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Abstract – 

This study proposes a multi-resolution fast 3D 

reconstruction framework that integrates 

transformer-based damage detection with rapid 3D 

modeling to enhance bridge surface defect 

identification and spatial localization. The framework 

consists of three phases: (I) 3D reconstruction using 

Structure from Motion (SfM) to generate a structural 

model with sparse point cloud, (II) damage 

segmentation via a customized Swin UNETR model 

for precise defect detection, and (III) multi-resolution 

dense reconstruction that prioritizes high-resolution 

modeling of detected defects while reducing the 

resolution of non-critical areas to improve efficiency. 

Experimental validation on the High Level Bridge in 

Edmonton, Canada, demonstrated the framework’s 

capability to accurately map surface defects onto a 3D 

model, providing an intuitive and detailed localization 

for structural assessment. This approach offers 

significant potential for efficient and accurate bridge 

inspection, supporting data-driven maintenance 

strategies. 
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1 Introduction 

Bridges are critical components of civil infrastructure 

but are subjected to various adverse loads throughout 

their service life, accelerating structural deterioration  [1]. 

The accumulation of these loads induces repeated stress 

and strain, leading to the formation of surface cracks that 

gradually compromise structural integrity over time [2]. 

Thus, regular inspections and timely repair based on 

damage assessment are essential to ensure bridge safety 

[3]. Recent advances in computer vision have greatly 

improved defect detection methods, enabling efficient 

analysis of large-scale image datasets for rapid damage 

assessment [4-5]. However, the widespread and varied 

nature of bridge damage presents challenges for existing 

techniques in simultaneously detecting and localizing 

surface defects [6]. Moreover, mapping surface damage 

onto a 3D model has proven beneficial for effective 

bridge maintenance, offering critical insights that support 

accurate decision-making by bridge owners [7]. 

Therefore, achieving precise detection and localization of 

bridge surface damage within a 3D model is of 

significant importance [8]. 

Currently, vision-based damage detection methods 

can be mainly divided into image classification, object 

detection, and semantic segmentation [9]. With 

advancements in deep learning, semantic segmentation 

has become a leading approach [10]. Various 

convolutional neural networks (CNNs) have been applied 

to damage segmentation, including U-Net [11], ResNet 

[12], DenseNet [13], Mask R-CNN [14], DeepLabV3+ 

[15], and hybrid models [16]. However, due to the limited 

receptive fields of CNN-based models, capturing global 

features in complex real-world scenarios remains 

challenging [17]. One promising solution is the use of 

transformer. Since Dosovitskiy et al. [18] introduced the 

encoder-based Vision Transformer (ViT), transformer 

has gained attraction in computer vision. Its embedding 

and self-attention mechanisms have shown superior 

accuracy compared to complex CNN models for image 

segmentation tasks [19]. Swin UNETR [20], which 

integrates the Swin Transformer [21] with an enhanced 

ViT, has demonstrated outstanding accuracy and 

efficiency across benchmark datasets [22]. Moreover, 

combining Unmanned Aerial Vehicle (UAV) with 

advanced algorithms offers significant potential for rapid 

inspection of high-risk areas, such as bridge piers and 

abutments [23]. 

To obtain the 3D spatial information of bridge 

damage, point cloud data is commonly used to generate 

a 3D bridge model. With the development in localization 

technology, stereo vision-based local positioning 

methods have been applied, addressing the reliance of 

42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

988

mailto:polo.huizuo@ualberta.ca
mailto:tao.sun@mail.mcgill.ca
mailto:hxie9@ualberta.ca
mailto:xm11@ualberta.ca
mailto:shirzadg@ualberta.ca
mailto:qipei.mei@ualberta.ca


UAVs on the Global Positioning System (GPS) [24]. And 

Structure from Motion (SfM) is widely regarded as one 

of the common techniques for 3D reconstruction from a 

series of sparse images. This method enables the creation 

of a complete 3D model, integrating local detection 

results and reflecting the spatial position of objects [25]. 

Although semantic segmentation can classify damage at 

the pixel level, it faces challenges in consistently 

identifying and matching the same damage across 

sequential image frames, thus hindering the integration 

of damage segmentation with spatial localization [6]. 

Additionally, generating 3D bridge models with SfM 

presents several challenges. First, precise image capture 

and detailed trajectory planning are often required to 

avoid motion blur during data collection to ensure 

successful reconstruction. This time-consuming process 

significantly reduces efficiency [26]. Second, processing 

large volumes of images with SfM greatly extends 

computation time, further limiting reconstruction 

efficiency [27]. 

In response, this study integrates the high accuracy of 

image-based damage detection with the spatial 

localization capabilities of 3D reconstruction. A new 

method is proposed that combines transformer-based 

damage detection with rapid 3D reconstruction, enabling 

seamless and efficient mapping of surface damage on 

bridges onto the 3D model. This approach offers 

decision-makers an intuitive and comprehensive 

localization of structural assessment. 

2 Methodology 

The proposed multi-resolution 3D reconstruction 

framework comprises three phases: (I) 3D reconstruction, 

(II) transformer-based damage segmentation, and (III) 

multi-resolution dense reconstruction. Phase I generates 

a 3D structural model with data captured by UAV using 

SfM. Phase II employs a transformer model to detect and 

segment surface defects from feature images. Phase III 

performs multi-resolution dense reconstruction, 

producing a dense point cloud where defects are rendered 

in high resolution while the overall structural resolution 

is reduced, enabling fast and precise damage localization. 

The overall scheme is shown in Figure 1. 

 

Figure 1. Proposed Framework  

2.1 3D reconstruction 

In this phase, the incremental SfM [28] is used to 

process RGB images collected from UAV inspections, 

with each image associated with a local coordinate 

system (LCS) defined by the camera's field of view and 

orientation. The goal is to convert these LCS-based 

observations into a global coordinate system (GCS) to 

enable accurate 3D reconstruction. This process requires 

the extraction of intrinsic and extrinsic camera 

parameters and involves feature matching and 

incremental reconstruction. 

To accurately represent the reconstructed model in a 

global coordinate system, it is essential to convert the 

image data from the LCS to the GCS [29]. The intrinsic 

camera matrix Κ  (see Equation (1)) and the extrinsic 

rotation and translation matrix |R t  (see Equation (2)) 

are necessary for transforming coordinates from the LCS 

to the GCS. The intrinsic matrix Κ  captures the camera's 

internal parameters, including the focal length ( , )x yf f , 

camera lens distortion s and the principal point 

coordinates ( , )x yc c .  
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While the extrinsic matrix |R t  defines the camera's 

rotation and translation in the global frame, including the 

camera position transformation matrix ,i jr , and the 

translation vector , ,
T

x y zt t t =  t . 
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Finally, the relationship in Equation (3) can be used 

to transform a 3D point in the LCS (xL, yL, zL) into the 

GCS (XG, YG, ZG) through the extrinsic parameters: 
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where the rotation matrix R is further decomposed into 

rotations around the X, Y, and Z axes as shown below. 

 

cos sin 0 cos 0 sin

sin cos 0 0 1 0

0 0 1 sin 0 cos

1 0 0

0 cos sin

0 sin cos

z z y y

z z

y y

x x

x x

   

 

 

 

 

 − 
  

=    
   −   

 
 

 −
 
 − 

R

 (4) 

2.2 Transformer-based damage segmentation 

In this phase, the Swin UNETR, designed for 3D 

tumor segmentation, is customized for 2D structural 

damage segmentation. The model processes 2D 

structural images with two channels by dividing them 

into non-overlapping patches using a patch partition layer. 

These patches are transformed into windows suitable for 

self-attention operations. The encoded features from the 

Swin transformer are passed through skip connections at 

various resolutions to a CNN-based decoder. The final 

output is a segmentation map with two channels, 

identifying damaged areas in the structure. The 

architecture of the customized Swin UNETR is shown in 

Figure 2. 

 

Figure 2. Architecture of the customized Swin 

UNETR  
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H W S    
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' '
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 . These patches are then embedded into a 

feature space of dimension C. Self-attention is applied to 

these patches within non-overlapping windows to 

efficiently model relationships between tokens. 

Specifically, windows of size M M partition the token 
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' 'H W

M M
  regions at a given layer l in the 

transformer encoder. In the following layer, window 
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outputs using the following equations: 
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where W-MSA and SW-MSA represent standard and 

shifted window-based multi-head self-attention modules. 

LN and MLP denote layer normalization and multi-layer 

perceptrons. lz  and 1lz +  indicate the output of W-MSA 

and SW-MSA, respectively. 

For the 2D task, the encoder begins with a patch size 

of 2×2 and a feature dimension of 2×2×4=16. The 

embedding dimension C is set to 48. The encoder consists 

of four stages, each with two transformer blocks, totalling 

eight layers. A linear embedding layer reduces the spatial 

resolution by half at each stage, resulting in feature maps 

of size 
2 2

H W
 , 

4 4

H W
 , 

8 8

H W
 , 

16 16

H W
 . 

The decoder adopts a U-shaped architecture where 

feature representations from the encoder are integrated 

through skip connections at corresponding resolutions. In 

each stage i, i∈ {0,1,2,3,4}, the feature maps are 

reshaped to 
2 2i i

H W
  and processed through residual 

blocks composed of two 3×3 convolutional layers, 

followed by instance normalization. To progressively 

restore spatial resolution, deconvolutional layers double 

the size of feature maps, and these upsampled features 

are concatenated with the outputs from the encoder. This 

process continues until the original resolution is 

recovered. Finally, a 1×1 convolutional layer and a 

sigmoid activation function are used to generate the 

segmentation mask, highlighting regions of structural 

damage. 

The Focal Loss [30] was employed as the loss 

function, which can effectively address the class 

imbalance commonly present in damage detection tasks, 

where damaged regions occupy a much smaller area 

compared to the background. As displayed in Equation 

(6), it modifies the standard cross-entropy loss by adding 

a modulating factor that down-weights easy examples. 

 ( ) ( ) ( )1 logt t t tFL p p p


= − −  (6) 

where pt is the predicted probability for the true class, and 

 
, 1
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where p is the predicted probability and y is the ground 

truth label. t  is a balancing factor for class imbalance, 

  is the focusing parameter that adjusts the rate at which 

easy examples are down-weighted. 

For performance evaluation, several metrics are used 

to assess the segmentation quality, including Intersection 

over Union (IoU), Dice Coefficient, and Pixel-wise 

Accuracy: 
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+ +
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where TP, FP and FN stand for True Positive, False 

Positive, False Negative, respectively. 

By leveraging the Swin transformer's ability to model 

multi-scale contextual information and long-range 

dependencies, the network can effectively capture 

complex patterns of structural defects. 

2.3 Multi-resolution Dense Reconstruction 

SfM provides essential camera parameters (intrinsic 

and extrinsic), sparse 3D points, and their 2D image 

correspondences. However, this sparse representation 

lacks the detail needed for comprehensive modeling. To 

overcome this, Multi-View Stereo (MVS) leverages the  

camera's internal and external parameters to perform 

stereo-matching and identify points in space that have 

photometric consistency [31], thus transforming sparse 

point clouds into dense models. In this phase, Open 

Multi-View Stereo (OpenMVS) [32], an open-source 

library, is adapted for dense 3D reconstruction. 

OpenMVS primarily employs a depth map fusion-

based MVS approach, which consists of several stages. 

Initially, for each input image, the most relevant 

neighboring images are selected to form stereo pairs. 

Depth maps are then estimated for each image by 

identifying photometrically consistent points across these 

pairs. Once individual depth maps are computed, they are 

fused into a unified and dense point cloud that captures 

fine surface details. 

To optimize the dense 3D reconstruction process and 

prioritize defect areas over the whole structure, a 

significant modification is to ignore specified regions in 

the input corresponding images during the dense 

reconstruction stage. In this workflow, the structural 

components of the object are reconstructed at a reduced 

resolution, significantly accelerating the dense point 

cloud generation for the overall structure. Meanwhile, 

defect regions identified by Swin UNETR are preserved 

and processed at full resolution. By this way, the fine 

details of critical defect areas are captured with high 

fidelity, while the less critical structural areas are 

downsampled to minimize computational load. As a 

result, the overall dense reconstruction process becomes 
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faster and more efficient compared to standard methods 

that process the entire structure uniformly. 

3 Experiments and Results 

 

Figure 3. Data Collection 

To evaluate the proposed multi-resolution 3D 

reconstruction framework, experiments were conducted 

on the High Level Bridge in Edmonton, Canada (see 

Figure 3). Opened in 1913, the bridge accommodates 

both Light Rail Transit (LRT) and vehicle traffic with 

concrete piers, making it a suitable structure for testing 

defect detection and 3D reconstruction methods. 

A DJI Mini 3 Pro drone was employed to collect 

visual data of the first concrete pier following the 

approach bridge. The UAV was operated to fly around 

the pier, capturing continuous 4K video footage to ensure 

comprehensive coverage of the structure’s surface. After 

the data collection, frames were extracted from the 

recorded video at a rate of one image per second. 

The extracted images were processed using SfM to 

obtain a sparse 3D point cloud and corresponding camera 

poses. The SfM pipeline effectively reconstructed the 

pier’s general geometry by identifying and matching 

feature points across images, followed by incremental 

camera pose estimation and 3D point triangulation. The 

resulting sparse point cloud and the associated camera 

positions are visualized in Figure 4.  

 

Figure 4. Sparse point cloud with camera pose 

To achieve optimal performance in segmenting 

surface defects on the concrete pier, the Swin UNETR 

model was trained using domain-specific data. The 

public dataset Crack5769 [33] was selected for training. 

This dataset consists of 5,769 pixel-wise labeled concrete 

crack images, each with a resolution of 256×256 pixels, 

making it well-suited for the concrete pier context. The 

dataset was divided into training, validation, and testing 

sets in a ratio of 8:1:1 to ensure balanced evaluation and 

prevent overfitting. The model was trained on an Ubuntu 

22.04 system equipped with an NVIDIA RTX A6000 

GPU. The training was configured with batch size of 16, 

feature size of 48, learning rate of 0.0001, Adam 

optimizer and a total of 300 epochs.  

 

Figure 5. Training loss 

 

Figure 6. Validation Dice Coefficient 

Throughout the training process, the model’s 

performance was monitored by tracking both the training 

loss and validation Dice coefficient across epochs. Figure 

5 illustrates the training loss over 300 epochs, showing a 

gradual and consistent decrease, which indicates 

effective model convergence and learning stability. 

Figure 6 presents the validation Dice coefficient across 

epochs, demonstrating steady improvement and 

stabilization in segmentation performance as the training 

progressed. These plots confirm that the model was 

learning meaningful features for crack detection without 

overfitting. Finally, the trained model achieved an 

average IoU of 0.54, an average Dice coefficient of 0.67, 

and an average pixel-wise accuracy of 0.69 on the testing 

set. These results suggest that the Swin UNETR model 

DJI Mini 3 Pro

High Level Bridge of Edmonton
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effectively learned to detect and segment cracks on 

concrete surfaces. 

After achieving the optimal transformer model, the 

undistorted images from SfM were then passed through 

the customized Swin UNETR for damage segmentation.  

The segmentation results were subsequently integrated 

into the multi-resolution dense reconstruction process. 

Using sparse point cloud generated by SfM and the 

segmentation masks from Swin UNETR, the OpenMVS 

pipeline was employed to perform multi-resolution dense 

reconstruction. The process began with depth map 

estimation, where depth information was calculated for 

each image to guide point cloud densification, as 

illustrated in Figure 7. 

 

Figure 7. Depth map 

The final output consisted of a dense 3D point cloud 

with varying levels of detail. Structural areas such as flat 

pier surfaces were reconstructed with 2 times reduced 

point density, whereas cracks maintained high-density 

point clouds, as shown in Figure 8.  

 

Figure 8. Dense point cloud 

To evaluate the efficiency of the proposed method, a 

runtime comparison was conducted between the uniform-

resolution reconstruction and the proposed multi-

resolution approach. The results, summarized in Table 1, 

demonstrate a significant reduction in processing time 

while maintaining high detail in defect areas. Specifically, 

the multi-resolution approach achieved substantial 

reductions in processing time across all reconstruction 

stages, particularly in depth-maps estimation and point 

cloud densification. The multi-resolution approach 

reduced the total reconstruction time by around 64% and 

decreased memory consumption, while maintaining 

defect quality. This balance between efficiency and 

accuracy makes the proposed framework well-suited for 

large-scale structural health monitoring applications 

where both accuracy and speed are critical. 

Table 1. Runtime Comparison 

 

Overall, the experimental results validate the 

effectiveness of the proposed framework in achieving 

efficient and precise structural damage reconstruction. 

4 Conclusion 

This study introduces a multi-resolution fast 3D 

reconstruction framework that integrates UAV-based 

data collection, transformer-based damage segmentation, 

and multi-resolution dense reconstruction for efficient 

and precise structural damage detection. The use of SfM 

effectively captures the global geometry of the structure, 

while the customized Swin UNETR model accurately 

segments surface defects. By prioritizing high-resolution 

reconstruction in damaged areas and reducing detail in 

non-critical regions, the proposed framework 

significantly improves computational efficiency without 

compromising defect detection quality. Experimental 

results on the High Level Bridge demonstrated a 64% 

reduction in processing time and effective defect 

localization, validating the framework's applicability for 

structural health monitoring. 

However, the current approach has limitations. The 

model's performance is constrained by the quality and 

diversity of the training dataset, potentially impacting 

defect detection under varying lighting and 

environmental conditions. Additionally, the focus on 

crack detection limits its generalizability to other defect 

types, such as spalling, mold or corrosion, etc. 

Action Normal Multi-Resolution Improvement

Estimate 

Depth-maps 
25 m 10 s 221 ms 8 m 3 s 478 ms ↓ 17.1 m

Geometric 

Consistency
6 m 22 s 885 ms 2 m 28s 319 ms ↓ 3.9 m

Dense fused 

Depth-maps 
1 m 11 s 192 ms 51 s 758 ms ↓ 0.3 m

Densify 

Point Cloud 
39 m 23 s 54 ms 14 m 19 s 721 ms ↓ 25.1 m
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Real-world implementation also presents challenges 

such as environmental factors affecting UAV inspections, 

the trade-off between computational efficiency and 

accuracy, and the need for robust generalization across 

different defect types and structural conditions. 

Addressing these limitations, future developments will 

explore adaptive flight planning, cloud-based computing 

for real-time processing, and multi-task learning 

strategies to extend defect detection capabilities. 

Expanding the framework to identify various defect types, 

integrating real-time processing and optimizing the 

system for large-scale infrastructure inspections will 

further enhance the framework’s scalability and practical 

deployment for long-term structural health monitoring.  
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