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Abstract –  

The occurrence of defects during the building 

construction process significantly impacts housing 

quality. One such defect, the distortion of a building's 

framework, affects both sustainability and aesthetics. 

This study presents an automated technique for 

inspecting framework distortion in building 

construction by measuring the angles between walls. 

The proposed method employs a portable data 

acquisition system that allows for dynamic data 

collection. The system's accuracy is enhanced through 

calibration based on terrestrial laser scanning (TLS) 

data as a reference. Point cloud data are registered to 

form a map of the interior space, leveraging a deep 

learning algorithm to visualize framework distortions. 

When tested in an apartment construction 

environment, the method reduces data acquisition 

time compared to the TLS-based approach, while 

maintaining precision with an average angular error 

of 0.28 degrees. This study demonstrates a cost-

effective and accurate solution for defect inspection in 

the construction industry. 
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1 Introduction  

Defects occurring during the building construction 

process profoundly affect housing quality. Critical 

defects encompass structural flaws, substandard 

finishing work, inadequate electrical and plumbing 

systems, insufficient moisture and waterproofing 

measures, and faulty mechanical systems [1]. Addressing 

these defects is vital for ensuring the building's safety and 

longevity. Among these, distortion of the building's 

framework is a critical structural defect. It directly 

impacts the building's long-term durability and its 

aesthetic integrity. 

Recent studies have leveraged 2D and 3D computer 

vision technologies along with deep learning algorithms 

to detect building defects more effectively. Wang et al. 

[2] developed a photogrammetry-based pipeline for 3D 

reconstruction of buildings, enabling automated 

identification of building surface defects such as moulds 

and cracks on reconstructed 3D scenes. Guo et al. [3] 

proposed a rule-based deep learning approach for 

detecting façade defects, including cracks, delamination, 

peeling, and spalling. Chow et al. [4] presented an 

automated system for detecting cracks and spalling in 

buildings using mobile data collection, deep learning, 

and scene reconstruction. Tan et al. [5] developed a 

method for integrating crack data from unmanned aerial 

vehicle images into building information models, thereby 

improving the inspection of high-rise building façades. In 

addition, several studies have been conducted to monitor 

various defects in buildings, such as leakage and heat loss 

[6, 7, 8]. Despite the importance of monitoring 

framework distortion, research in this area remains scarce. 

Moreover, there is a lack of technologies that can inspect 

framework distortion accurately and efficiently for on-

site application. Terrestrial Laser Scanning (TLS) is one 

of the accurate methods for quality assurance and control 

in construction [9], and is applicable for inspecting 

framework distortion. However, while this method is 

highly precise, it comes with considerable constraints in 

terms of cost and time. 

To address the above issue, this paper proposes a 

novel approach for accurately and cost-effectively 

measuring framework distortion, as shown in Figure 1. 

We calibrate multiple Azure Kinect DK depth cameras 

using TLS data as a reference, and then acquire point 

cloud data. For visualization purposes, the point cloud 

data are registered to form a map. The angles between 

walls are analyzed from each point cloud data, and these 

values are visualized on the map. A deep learning-based 

registration algorithm is used for the calibration of the 

sensors and the formation of the map. 

 

Figure 1. Overview of the proposed method. 
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2 Methodology 

2.1 Deep Learning-Based Sensor Calibration 

and Data Acquisition 

A backpack platform was developed for data 

acquisition. As shown in Figure 2(a), the platform was 

equipped with multiple Azure Kinect sensors and 

batteries for powering the sensors and a laptop. Four 

Azure Kinect sensors were mounted to broaden the field 

of view for data acquisition. As shown in Figure 2(b), an 

operator can carry the platform to collect data while 

moving around. The point cloud data were saved in the 

MKV file format, and later PCD files were extracted 

from the MKV file. During data acquisition, we ensured 

that the starting and ending positions were identical. 

 
(a) (b) 

Figure 2. A backpack platform for data acquisition; (a) 

hardware configuration, and (b) operational 

demonstration of the backpack platform in field.  

For the extrinsic calibration of multiple Azure Kinect 

sensors, TLS data were used as the ground truth. As 

shown in Figure 3, point cloud data from each of the four 

different Azure Kinect sensors were registered with the 

TLS data. We utilized deep global registration (DGR) 

[10], a deep learning-based registration algorithm, for 

aligning Azure Kinect data with TLS data. Through 

registration, four transformation matrices were obtained, 

which reveal the relative positional relationships among 

the Azure Kinect data.  

The TLS data in Figure 3 were used solely for 

calibration purposes; the data were obtained in a 

laboratory setting. In this study, additional TLS data were 

acquired to serve as ground truth for calculating the 

performance of the proposed defect inspection method 

(Figure 6(b)). The TLS data are different from those in 

Figure 3 and were acquired from an actual apartment 

construction site. 

Once the calibration of multiple Azure Kinect sensors 

was completed using TLS data, there was no need to 

repeat the calibration process. The relative 

transformations among the sensor coordinate systems 

were calculated through calibration, and these calculated 

values remain valid as long as the relative positions of the 

sensors do not change. 

 

Figure 3. Calibration of multiple Azure Kinect sensors 

using TLS data and DGR. 

2.2 Point Cloud Registration for Visualization 

The point cloud data, obtained from the calibrated 

multiple Azure Kinect sensors, were employed to inspect 

the distortion of the building’s framework (detailed in 

Section 2.3). A point cloud map was formed through 

registration, which was later used to visualize the results 

of the angle measurement between walls. Point cloud 

data extracted from the MKV file were sequentially 

registered using DGR. As shown in Figure 4, once all the 

point cloud data were registered, a map of the entire 

interior space could be generated. 

In the initial map, as shown in Figure 4(a), 

misalignment occurred between the point cloud data sets; 

this was due to the failure to recognize that the data 

acquisition starting and ending positions were identical. 

Therefore, we used DGR to register two point cloud data 

obtained at the start and end points of data acquisition, 

thereby calculating the degree of discrepancy (Figure 

4(c)). The amount of discrepancy was propagated across 

all point cloud data between the two data. Ultimately, a 

complete map without mismatch between the point cloud 

data was generated, as shown in Figure 4(b). This map 

was used solely for visualizing defect information and 

was not utilized in defect analysis. 
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Figure 4. Point cloud registration and misalignment 

resolution for visualization using DGR; (a) initial map 

exhibiting misalignment, (b) refined map with aligned 

point clouds, and (c) calculation of the discrepancy 

between start and end point cloud data. 

2.3 Defect Inspection  

Each Azure Kinect data underwent a defect 

inspection process. Figure 5 shows the procedure for 

calculating angles between walls. Using random sample 

consensus (RANSAC), planes were segmented from the 

raw point cloud data. Subsequently, only the vertical 

walls were extracted from these planes, and the angles 

between them were calculated. The angles were 

visualized on the map generated in Section 2.2. During 

this process, angles located in close proximity on the map 

were merged and represented by their average value. 

 

Figure 5. Workflow of point cloud data processing for 

defect inspection in apartment construction. 

3 Experiments and Results 

3.1 Datasets 

Point cloud data for one unit of the apartment were 

acquired at an apartment construction site. The 

effectiveness of the proposed method was validated 

through a performance comparison with the TLS-based 

method. Figure 6(a) and Figure 6(b) show data 

acquisition using the backpack platform developed in this 

study and data acquisition using TLS, respectively. As 

shown in Table 1, a total of five scans were conducted 

using TLS, taking about 25 minutes excluding the time 

to move the sensor. With the proposed method, data were 

continuously acquired for about 3 minutes and saved in 

the MKV file format. From the acquired MKV file, 191 

PCD files were extracted. 
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(a) (b) 

Figure 5. Data acquisition for comparative experiment; 

data acquisition with (a) backpack platform, and (b) 

TLS. 

Table 1. Comparison of data acquisition methods using 

TLS and multiple Azure Kinect sensors: analysis of 

scan frequency, time, and cost. 

Method 
Number 

of scans 

Total 

acquisition 

time 

(mm:ss)  

Sensor 

prices 

(USD, in 

thousands) 

TLS 5 24:40 

(excluding 

sensor 

relocation 

time) 

38.3 

Four 

Azure 

Kinect 

sensors 

1 2:34 2.5 

3.2 Implementation Details 

When acquiring Azure Kinect data, all sensors were 

synchronized and connected in a daisy-chain 

configuration; this configuration refers to the sequential 

interconnection of pairs of sensors [11]. For registration, 

we utilized the pre-trained DGR algorithm, which had 

been trained on the 3DMatch dataset [12]. For calculating 

the angles between walls, four planes were extracted 

from each point cloud data using RANSAC. When 

executing the RANSAC algorithm, the maximum 

distance for a point to be classified as an inlier was set to 

2 cm and the number of points randomly sampled for 

plane estimation was set to 3. Data acquisition was 

conducted on a laptop equipped with an Intel Core i7-

10750H CPU and an RTX 2060 GPU. Data processing 

was performed on the Ubuntu 16.04 operating system 

with an Intel Xeon Gold 6240M CPU processor and an 

RTX 3080 GPU based on the Python programming 

language. 

3.3 Experimental Results 

3.3.1 Sensor Calibration 

We conducted comparative experiments to validate 

the proposed calibration method for multiple Azure 

Kinect sensors. Figure 7(a) shows the results of a typical 

calibration method using an AprilTag marker and the 

iterative closest point (ICP) algorithm. Figure 7(b) shows 

the results of calibration using the proposed method with 

TLS data and DGR. As shown in the figure, when the 

sensors were calibrated in a typical way, a misalignment 

occurred between the Azure Kinect data. The suggested 

calibration technique addressed this issue, thereby 

enhancing the data quality. 

When performing calibration using the proposed 

method, it was possible to combine point cloud data with 

precision comparable to TLS data, and it eliminated the 

need for labor-intensive processes like AprilTag marker 

detection. Figure 8 shows examples of point cloud data 

from multiple Azure Kinect sensors calibrated using TLS 

data and DGR. 

 

 

 

(a) (b) 

Figure 6. Comparative analysis of Azure Kinect sensor calibration methods; (a) calibration with an AprilTag marker 

and ICP, and (b) calibration using TLS data and DGR. 
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Figure 7. Examples of point clouds from multiple Azure 

Kinect sensors calibrated using TLS data and DGR. 

 

3.3.2 Point Cloud Registration for Visualization 

All Azure Kinect data were combined using DGR to 

form a map, which was then utilized for visualizing the 

results of defect inspection. Figure 9 shows the registered 

point cloud map generated after adjusting the 

discrepancy between the point cloud data sets. The figure 

demonstrates that the created map was precise enough to 

visually comprehend the building's internal elements 

adequately. 

3.3.3 Defect Inspection 

The angles between walls measured from each Azure 

Kinect data were visualized on the registered point cloud 

map (Figure 10). As shown in Table 2, angles between a 

total of 10 pairs of wall surfaces were measured. To 

evaluate the accuracy of the proposed method, the same 

defect inspection process was applied to TLS data. Figure 

11(a) and Figure 11(b) show examples of wall angle 

measurement using the TLS-based approach and the 

proposed method, respectively. The proposed method 

demonstrated an average angular measurement error of 

0.28 degrees when compared against the TLS-based 

approach. 

 

 

Figure 8. Results of point cloud registration for 

visualization using DGR.

 

 

Figure 9. Visualization of calculated angles between walls in a registered point cloud map. 
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(a) (b) 

Figure 10. Examples of wall angle measurements from 

point cloud data; angle measurement using (a) TLS 

data, and (b) Azure Kinect data.  

Table 2. Comparative analysis of wall angle 

measurements from TLS and Azure Kinect data. 

Wall 

pair 

TLS angle 

(degrees) 

Azure 

Kinect 

angle 

(degrees) 

Error 

(degrees) 

1 90.92 90.34 0.58 

2 89.89 89.59 0.30 

3 89.78 89.90 0.12 

4 90.44 89.98 0.46 

5 90.01 89.75 0.27 

6 89.65 89.76 0.12 

7 89.81 90.05 0.24 

8 90.05 89.73 0.33 

9 91.02 91.01 0.01 

10 89.64 90.00 0.36 

3.4 Discussion 

The experimental results demonstrate the potential of 

the developed backpack platform and defect inspection 

technique. However, there is still room for improvement 

in the proposed method through future studies.  

First, there is a need for preprocessing point cloud 

data in the defect inspection process. Noise may occur 

when acquiring data from a distance using Azure Kinect 

sensors. Removing such noise based on the data 

acquisition distance can enhance defect detection 

performance. Statistical outlier removal and radius 

outlier removal are common methods used to remove 

noise from point cloud data. However, these methods do 

not effectively remove scattered noise points that are 

acquired from distant ranges in Azure Kinect data. 

Therefore, using density-based clustering for noise 

removal can be an effective solution.  

Second, the data acquisition platform can be 

improved to increase its on-site applicability. To achieve 

this, several strategies can be employed: using a Mini PC 

instead of a laptop, utilizing efficient batteries to reduce 

weight, implementing real-time data processing for 

defect inspection, redesigning the backpack to reduce 

worker fatigue, and providing visual guides to for data 

acquisition. 

Third, in addition to analyzing angles between walls, 

a wider array of defects should be addressed in future 

studies. Sagging in ceilings and floors is also critical 

defect information, and such defects can be detected 

using the proposed method. In addition to structural 

defects, surface anomalies such as cracks, voids, and 

spalling on the structure's surface can also be detected. 

These surface defects can be inspected using not only 

point cloud data but also by applying vision-based 

methods that utilize images. 

Fourth, the developed technology should be validated 

in more field applications to increase its robustness. The 

proposed method was validated on a single type of 

apartment construction site. There is a need to apply the 

method to a wider variety of building construction sites 

and address the various challenges that arise in the 

process. Such diverse real-world implementations will 

aid in enhancing the applicability of the proposed method. 

Addressing these four key improvement areas could 

significantly enhance the efficacy of the proposed 

method, making it a highly valuable tool in the field of 

defect inspection and building analysis. 

4 Conclusion 

This study proposed a novel pipeline for inspecting 

framework distortion in building construction employing 

multiple Azure Kinect sensors. By calibrating the sensors 

against TLS data and implementing a deep learning 

algorithm for registration, the system created a 

comprehensive 3D map of the building's interior. The 

angles between walls analyzed from the Azure Kinect 

data were visualized on the 3D map. This approach not 

only significantly reduced the time required for data 

acquisition but also maintained a high level of accuracy. 

If the proposed method is further developed, it could 

revolutionize the way building construction projects are 

managed by ensuring effective defect inspection and 

enhanced safety. 
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