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Abstract – Automated Fault Detection and 

Diagnostics (AFDD) is a data-driven approach that 

enables the timely detection of faults, their types, and 

severity in Heating, Ventilation, and Air Conditioning 

(HVAC) systems. Machine learning models can be 

used to develop and implement AFDD models for 

HVAC at the system, sub-system, and equipment 

levels. However, there is a discrepancy between 

experimental facilities and actual buildings in 

practice. 

This study implements sensitivity analysis to 

determine how variations in the features used in the 

case study under investigation affect the performance 

of the AFDD models. The analysis includes techniques 

such as correlation analysis and machine learning 

models (Support Vector Machine (SVM) and 

Artificial Neural Network (ANN)) to assess the 

sensitivity of the models to changes in input features. 

The results depict how sensitive the AFDD models are 

to different features and the extent to which 

variations in these features can impact the models' 

performance. These findings can facilitate the 

selection of robust features for machine learning-

based Fault Detection and Diagnostics (FDD) models 

of HVAC in buildings by building operators, 

including facility managers, asset managers, and 

owners. 
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1 Introduction 

Automated Fault Detection and Diagnostics (AFDD) 

is crucial for maintaining the efficiency and reliability of 

HVAC systems [1], [2]. AFDD models are constructed 

using data that reflects the behavior and performance of 

facilities and HVAC systems, enabling the prediction of 

fault occurrences and types. In this regard, machine 

learning models offer a promising approach to FDD, but 

there is a significant gap between the controlled 

environments of experimental facilities and the real-

world conditions of actual buildings. This study aims to 

bridge this gap by performing a sensitivity analysis to 

understand how variations in features affect the 

performance of AFDD models [3] . 

Presently testing facilities used for AFDD 

development are often using controlled environments to 

reduce uncertainty. They are heavily instrumented, which 

means that test facilities contain many sensors installed 

in different building spaces and HVAC equipment to 

detect subtle changes in the system and building space 

environment. However, in practice, the existing stock of 

commissioned buildings does not possess the same 

sensor variety and is limited in numbers compared to 

experimental labs. The current differences in real case 

scenarios and research facilities do not make the machine 

learning-based AFDD models feasible for utilization in 

actual buildings [4]. 

This study implements sensitivity analysis to 

determine how variations in the features used in the case 

study under investigation affect the performance of the 

AFDD models. The analysis includes techniques such as 

correlation analysis and data mining techniques to assess 

the sensitivity of the models to changes in input features. 

The study investigates how sensitive the AFDD models 

are to different features and the extent to which variations 

in these features can impact the model's performance. In 

addition, the results of feature importance can be used to 

facilitate the selection of robust features for machine 

learning-based FDD models of HVAC in buildings. 

2 Methodology 

This study utilizes data from a Building Information 

Model (BIM), which contains building spatial data, and 

Building Management System (BMS), which includes 

time-series data representing HVAC, to create a 

comprehensive dataset for fault detection and diagnostics 

of an HVAC system. The BIM model includes static 

features such as room area, window area, door area, 

opening area, distance to HVAC from VAV (Variable 
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Air Volume), room adjacency to shafts, and whether 

rooms are exterior or interior. These features collectively 

form 80 static features representing the facility's 

contextual information. The BMS dataset includes 68 

dynamic features such as VAV temperature, room 

temperature, humidity, status, supply and return 

temperature, metered data, set points, and flow rates. 

A key aspect of our methodology is feature 

engineering, where we generate new features from 

existing data to enhance the accuracy and effectiveness 

of machine learning models. For instance, we created a 

calculated feature called "space air conditioning," which 

combines contextual information from BIM and air 

conditioning conditions from BMS for each room. This 

feature is crucial for identifying faults related to 

occupancy patterns and other contextual factors. 

Feature engineering in AFDD involves generating 

new features from existing data to improve the accuracy 

and effectiveness of machine learning models. This is 

particularly important when dealing with limited sensor 

data, a common problem in real-world building 

environments. For example, one can combine time-series 

data from BMS (e.g., supply air temperature) with spatial 

data from BIM (e.g., room occupancy) to create a new 

feature that represents the air conditioning state of a 

space. This type of feature can help to identify faults that 

are related to occupancy patterns or other contextual 

factors. 

To make the features workable, two grouping systems 

were formed: one based on system-related features or 

zone/space features, and the second based on the feature 

source. 

Table 1: Grouping based on System related features or 

Zone/Space related features 

Grouping 

based on 

level 

No of 

groups 

Feature groups formed based on 

simillarity names 

Zone/Space 

level 4 

VAV temp, Room temp, 

humidity, set point 

System 

level 3 

Circuit 1 and 2, supply and return, 

Flow rate 

Mix 1 Status 

Building 1 Meter 

Table 2: Grouping based on feature source and type 

(Static/Live) 

Grouping 

based on 

source 

and type 

No of 

Features Full form 

BMS 68 BMS dataset 

BIM 80 BMS + Live BIM dataset 

Dy+St 160 BMS + Live BIM dataset + Static 

BIM BIM dataset 

St BIM 148 BMS + Static BIM dataset 

Two approaches were used the first being feature 

impact analysis and second sensitivity analysis. Feature 

impact analysis evaluates the importance of groups of 

features, while sensitivity analysis assesses the impact of 

individual features on model performance. Sensitivity 

analysis helps to identify the most important features for 

fault detection and diagnosis, as well as to understand 

how the model's performance is affected by missing or 

incomplete data. One way to perform sensitivity analysis 

is to train multiple models with different combinations of 

features and compare their accuracy. For example, one 

might train a model with all available features, then train 

another model with a subset of features, and compare 

their performance. 

Feature impact analysis is useful when the set of 

features is large, as in the case of the facility, which will 

enable the modelers to identify which features are 

suitable for the machine learning algorithm to identify the 

faults of the HVAC systems.  

3 Model Development 

This study utilizes data from the LBNL (Lawrence 

Berkeley National Laboratory) Automated Fault 

Detection for Buildings Data [5], [6], [7], [8], [9], [10], 
[11]. A Building Information Model (BIM) is developed 

based on the specifications, and further, the Building 

Management System (BMS) is used to create a 

comprehensive dataset for fault detection and diagnostics 

of an HVAC system [12], [13], [14], [15]. The BIM model 

of the facility is created using the documentation of the 

test facility. The dataset generated for fault detection and 

diagnostics of the HVAC system includes a rooftop unit 

(RTU) connected to variable air volume (VAV) systems. 

The BIM and BMS data were combined to form a 

comprehensive dataset [4]. The BIM features were 

grouped into categories such as distance to HVAC from 

VAV, room area, window area, door area, opening area, 

room adjacency to shafts, and whether rooms are exterior 

or interior. The BMS features were grouped into 

categories such as VAV temperature, room temperature, 

humidity, status, supply and return temperature, metered 

data, set points, and flow rates. 

In this research, various machine learning algorithms 

are modeled to identify the most impactful features for 

fault detection and diagnostics. For feature importance 

analysis, classifiers like XGBoost, Random Forest, and 

Decision Tree were used. The machine learning 

algorithms specifically employed for fault detection and 

diagnostics (FDD) were Support Vector Machine (SVM) 

and Artificial Neural Network (ANN). They were 

selected based on the findings of earlier research, which 
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highlighted their adoption for system-level and 

subsystem-level faults [16]. The performance of each 

algorithm was evaluated based on its ability to identify 

impactful features and detect faults. The faults 

considered in this study included condenser fouling, 

HVAC setback errors (delayed onset, early termination), 

excessive infiltration, lighting setback errors (delayed 

onset, early termination), no overnight HVAC setback, 

and thermostat measurement bias. 

For feature importance evaluation, several models 

were developed. In the case of the Random Forest 

classifier, feature importance was computed as the mean 

and standard deviation of the impurity decrease within 

each tree, also known as Gini importance. For the 

Decision Tree classifier, feature importance was 

determined by the normalized total reduction of the 

criterion brought by that feature. XGBoost classification 

was based on gain, which measures the improvement in 

accuracy brought by a feature to the branches it is on. 

Table 3: Machine Learning algorithms used as classifier 

for feature importance analysis 

XGBoost 

Classification 

Random Forest 

Classification 

Decision tree 

classification 

Condenser 

Outlet Pressure 

(Circ 1) 

Condenser 

Outlet Pressure 

(Circ 1) 

Condenser 

Outlet Pressure 

(Circ 1) 

VAV Reheat 

Status 

Room 205 Air 

Humidity 

Discharge 

Temperature 

(Circ 2) 

Discharge 

Temperature 

(Circ 2) 

Room 206 Air 

Humidity 

Room 204 Air 

Humidity 

Room 203 Air 

Humidity 

Room 204 Air 

Humidity 

Room 205 Air 

Humidity 

Room 203 Air 

Temperature 

Room 106 Air 

Humidity 

Room 206 Air 

Humidity 

Discharge 

Pressure (Circ 

1) 

Suction 

Temperature 

(Circ 2) 

Room 202 Air 

Humidity 

X Air Humidity Room 203 Air 

Humidity 

Room 102 Air 

temperature 

X Air Humidity Room 102 Air 

Temperature 

Room 106 Air 

Humidity 

Suction 

Temperature 

(Circ 2) 

Room 103 Air 

Humidity 

Lighting 

system 

X Air Humidity Discharge 

temperature 

(Circ 2) 

Room 205 Air 

Temperature 

The calculated air conditioning feature shows a 

negative correlation and is the only feature that is found 

to have an impact when brought in from BIM, as shown 

below. 

 
Figure 1: Excerpt of correlation analysis and of 

important features for AFDD in the curated 

dataset including BIM features 

4 Results and Discussion 

The result of this research indicated that the Random 

Forest classifier was most suitable for the dataset, 

particularly when it came to calculated features. For 

sensory data features, the classification algorithms 

showed similar feature types, with humidity being the 

most impactful feature.  

The comparison of SVM and ANN indicates that the 

ANN is more sensitive to selected features, showing 

higher levels of sensitivity. The maximum impact that a 

feature can have on fault detection is 67% for both the 

suction temperature feature and the air-cooling 

temperature. Additionally, the diagnostics models show 

that the air temperature cooling setpoint can have a 62% 

impact, followed by the discharge temperature with a 37% 

impact. 

The top 5 groups of features identified are then 

checked to see what percentage of accuracy impact these 

features have on the dataset for each of the algorithms for 

both fault detection and diagnostics. 

Table 4: Impact of top 5 features on Fault detection and 

diagnosis using SVM Machine Learning Algorithms 

Top 5 features SVM 

Accuracy for 

Fault 

Detection 

SVM Accuracy 

for Fault 

Diagnostics 

Air Humidity 80% 71% 
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Discharge 

temperature 

(Circuit 2) 

67% 38% 

Suction 

Temperature 

(Circuit 2) 

67% 38% 

Room 

Temperature 

79% 71% 

Cooling setpoint 67% 33% 

Table 5: Impact of top 5 features on Fault detection and 

diagnosis using ANN Machine Learning Algorithms 

Top 5 features ANN 

Accuracy for 

Fault 

Detection 

ANN Accuracy 

for Fault 

Diagnostics 

Air Humidity 87 55 

Discharge 

temperature 

(Circuit 2) 

71 37 

Suction 

Temperature 

(Circuit 2) 

67 39 

Room 

Temperature 

85 41 

Cooling setpoint 65 33 

The analysis illustrate that the random forest classifier 

is most suitable for the dataset when it comes to 

calculated features. For sensory data features, 

classification algorithms show similar feature types, with 

humidity being the most impactful feature. The top 

features identified include air humidity, discharge 

temperature, suction temperature, room temperature, and 

cooling setpoint. 

The calculated feature, "space air conditioning," is the 

only feature in the BIM dataset that shows a negative 

correlation and is present in the important feature list 

when analysis is performed using a random forest 

classifier, which has a weak correlation of an average of 

25%. 

The results highlight the importance of certain 

features in the performance of AFDD models. For 

instance, air humidity and room temperature consistently 

show high impact across different models. The findings 

suggest that incorporating dynamic BIM features can 

enhance the sensitivity of AFDD models, especially 

when certain BMS features are unavailable. This has 

practical implications for facility managers and asset 

owners in selecting robust features for fault detection and 

diagnostics. 

This study demonstrates the significance of feature 

impact analysis in developing effective AFDD models 

for HVAC systems. By identifying the most impactful 

features, facility managers can improve the accuracy and 

reliability of fault detection and diagnostics. Future work 

should explore the integration of additional contextual 

features and the application of these findings to a broader 

range of building types. 
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