements 

are designated as good-quality data points. The limiting 

value is found to be 12.50% for MLTD, with a 

misclassification of only 4.769%. 

 
Figure 17. MLTD vs. QOP plot showing the good 

and bad quality individual layer data points 

4.5 Relation between max layer thickness 

deformation (MLTD)(%) and entropy 

standard deviation (ESD) 

Figure 18 shows the relation between the measured 

image feature metrics - MLTD (%) and ESD for all 

individual layer data points. All the individual layer data 

points from a stable printed element are given in green, 

and the collapsed printed element is given in red. A 

distinct region separation is noted from the plot. When 

the individual limiting values identified for each image 

feature are plotted, a discriminating boundary separating 

stable print data points and collapsed layer data points is 

found. It is to be noted that during the printing process, if 

any of the layers L03 to L10 falls in the collapse region 

or the rate of change of image feature values moves 

towards it, then there is a high chance of the 3D printed 

element collapsing. Hence, the correlation identified for 

ESD and MLTD can be used to supplement or re-confirm 

the buildability assessment from the individual image 

feature analysis. The developed limiting values of image 

features are valid for the current mix design and 

experimental procedures used in this study. They are not 

expected to vary drastically for other mixes as the 
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dimensional change might be in the same pattern for 

collapse in other mixes.  

 

Figure 18. Plot showing the correlation between 

MLTD (%) and ESD 

5 Conclusion 

This paper presents a methodology for assessing the 

buildability of 3D printed concrete elements using 

computer vision techniques. Two new metrics have been 

developed in this research: Entropy Standard Deviation 

(ESD) and Maximum Layer Thickness Deformation 

(MLTD). These metrics are computed using image 

processing techniques and can be used for buildability 

assessment. The conclusions of the study are as follows: 

• There exists a correlation between the two metrics. 

This relationship can be used to re-confirm the 

buildability assessment independently through two 

methods.  

• For a given concrete mix, limiting values can be 

determined for the two metrics for discriminating 

between a stable print and one that could result in a 

collapse. 

• Buildability or dimensional stability in terms of a 

stable/collapse print can be evaluated by monitoring 

and assessing the bottom ten printed layers of a single 

batch of concrete mix.  

This is the first study to identify metrics that clearly 

predict properties of 3D printed concrete elements. This 

study paves the way for further research in computer 

vision on the use of image features to assess critical 

parameters like buildability. The image features can be 

used in a feedback loop to control the printing system. 

Based on the temporal variations in the image features, 

extrusion speed, and printing speed can be modified to 

give the bottom layers significant time to increase initial 

stiffness and yield strength to carry the weight of the top 

layers. It ensures sufficient buildability and avoids 

material wastage, increasing the sustainability of 3D 

printing technology. Thus, the study will help develop an 

autonomous, non-intrusive tool for the buildability 

assessment of concrete 3D-printed elements.  
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