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Abstract -

The rapid data growth in smart building environments
requires advanced tools to integrate, interpret, and utilize
this information effectively. Smart buildings generate vast
and heterogeneous data streams, including sensor readings,
occupancy metrics, and environmental conditions, which are
critical for optimizing energy efficiency, enhancing occupant
comfort, and enabling predictive maintenance. However, the
lack of a structured approach to automatically connect and
contextualize these data sources limits the insights that can
be derived. To address these challenges, this paper presents
a framework for assessing data in a knowledge graph by au-
tomatically retrieving entities and establishing relationships
from diverse data sources, incorporating metadata standards
and time-series data relevant to smart buildings. A standard
ontology from the domain is used to drive the experiment, en-
abling the automatic construction of a semantic graph-based
model for a real-world smart building environment. The
framework’s objective is to ensure information is compre-
hensible as a preliminary step to intelligent decision-making
in data-driven smart buildings, enabling applications like
fault detection, performance measurement, and energy au-
diting. The proposed approach explores the potential of large
language models (LLMs) to automate data integration, re-
ducing reliance on experts. This paper addresses existing
literature gaps on metadata mapping and lays the ground-
work for future advancements in digital twin technologies for
smart building applications.
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1 Introduction

Achieving global Net Zero Emissions (NZE) by 2050
is a critical goal for mitigating climate change, demand-
ing transformative actions across various sectors. Among
these, the Architecture, Engineering, Construction, and
Operation (AECO) sector plays a pivotal role, necessi-
tating an accelerated transition to align with the NZE
scenario [1]. To this end, many countries have imple-
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mented stringent building energy codes and minimum per-
formance standards aimed at reducing energy consumption
and greenhouse gas emissions. Technological advance-
ments and industry efforts have led to the rise of data-
driven smart buildings (DDSBs), which integrate digital-
ization technologies to optimize energy use dynamically,
enhance indoor environmental quality, and improve occu-
pant experiences [2]. DDSBs generate vast amounts of
data through Internet of Things (IoT) technologies, col-
lecting real-time and historical information via advanced
sensors. Effectively leveraging this data requires robust
frameworks for systematic organization and analysis [2].
Complementing DDSBs, digital twins (DTs) further en-
hance operational efficiency by enabling predictive main-
tenance, informed decision-making, and cost minimiza-
tion [3]. Researchers define a DT as “a virtual representa-
tion of a physical system (and its associated environment
and processes) that is updated through the exchange of
information between physical and virtual systems” [4].
Initially developed for aerospace applications, DTs now
extend to diverse domains such as industrial manufac-
turing, healthcare, smart cities, education, and agricul-
ture [5]. DTs are real-time digital replicas of physical en-
tities or processes that enable a two-way flow of informa-
tion. The virtual model can be updated in real-time, allow-
ing simulations and informed decision-making to guide
physical system adjustments [6]. When integrated with
DDSBs, DTs leverage real-time and historical data to en-
hance data-driven processes, optimizing energy efficiency,
indoor environmental quality, and overall system perfor-
mance [2]. A critical aspect of DT implementation is the
integration of a robust data schema, a structured frame-
work essential for defining how data is organized, stored,
and managed throughout the building’s lifecycle [7]. In-
tegrating appropriate data schemas requires specialized
domain knowledge experts and a deep understanding of
building systems. The lack of accessible, standardized so-
lutions often hinders the practical deployment of DTs in
the built environment, leading to underutilized data, in-
effective decision-making, and inefficient practices with
significant cost implications. This research introduces a
framework that automates the mapping of data generated
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by smart buildings into a standardized model, serving as
the foundational step in constructing a comprehensive DT.
This paper seeks to address these limitations by answering
the following questions:

1. How can we address the lack of generic tools for
building digital twins in data-driven smart buildings?

2. What is the most effective method for automatically
structuring heterogeneous data from a data-driven
smart building into a coherent data schema?

3. Does our method perform well regardless of the data
model used?

The paper is structured as follows: Section 2 reviews
related work, providing context and highlighting existing
approaches. Section 3 presents the proposed framework,
which leverages Large Language Models (LLMs) for au-
tomated knowledge graph (KG) construction, significantly
reducing the need for human intervention. The utilization
of a prebuilt standard semantic graph ontology serves to
enhance the organization of metadata, facilitating better
efficiency and accuracy. Section 4 evaluates the frame-
work through its implementation at the Dijon Metropoli-
tan Campus, demonstrating its practical applicability in
handling real-world datasets. Finally, Section 5 concludes
the paper by summarizing the key findings and discussing
potential avenues for future research and development.

2 Related work

Ontologies are essential for achieving data integration
and interoperability in DDSBs and DTs. By providing
a formalized vocabulary and structured taxonomy, they
enable the systematic organization of domain-specific
knowledge through well-defined classes, properties, and
relationships [8]. Lygerakis et al. [9] identified over 40
ontologies relevant to energy optimization across the
lifecycle of connected buildings. However, the authors
highlighted that most remain theoretical, with limited
real-world applications in operational settings.  This
literature review identifies several key ontologies as
potentially relevant [10, 7], including the Building Ontol-
ogy Topology (BOT) [11], SSN/SOSA [12], Brick [13],
SAREF4BLDGG [14], the RealEstateCore ontology [15],
and Google’s Building Digital Ontology (DTO) [16].
While these ontologies provide a foundational schema
for building data management, their implementation
often necessitates significant domain expertise, posing
challenges to scalability and automation. Knowledge
graphs offer an alternative approach to managing het-
erogeneous and dynamic data in DDSBs and DTs. As
graph-based data models, KGs structure knowledge in
a machine-readable format, with nodes representing
entities and labeled edges capturing relationships [17].
This flexibility enables KGs to augment digital twins by

integrating real-time and historical data while supporting
advanced analytics [18]. Unlike ontologies, KGs facil-
itate linking structured and unstructured data, offering
actionable insights and enhancing decision-making
capabilities. Despite these advantages, constructing KGs
for DDSBs remains a non-trivial task, requiring the
resolution of data ambiguities, alignment with specific
application requirements, and managing diverse data
sources [19]. Existing methodologies have primarily
relied on semi-automated approaches. For instance,
Chamari et al. [20] proposed a methodology to generate
metadata schemas by correlating Building Automation
System (BAS) identifiers with ontology classes through
text search. This process, while partially automated, relies
on human intervention for refining mappings. Similarly,
Waterworth et al. [21] addressed inconsistencies in BAS
metadata abbreviations using rules and language models
to extract and classify semantic information. Koh et
al. [22] developed a workflow utilizing machine learning
algorithms to convert unstructured BAS metadata into
structured formats like Brick. However, these approaches
fall short of delivering fully automated solutions and of-
ten depend on significant manual effort or predefined rules.

To address these limitations, we propose a novel
methodology for automating the construction of KGs from
DDSB data. This approach proposes to limit the depen-
dency on domain expertise by systematically mapping het-
erogeneous data into a standardized model, representing
a foundational step toward the comprehensive implemen-
tation of digital twins. By directly addressing challenges
such as data ambiguity and integration complexity, this
methodology advances the field of DDSB data manage-
ment and supports scalable, interoperable solutions. The
following section details the design and implementation
of our proposed framework.

3 The proposed approach

This study proposes a methodology to automate the gen-
eration of a KG from DDSB data using a large language
model (LLM). As advanced generative Al systems, LLMs
excel in processing and generating natural language, mak-
ing them particularly effective for automating tasks such
as entity and relationship extraction, competency question
formulation, and metadata organization [23]. By reducing
the dependence on manual effort and domain expertise,
LLMs enhance both the scalability and precision of KG
construction. However, a human-in-the-loop approach re-
mains crucial for critical evaluation stages to ensure accu-
racy and reliability [24].

At the core of the methodology is the Retrieval-
Augmented Generation (RAG) technique, further refined

1058



42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

by the GraphRAG method'. RAG enhances the contextual
relevance and accuracy of LLM outputs by combining se-
mantic similarity retrieval from proprietary data sources
with generative language capabilities [25]. This dual ap-
proach ensures that generated outputs align closely with
domain-specific requirements, making RAG particularly
valuable for knowledge-intensive domains such as DDSBs.
GraphRAG extends RAG by introducing a KG-centric en-
hancement. The GraphRAG methodology organizes im-
plicit knowledge from text into graph representation and
creates communities based on the graph structure. The
generated graph serves as context for RAG tasks, leverag-
ing summaries from high-level communities to produce
more diverse outputs. Comparative studies show that
GraphRAG outperforms standard RAG methods in terms
of accuracy, scalability, and cost-efficiency [26, 27].

Our approach is inspired by the GraphRAG process but
uses a pre-built domain ontology as the context graph in-
stead of generating one from raw data. In this manner,
the domain ontology provides the context for the RAG op-
erations, which empowers the retrieval process to extract
entities from the domain-specific graph. This innovative
approach addresses the challenges of data heterogeneity
and complexity inherent to DDSBs, facilitating the cre-
ation of interoperable and standardized DTs. As illustrated
in Figure 1, our proposed framework comprises three main
phases: data collection, KG construction, and KG visual-
ization. The following sections detail each phase of our
process.

3.1 Data collection

The data collection phase represents the foundational
step in our framework, aimed at systematically gather-
ing and organizing the diverse data sources intrinsic to
DDSBs. Smart buildings produce a wide spectrum of
heterogeneous data, including IoT identifiers, time-series
data from building management systems, and Building In-
formation Modeling (BIM) files, often distributed across
siloed and disparate databases. 10T metadata typically cap-
tures device-specific attributes such as type, operational
parameters, control commands, and spatial topology, de-
fined either by vendor-specific schemas or standardized
frameworks. In our approach, the Building Operating
System (BOS) plays a central role as the primary data
aggregator, integrating information from interconnected
devices and systems within the DDSB. This centralized
integration ensures a unified flow of data, enhances com-
patibility with third-party applications, and facilitates the
systematic identification and extraction of critical enti-
ties and relationships required for KG construction. By
addressing the challenges of data heterogeneity and acces-
sibility, this initial phase prepares the collected data for

Thttps://github.com/microsoft/graphrag
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Figure 1. The architecture of the proposed approach.

seamless transition to the subsequent phase.

3.2 KG construction

The second phase of our framework focuses on con-
structing a domain-specific KG by leveraging an enhanced
LLM adapted to the GraphRAG methodology. This ap-
proach uses the LLM to generate concise natural-language
descriptions from metadata provided by the DDSB and
incorporates a predefined ontology to guide the seman-
tic retrieval of appropriate concepts. The process begins
with (1) ontology integration, where the GraphRAG sys-
tem’s context is set using a predefined ontology that se-
mantically describes each asset of the DDSB, providing
a structured framework for metadata interpretation. Next,
(2) metadata description generation involves prompting
the LLM to produce concise natural-language descriptions
of the DDSB metadata, which includes dynamic data such
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as sensor readings (e.g., temperature, humidity, energy
usage) and static data like spatial and topological infor-
mation (e.g., classrooms, parking areas, laboratories, and
building levels). Following this, (3) concept retrieval is
performed, where a semantic similarity search is used to
identify and retrieve the most relevant concepts from the
ontology, aligning them with the metadata descriptions.
Finally, (4) KG construction links the retrieved concepts
with time-series data, organizing the information into a
cohesive structure. Relationships are established between
nodes representing topology, sensors, and time-series val-
ues, all formatted according to the ontology schema. This
comprehensive process ensures that the constructed KG
is semantically accurate, contextually relevant, and capa-
ble of representing the complex relationships inherent in
DDSB data.

3.3 KG visualization

The final phase of our framework focuses on the visu-
alization and evaluation of the constructed KG to ensure
its accuracy and usability. The KG is exported to a graph
database management system, which provides robust tools
for querying and visualizing the graph’s structure. Visu-
alization plays a critical role in the validation process,
enabling a thorough review of the interconnections be-
tween nodes. Specifically, this step involves verifying the
alignment of the building topology, ensuring that sensors
are correctly assigned to their respective locations, and
confirming that observation values are accurately linked
to the corresponding sensors, along with their associated
timestamps. These visual checks are essential to identify
and rectify any inconsistencies or errors that may arise
during the KG construction phase. Additionally, the visu-
alization phase facilitates an intuitive understanding of the
underlying relationships and patterns in the data, making
the KG more accessible to domain experts and stakehold-
ers. This step concludes the methodology by ensuring that
the KG is not only accurate and reliable but also ready for
downstream applications, such as querying, analysis, and
integration into digital twin systems.

4 Experimental results

This section presents the experimental results to evalu-
ate the performance of the proposed method and analyze
its effectiveness.

4.1 Evaluation setup

This study is conducted at the Dijon Metropolitan Cam-
pus?, a 10,000 m? smart building certified under the
Ready2Service (R2S) standard for its advanced digital in-
frastructure. The campus employs 14 types of sensors

Zhttps://www.estp.fr/en/dijon-campus

to monitor various parameters, including occupancy, tem-
perature, CO2 levels, humidity, illuminance, and energy
consumption, across 350 distinct areas encompassing 32
spatial categories such as waiting rooms and classrooms.
The system stores the collected data in a schema-less Mon-
goDB database in JSON format. A one-month subset of
this time-series data amounts to approximately 11 GB and
comprises over 50 million entries.

.
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‘ Average zone air temperature ‘

Figure 2. Part of REC ontology for sensor hierarchy.
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Figure 3. Part of REC ontology for space hierarchy.

To guide our methodology, we identify the RealEstate-
Core ontology (REC) as the most suitable framework due
to its robust and comprehensive structure [15]. REC pro-
vides a detailed taxonomy that includes 240 sensor types
(e.g., humidity, motion, temperature, lighting), as illus-
trated in Figure 2, and 92 spatial and architectural cate-
gories (e.g., back office, entrance, laboratory, warehouse),
depicted in Figure 3. These categories are organized hi-
erarchically to accommodate diverse use cases, enhanc-
ing the accuracy of KG construction and optimizing data
retrieval processes. Moreover, REC employs the Label
Property Graph (LPG) format, a data-centric model that fa-
cilitates real-time operations by enabling efficient storage
and access of large datasets through graph databases [28].
Originally developed as an OWL ontology for RDF-based
knowledge graphs, REC has been adapted into the Digital
Twin Definition Language (DTDL)? to better align with
user requirements and streamline deployment. DTDL,
built on the JSON-LD format*, ensures compatibility with
the existing campus database, thereby eliminating the need

3https://learn.microsoft.com/en-us/azure/digital-twins/concepts-
models
“https://json-1d.org/
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for additional storage solutions while streamlining the in-
tegration process. This combination of hierarchical orga-
nization, real-time graph database performance, seamless
integration, and compatibility with existing systems un-
derscores REC’s efficacy as the foundational framework
for our approach.

4.2 Results and discussion

We present the results of applying the methodology
to generate a KG at the Dijon Metropolitan Campus for
a given day. The objective is to identify the pertinent
classes within the REC ontology that align with the dis-
parate points on the Dijon Metropolitan Campus and es-
tablish a relationship with the time series data. The re-
sulting KG is exported to the Neo4J graph database’ for
storage and visualization. Figure 4 depicts a part of the
resulting KG, in which the time-series data are linked
to the standard semantics of the sensors and spaces of
the Dijon Metropolitan Campus, encapsulated within the
REC ontology model. Figure 5 illustrates an example of
a node representing a cafeteria room that contains sev-
eral attributes, including designation and display name,
which have been retrieved from the metadata. This ex-
ample demonstrates the hierarchy of the nodes, whereby
the cafeteria room inherits from the food handling room,
a room, and a space, corresponding to the REC ontology
hierarchy and taxonomy. Figure 6 illustrates an example
of a node representing a time series value connected to a
node representing a temperature sensor. Node’s proper-
ties include the temperature value and the timestamp. The
objective is to demonstrate the enrichment of time-series
data with standard semantics, facilitating its linkage to the
sensors and equipment for efficient querying.

We evaluate the proposed methodology by presenting
results from multiple perspectives, including processing
execution time, repeatability, comparison of LLMs, con-
cepts retrieval evaluation, and KG query evaluation.

4.2.1 Computational efficiency

The efficiency of the proposed methodology was as-
sessed based on its execution time for generating the KG.
The retriever identifies all relevant concepts within one
minute, followed by KG construction in less than 20 sec-
onds for a specific day’s time-series data. Using a laptop
equipped with an Intel Core i7 processor and 32 GB of
RAM, the system generated 42, 728 JSON-LD documents
(nodes) within this timeframe.

Shttps://neodj.com/
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4.2.2 Model consistency

The consistency of the retrieval methodology was as-
sessed using three LLMs: Llama3.2°, Mistral7B’, and
Gemma?28. Each model underwent 20 trials, with conser-
vative parameter settings to minimize response variability.
The results demonstrated that the retrieval process was
reliable within individual models, with minimal fluctua-
tions in performance due to the conservative configura-
tions. However, notable discrepancies arose in how the
models interpreted and retrieved concepts from the REC
ontology. These differences highlight the distinct seman-
tic inference strategies employed by each LLM, emphasiz-
ing the importance of carefully selecting the appropriate
model for specific use cases and applications.

4.2.3 Model comparison and performance

The results shown in Table 1 illustrate pairwise com-
parisons that quantify the percentage of identical REC
concepts retrieved by each LLM. Low values indicate that
each LLM retrieved different concepts, while high values
suggest greater homogeneity in the retrieved REC concepts
across the models. The results generally show low to mod-
erate values, indicating weak overlap in the retrieved con-
cepts. This variation highlights differences in how each
language model interprets and processes the semantics of
the metadata and the REC ontology concepts, emphasizing
the inherent differences in their inference mechanisms.

Table 1. Retrievability analysis across LLMs for 14
sensors (Se.) and 32 spaces (Sp.).

LLM Llama Mistral Gemma
Se. Sp. Se. Sp. Se. Sp.
Llama - - 28% 53% 21% 68%
Mistral  28% 53% - - 28% 50%
Gemma 21% 68% 28% 50% - -

4.2.4 Semantic retrieval accuracy

A manual qualitative assessment was conducted to eval-
uate the identification of 32 spaces and 14 sensor types
from the REC ontology. Each retrieved concept was cat-
egorized as “correct,” “ambiguous,” or “incorrect.” The
ground truth for each sensor and space category was es-
tablished through direct analysis of the data or reference
to the BIM model. For instance, an incorrect retrieval
was observed when the Gemma model classified a meet-
ing room as a workshop room, while both the Mistral
and Llama models correctly identified a conference room.
In cases where ambiguity was present, all LLM models

Onhttps://www.llama.com/
7https://docs.mistral.ai/
8https://github.com/google-deepmind/gemma
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classified toilets as personal hygiene rooms, despite the
explicit existence of the toilet concept in the REC ontol-
ogy. An example of a correct retrieval is the occupancy
sensor, which was accurately mapped to the corresponding
concept within the REC ontology. The Dijon Metropoli-
tan Campus employs energy sensors that monitor electric-
ity consumption in kilowatt-hours (kWh) across various
equipment, such as lighting, power outlets, and heating
systems. The most appropriate concept for this data in the

REC ontology is the Electric Energy Sensor. However,
depending on the LLM, the retrieved concepts varied be-
tween Energy Usage Sensor and Energy Sensor. While
both of these concepts are valid, they do not fully align
with the ground truth, and as such, these responses were
categorized as “ambiguous,” leading to a loss of semantic
precision regarding the type of electrical energy. Table 2
summarizes the performance of the models, revealing that
the Llama model consistently outperformed the others, ex-
hibiting high accuracy with minimal errors in both space
and sensor retrieval tasks. The Gemma model demon-
strated moderate performance, excelling in space retrieval
but encountering more ambiguities in sensor retrieval. The
Mistral model, in contrast, showed the weakest perfor-
mance, particularly in space retrieval, with a significant
number of incorrect responses.

However, ambiguous responses are not necessarily erro-
neous, though they do not invariably correspond with the
ground truth. The models performed consistently across
various scenarios, achieving an overall correct identifica-
tion rate of 73% when ambiguous answers were considered
accurate

Table 2. Retrievability evaluation of sensors (Se.)
and spaces (Sp.) across LLMs: distribution of cor-
rect, ambiguous, and incorrect retrievals.

LLM Correct  Ambiguous  Incorrect
Se. Sp.  Se. Sp. Se.  Sp.
Llama 12 27 2 2 0 3
Mistral 5 17 3 2 6 13
Gemma 5 20 8 2 1 10

1062



42nd International Symposium on Automation and Robotics in Construction (ISARC 2025)

4.2.5 KG query evaluation

We leverage the semantics of metadata and time-series
data structured within the REC ontology to assess the
generated KG. The relevance of semantic relationships is
explored through a series of Cypher queries’, a declar-
ative query language designed for use with the Neo4j
graph database. The evaluation involved conducting auto-
mated queries on the KG and validating the results against
a predefined ground truth. A total of 15 queries were
formulated and categorized into three distinct types: (1)
room type query counting, which examines the distri-
bution of room types within the KG; (2) sensor type
query counting, focusing on the frequency of occurrence
of various sensor types; and (3) sensor-to-room rela-
tionships, aimed at evaluating the connections between
sensors, their associated time-series data, and the spe-
cific spaces they monitor. For a complete list of queries,
please refer to the file queries_for_kg_evaluation.md
in the GitHub repository'®. The results of these eval-
uations are summarized in Table 3, which presents the
number of correct answers for each LLM. The ground
truth was established by querying the original MongoDB
database or through manual analysis of data from the BIM
model. The Llama model demonstrated the most con-
sistent performance, achieving near-perfect scores across
all query types, thereby illustrating its robust ability to
handle both sensor and spatial data. The Mistral model
performed reasonably well in sensor-to-room mapping but
exhibited weaker results in the room type and sensor type
queries. The Gemma model, while excelling in sensor-
related queries, faced challenges in accurately identifying
room types. These findings highlight the effectiveness of
using automated unit tests for evaluating and refining the
performance of knowledge graph queries.

Table 3. Automatic query evaluation.

LLM Room type  Sensor type  Sensor-to-room
Llama 475 5 /
Mistral 2/5 3/5 4/5
Gemma 1/5 5/5 5/5

5 Conclusion and future work

This paper presents an LLM-based framework that
leverages an ontology to guide the automatic construc-
tion of a KG, facilitating the management of data in smart
buildings. By integrating LLMs, the framework reduces
reliance on human expertise while improving the accuracy
of KG development. Experimental results demonstrate the
effectiveness of the REC ontology in guiding KG creation

9https://neodj.com/docs/cypher-manual/current/introduction/
10https://tinyurl.com/3heep8pu
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from unstructured data. However, while the method accel-
erates the process, human verification is still required to
ensure the correctness of identified concepts, introducing
potential delays and biases. These preliminary findings
suggest promising directions for future research, includ-
ing integrating BIM assets into the KG [29] to enhance
organization and interoperability. Expanding the REC on-
tology to address ambiguous or incorrect concepts could
further refine the KG’s semantic alignment. Additionally,
exploring the use of alternative ontologies, such as Brick,
would increase user autonomy and broaden the frame-
work’s applicability. Further testing with metadata from
other smart buildings would also be beneficial. Once es-
tablished, the KG can serve as a foundation for LLMs,
enabling natural language queries that improve accessi-
bility for diverse stakeholders. Moreover, applying ad-
vanced graph algorithms, such as graph neural networks,
could offer valuable insights, supporting classification and
clustering tasks that enhance decision-making in complex
smart building scenarios.
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