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Abstract –  

Monitoring fatigue is challenging under 

computer-vision-based action recognition due to the 

changes in motion patterns caused by fatigue. 

Particularly in the construction scenario, the motion 

patterns are unique per trade and longer than daily 

life actions, causing challenging scenarios. This paper 

aims to understand the patterns that can guide the 

selection of optimal clip durations for aggregating 

motion features specific to each task. We compare the 

performance of three action recognition models (I3D, 

MViT, and VideoMAE) on different construction 

tasks (excavation, masonry, plastering, etc.) at 

varying clip lengths. We evaluate the models based on 

frame-wise accuracy, sequence predictability error, 

and normalized evaluation duration. Our results 

show that the transformer-based models outperform 

the convolutional neural network-based models. The 

model trained directly over videos performs better 

than those trained on images. Also, the clip duration 

affects the model performance differently depending 

on the task type. Neither the 3s context window from 

the Atomic Visual Actions (AVA) dataset nor the 10s 

context window from the Kinetics-400 dataset is 

suitable for construction tasks. Instead, we suggest a 

variable clip duration between 5s and 7s, which is 

preferable depending on the tasks and model 

architecture. Our work provides insights for 

developing a dynamic and context-aware duration 

selection system for action recognition in construction. 
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1 Introduction 

Worker fatigue is a much-studied problem in 

construction, considering the adverse effects on 

productivity, safety, and health. Prior attempts to 

automate fatigue detection utilized computer vision (CV) 

or on-body sensors for collecting necessary data. Sensors 

are limited by the contextual information they can collect. 

For example, an IMU sensor can collect the motion of a 

specific body part to which it is connected. Computer 

vision is a better fit for field application because it can 

collect information from the worker and surroundings 

simultaneously. In CV, current action recognition 

approaches analyze patterns in features aggregated from 

a set of frames. For measuring the duration of a specific 

action, existing works run action recognition on fixed-

length input clips in sequence and append the results. 

In prior works for developing fatigue monitoring, 

work-rest status [1] is set manually for biomechanical 

evaluation of joint movements. In a pragmatic approach, 

manual identification and biomechanical evaluation 

reduce their applicability to real-time monitoring. 

Utilizing the changes in the movement patterns is a better 

approach for automating part of these tasks. 

While conventional understanding associates 

muscular fatigue with a decline in performance, the 

literature suggests that performance is maintained with 

changes in movement patterns under fatigue. Depending 

on the variable selected, movement variability may 

increase or decrease under fatigue [2] [3]. Muscle groups 

behave differently under fatigue [4]. Fatigue diminishes 

the force-producing capacity and the ability for smooth 

and controlled action. This aspect can be utilized for 

fatigue monitoring and skipping biomechanical analysis. 

Humans cannot detect movement variability due to 

cognitive limitations, so computer vision is the best fit. 

However, breaking down the action into small clips will 

not be sufficient for fatigue monitoring as the models will 

lose the context and motion patterns they can use. 

One solution is to adopt a dynamic context-aware 

approach in selecting the clip durations for aggregating 

motion features specific to each task. The dynamic 

selection will improve the detection performance while 

reducing the resource usage for recognition models. 

Context awareness will also be helpful for safety 

monitoring and improve the interpretability of action 

recognition models. In developing a dynamic and 

context-aware selection system, this work focuses on the 

first step of understanding the patterns that can guide the 

selection of clip durations. 
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2 Literature Review 

Though empirical data collection is preferred, two 

significant works have already provided such data in 

construction. The first video-based dataset on 

construction activities [5] is available with 11 action 

classes. Bricklaying and plastering are manually 

identified as 9.8 s of mean clip length, with a variance of 

3.6s for bricklaying and 5.2 seconds for plastering. An 

average clip length of 6.8s is observed in the case of all 

11 activities, with a variance of 2.7 s. In a later dataset 

[6], the average activity lengths for bricklaying with sub-

activities ranged between 27.33 and 33.30 frames. 

Considering a 25 FPS video or 30 FPS video, which are 

the standard practices, these range to only one second of 

video. The plastering application has 50 frames, which 

comes close to 1.5 to 2 seconds of video. This difference 

in clip duration is a significant concern. The subsequent 

models developed using the datasets are expected to learn 

correctly from the motion patterns available within the 

dataset. This assumption makes it difficult to transfer the 

model trained on the first dataset to the second dataset. 

Thus, it is preferable to study the performance of 

different models on standard datasets to identify suitable 

selection patterns. Developing a new dataset needs to 

consider this aspect to reduce potential bias. 

Recent approaches to action recognition utilize three 

seconds as a fixed clip length following the Atomic 

Visual Actions (AVA) dataset [7] standards. The AVA 

dataset focuses on the action recognition of a single 

person in a frame with a context window of one and a 

half seconds before and after the frame. The smaller 

context window enables fine-scale annotation and 

improves the action boundary precision. The dataset 

contains 430 15-minute video clips, 1.58 million class 

labels, and 80 classes. The dataset is built from movies 

without actual construction-related actions. 

Another important dataset is the Kinetics-400 [8], 

which has 400 action classes. It has 306,245 clips sourced 

from YouTube videos, mostly from amateur 

videographers. Thus, it also provides variety in how the 

action is performed, along with the clothing, pose, and 

other parameters. Each clip lasts around ten seconds, 

providing a context window of 5 seconds before and after 

the keyframe. Some of the action classes in the dataset, 

like ‘laying bricks’, ‘plastering’, ‘welding’, and ‘bending 

metal’, can be utilized for evaluating construction action 

videos. For this reason, in the current work, we utilized 

the models with pretraining using the Kinetics-400 

dataset. 

CV-based action recognition models utilize four 

major algorithmic approaches - Convolutional Neural 

Networks (CNN), Recurrent Neural Networks (RNN), 

Transformers, and Graph Neural Networks (GNN). 

Transformer-based models provide the most accurate 

results and can be considered the latest upgrade over 

RNNs. GNNs need human joint key points to create 

graph nodes for analysis. However, they have yet to be 

proven to perform better than the Transformers, which 

utilize frame features similar to CNNs.  

Two-stream inflated 3D ConvNet (I3D) is a CNN-

based model proposed along with the Kinetics-400 

dataset [9]. It performs well and is considered a baseline 

for models and datasets developed afterward. Multiscale 

Vision Transformers (MViT v2) is a Transformer-based 

image classification model [10] extended for video 

classification. Video Masked Autoencoders with dual 

masking (VideoMAE v2) are also transformer-based 

models but are built with a specific focus on video data 

for all types of tasks on videos [11]. Both transformer 

models utilize 3D convolutions to convert the video 

frames into patches for training and testing. After 

conversion, both models use attention networks to 

identify patterns from the data. 

3 Methodology 

3.1 Data Collection 

The study focuses on evaluating CV models on 

standard construction processes. Processes selected 

include excavation, scaffolding, formwork, 

reinforcement, concreting, masonry, and plastering. The 

videos are carefully chosen from YouTube, with actions 

relevant to the processes. The selection of the videos 

considered video clarity, showing critical activities in the 

operations without cropping and focusing on the workers 

doing the actions. Activities within the processes are 

identified concerning construction literature while 

ensuring a representative dataset capturing realistic 

scenarios. A total of 14 videos, ranging from 00:15 to 

26:50 minutes (average 08:11 min), are utilized for the 

current study. Most videos have a 30 FPS frame rate and 

1280x720 frame dimensions. Other valuable details are 

presented in Table 1 below, and the example frames for 

each task category are presented in Appendix 1 for 

reference. 

The videos are then annotated for the ground truth 

labels. However, the ground truth labels are a subset of 

action classes from the Kinetics-400 dataset. This subset 

comprises actions that can be observed in construction 

sites. For example, Kinetics-400 does not have any 

formwork-related class label. In the video of formwork, 

the annotated labels include classes like ‘moving 

furniture’, which has the keyword ‘moving’ relevant to 

the action context. 

However, several frames only fall under some of the 

subsets of the action labels. These frames are marked 

with a new class named ‘Background’. Frames that show 

transitions, empty land, and other problems are marked 

in this class. 
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Table 1 Frame Count & Task Category of Dataset Used 

File Name Task Category FPS Total Frames 

CONC_2 Concreting 30 30425 

EXCV_2 Excavation 29.94 450 

EXCV_6 Excavation 30 3709 

EXCV_7 Excavation 30 16382 

FMWK_2 Formwork 29.97 17069 

FMWK_4 Formwork 30 12651 

MASO_2 Masonry 25 4065 

MASO_3 Masonry 30 48304 

MASO_4 Masonry 29.97 24581 

PLAS_1 Plastering 30 18151 

PLAS_2 Plastering 30 4350 

RFMT_2 Reinforcement 29.97 8364 

RFMT_3 Reinforcement 29.97 2131 

SCFL_1 Scaffolding 30 15010 

3.2 Model Selection 

The three action recognition models mentioned in the 

literature section (i3D, MViT v2, VideoMAE v2) are 

utilized for comparative analysis. All three models are 

utilized from the same open-source toolbox, MMAction2, 

based on PyTorch, to standardize the comparison. 

Transformer-based models typically have more 

parameter count and can perform better in general. 

However, a comparison with the CNN model will help us 

evaluate the strengths and weaknesses when applying the 

models to construction scenarios. The I3D model is 

trained directly on the Kinetics-400 dataset. The MViT 

model is primarily an image detection model, and hence, 

it is pre-trained on the ImageNet dataset before training 

on the Kinetics-400 dataset. The VideoMAE v2 model 

architecture makes it difficult to train with small datasets. 

Hence, it is trained with larger hybrid datasets, and the 

classification head is trained for the Kinetics-400 dataset. 

Other model details are presented in Table 2 below. Thus, 

comparing the performance of models also helps us 

compare the Kinetics-400 dataset with the construction 

scenario. 

Table 2 Model Details 

Model 
Sampling 

protocol 
FLOPs Params 

I3D 10 clips x 3 crop 43.5G 28.0M 

MViT 5 clips x 1 crop 225G 51.2M 

MAE 5 clips x 3 crops 180G 87M 

A high-performance computer with 2xIntel-Xeon G-

6348 CPU and 4x64 GB RAM is used. The available 

GPUs are not utilized as the work focuses only on model 

evaluation, and no training is involved. 

3.3 Evaluation Parameters 

The two parameters mentioned in Table 2 – floating 

point operations (FLOPs) and parameters (Params)- 

indicate model performance. Lower FLOPs and Higher 

Params are the best combinations for CV models. 

However, a few other considerations also come into play 

while evaluating the model throughput. The two most 

important considerations are the model architecture and 

input variations. 

The current work evaluates three aspects - the models’ 

performance on different construction tasks at varying 

clip lengths. Models and Tasks are detailed in the earlier 

subsections. Clip length is the final variable discussed in 

the present subsection.  

When a video is chunked into multiple clips, two 

other parameters that can be useful are the gap duration 

between two subsequent clips and the overlap duration of 

the first clip over the second clip. In general, a gap 

between clips increases the speed at the cost of accuracy, 

and overlap increases the accuracy by providing 

additional context at the cost of reduced speed. However, 

the actual performance might differ due to the model and 

input variations. 

For the current work, clip lengths of 1s, 3s, 5s, 7s, 9s 

are utilized to cover various temporal scales. Overlaps 

and gaps are not mixed; when the overlap is present, a 

gap is not considered, and vice versa. Overlaps chosen 

are 0s, 2s, and 4s, provided they are always less than the 

clip duration. For a 1s clip, overlap cannot be 2s as it is 

the same as a 3s clip length and takes in more features 

than expected. The gaps chosen are 0s, 1s, 10s. In general 

practice, gaps are provided such that the frame rate is 

only 1 Hz, that is, a gap of 1s. However, larger gaps can 

be considered for the action of longer durations, typically 

observable in construction sites. A 10s gap is chosen to 

verify whether a large gap will be helpful. With the given 

conditions, 22 combinations are formed for durations.  

In prediction, the gap durations will have no outputs. 

This approach improves model performance by reusing 

the last frame results for all frames within the gap 

duration. Overlap durations only provide the context for 

current frame prediction, so there is no effect on the 

outputs for each frame. 

3.4 Evaluation Criteria 

Evaluation is based on the accuracy of models 

without any fine-tuning or transfer learning to avoid any 

biases from additional training. Doing so will also help 

maintain classification consistency, even when the 

specific class labels are absent in the pre-trained dataset. 

Hence, the dataset prepared is utilized for model output 
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evaluation. 

Three evaluations are made on the model’s overall 

predictions and task-wise predictions - Frame-wise 

evaluation, Sequence-wise evaluation, and Time duration 

evaluation. Frame-wise evaluation captures the model’s 

qualitative performance per frame. Sequence-wise 

evaluation captures the model's sensitivity to the motion 

pattern changes surrounding the frames. Finally, the time 

duration evaluation captures the model’s quantitative 

performance per frame. By comparing the results of these 

three criteria, analysis is carried out to compare 

construction tasks and extract useful patterns. 

Frame-wise evaluation matches the current frame 

prediction with manual annotations. Accuracy is the ratio 

of total positive to total positive and negative 

classifications for a given action. The models are bound 

to provide noisy predictions for frames annotated as 

‘Background’. So, the frame prediction is skipped in 

evaluation for accuracy, but the duration is considered for 

measuring model prediction performance. Although a 

multi-class confusion matrix can be utilized, we use the 

simple metric given the choice of models and a small 

dataset. 

The methodology followed for the sequence-wise 

predictions is as follows. The previous frame (A) and 

current frame (B) predictions together form the 

consecutive clip for evaluation. The confusion matrix is 

built based on whether the sequence is correctly predicted, 

as shown in the table below. 

Table 3 Confusion Matrix for Sequence-Wise 

Evaluation 

Predicted 

Sequence 

True Sequence 

A-B A-A 

A-B TP FP 

A-A FN TN 

The prediction should correctly capture the change in 

actions for good sensitivity. Hence, the change in action 

class is marked as positive, and no change is marked as 

negative. If consecutive clips have different actions, but 

the same classifications are provided, a ‘False Negative’ 

is considered, and when a different classification is 

provided, a ‘True Positive’ is considered. Suppose 

consecutive clips have the same actions, but a different 

classification is provided for the second frame. In that 

case, a ‘False Positive’ is considered, and a ‘True 

Negative’ is considered if the same classification is 

provided. 

In general, accuracy and precision metrics are 

evaluated from the confusion matrix. An issue with these 

usual metrics occurs when comparing the sequential 

predictions. The change in the action may be detected at 

a very different frame than annotations. This can occur 

due to changes in the frames, which are invisible to the 

human eye or missed easily during annotations. Hence, a 

different metric is developed for the specific case using 

the same elements of the confusion matrix. 

𝑃𝐶 =  (𝑇𝑃 + 𝐹𝑃)/(𝑇𝑁 + 𝐹𝑁) (1) 

𝐴𝐶 =  (𝑇𝑃 + 𝐹𝑁)/(𝑇𝑁 + 𝐹𝑃) (2) 

𝑆𝑃𝐸 =  (𝑃𝐶 / 𝐴𝐶) –  1 (3) 

Where, 

TP = True Positive 

TN = True Negative 

FP = False Positive 

FN = False Negative 

PC = Predicted Changes 

AC = Actual Changes 

SPE = Sequence Predictability Error 

 

In cases where the actual changes can be zero, that is, 

no changes in the actions in the video, the denominator 

will be considered as 1 to overcome the division by zero 

error. Also, the predicted changes can be far more than 

actual changes. The sequence predictability error must be 

close to zero. 

Finally, the time duration evaluation compares the 

durations for inference of all the models over the clip 

duration combinations specified earlier. The time taken 

per inference is captured and averaged for each model, 

video, and task. As we compare video clip size variations, 

considering the number of evaluations made within each 

variation will provide a better metric for model 

performance evaluation. The average duration per video 

is divided by the total number of evaluations made within 

the video to evaluate the performance. 

𝑇𝑁𝐸  =  100 ∗  𝑇𝐴𝐸  / 𝑁𝐸 (4) 

Where, 

TNE = Normalized Evaluation Duration, in seconds 

TAE = Average Evaluation Duration, in seconds 

NE = Total number of evaluations 

 

Figure 1 Annotation and Evaluation Methodology 

The annotation and evaluation methodology is 

depicted in ‘Figure 1’ above, except the duration 

evaluation. 

Task 1 Task 2 Task 1 Task 2 Task 3 Task 4 Task 1

Class 1 Class 3 Class 3 Class 4 Class 3 Class 9 Class 9

P N N

TP TP FP TN

Class 1 Class 8 Class 1 Class 8 Class 3 Class 3 Class 3

Frame-wise Accuracy & Sequence Predictability Error

Actual Task

Prediction

Evaluation

Annotated Class

Metrics

Literature

Model

Manual

Dataset

N P P N

TP FN
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4 Results 

4.1 Frame-wise Evaluation 

The overall model performances are unexpectedly 

low. The best-performing model is MAE with 56.42%, 

followed by MViT model with 49.27%, and I3D model 

with 43.13%. The clip overlap and gap durations show 

slight improvements but do not form any meaningful 

patterns in frame-wise accuracy. Models offer good 

performance for tasks with action classes available in the 

Kinetics-400 dataset. Across models, the average 

accuracy stays in a similar ratio, as shown in ‘Figure 2’ 

below.

 

Figure 2 Average Accuracy Percentage Per Task 

Type 

The need for more accuracy indicates disagreement 

between manual annotations and model predictions for 

action classes unavailable in the pre-trained dataset. 

Utilizing the results from the top three tasks – Excavation, 

Masonry, and Plastering, the frame-wise accuracies are 

reported in ‘Figure 3’ below. 

 

Figure 3 Model-wise Average Accuracy 

Percentage Per Clip Duration 

The I3D model shows a considerable increase in 

performance with an increase in the input clip duration. 

After 5-second clip length, a plateauing of I3D 

performance and a decrement of MViT performance can 

be observed. The decrement in the MAE model might be 

related to the fact that it is trained on datasets beyond the 

K-400 dataset, owing to its architectural needs. 

4.2 Sequence-wise Evaluation 

Models might capture more action transitions than 

annotated ones because they can see more details than 

humans. However, the duration, overlap, and gap 

combinations also affect the predictive capabilities due to 

the sampling strategies for testing. A 10-clip x 3-crop 

strategy takes ten clips from the given video, crops three 

different zones within each clip, and utilizes the 

information for prediction. Thus, a longer video duration, 

an overlap, and a gap between clips will all provide 

different features. 

The Sequence Predictability Error (SPE) of models 

for different durations is presented from ‘Figure 4’ to 

‘Figure 6’ below. The negative predictability shows that 

the models predict less than the actual, and positive 

values indicate that the models predict more. Being 

closer to zero is preferred, as the models are expected to 

perform best in correctly identifying sequences. 

 

Figure 4 Duration-wise Sequence Predictability 

Error of Models 

 

Figure 5 Gap Duration-wise Sequence 

Predictability Error of Models 
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Figure 6 Overlap Duration-wise Sequence 

Predictability Error of Models 

As the duration increases, the predictability of the 

models – I3D and MViT- improves. However, the MAE 

model over-predicts the number of changes in the video. 

A slight gap in the durations improves the predictability, 

but too much will throw the models far away. Also, a 

slight overlap improves the predictability. 

4.3 Time Duration Evaluation 

The models are compared with different clip lengths 

and durations and presented in ‘Figure 7’ below. 

 

Figure 7 Average Evaluation Duration Per Model 

at Different Clip Lengths 

The I3D, a CNN-based model, shows a linear 

increase in the evaluation duration with increasing clip 

lengths. Combined with the need for more accuracy 

beyond 5 seconds, using large clip lengths for CNN-

based models is not valuable. The Transformer-based 

models do not show any linear increase and are stable 

across the clip lengths.  

Although evaluation duration increases with time, 

that is the case when there is no overlap. Additional 

overlaps of 2 and 4 seconds did not show the same 

incremental behavior in performance time. One 

exception is the 9-second limit for the video clips. The 

I3D model took longer in any duration-overlap 

combination while evaluating the clips of length 9 

seconds. But beyond the 9 seconds, the evaluation 

duration reduces.  There is no clear explanation for this 

behavior. 

 

Figure 8 Gap Duration-wise Normalized 

Evaluation Durations of Models 

From ‘Figure 8’ above, having a large gap between 

clips increased the normalized evaluation duration across 

all models. Technically, the models consider each clip a 

separate video and only predict the action within the clip 

context. But, the behavior here suggests that the models 

utilize the previous videos as context.  

4.4 Task-wise Evaluation 

Breaking down the model performance task-wise, 

‘Figure 9’ below shows the different performance of 

models for the tasks. 

 

Figure 9 Average Accuracy Percentage per Task 

Type for Models 
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ability to evaluate model performance systematically. 

However, MViT performs well for concreting and 

scaffolding, while MAE performs well for formwork.  

Task-wise evaluations are focused only on the best-

performing tasks. The models show different behavior 

under different clip durations as presented in Table 4. 

Table 4 Average Accuracy of Models for Best 

Performing Task Types under Different Clip Lengths 

Task Type Model Clip Duration (in seconds) 

  1 3 5 7 9 

Excavation 

I3D 66 68 74 72 76 

MViT 92 92 94 95 93 

MAE 100 95 94 94 95 

Masonry 

I3D 77 74 76 75 77 

MViT 77 77 76 75 71 

MAE 95 96 96 95 96 

Plastering 

I3D 58 71 75 80 74 

MViT 73 76 77 76 78 

MAE 90 89 87 84 89 

Table 5 Average Accuracy of Models for Best 

Performing Task Types for Overlap-Gap Combinations 

Task Type Model Overlap - Gap Combinations 

  0-0 0-1 0-10 2-0 4-0 

Excavation 

I3D 72 70 78 73 64 

MViT 93 93 92 95 94 

MAE 95 96 94 95 97 

Masonry 

I3D 76 76 75 77 77 

MViT 74 74 79 74 73 

MAE 95 96 95 96 96 

Plastering 

I3D 67 75 69 75 81 

MViT 76 76 76 77 78 

MAE 87 88 89 86 88 

The rounded-off average accuracies for overlap-gap 

duration combinations is presented in Table 5 above. For 

the I3D model, increasing the overlap duration increases 

the model performance for plastering tasks but decreases 

accuracy for the excavation task. A 2-sec overlap in the 

I3D model improves the performance when the clip 

durations are below 9 seconds.  

Comparing the task-wise sequence predictability of 

the models, it was observed that the plastering task has 

too many change predictions than actual. The results are 

presented in ‘Figure 10’ below. Across the tasks, none of 

the models can predict the number of changeovers 

sufficiently. Although performance for formwork tasks 

seems promising, the high background percentage might 

also lead to this erroneous evaluation. 

 

Figure 10 Task-Type wise Sequence 

Predictability Error of Models 

Separating the task-wise performance, each model 

shows a different pattern for the duration. Results from 

the comparison are presented in ‘Figure 11’ below. The 

excavation task takes most of the time for evaluation, 

followed by reinforcement and plastering.  

 

Figure 11 Normalized Evaluation Duration per 

Task Type for Models 
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MAE model, which is trained on videos directly, 

performs better than MViT, which is trained on images 

and extended to videos. For I3D, a CNN-based model, 

the clip duration affects the performance by providing a 

larger context window. However, a 5-second limit occurs 

across models trained on images. The context window of 

5 seconds seems sufficient for our use cases.  

For the I3D model, the excavation task with a context 

window of 5 seconds and the plastering task with a 

context window of 7 seconds perform best. However, the 

exact durations are the worst performing for the MAE 

model. The MAE model is best performing for clips of 

short durations. 

For excavation and masonry, providing a gap 

between clips increased the accuracy, but extra overlap 

increased the accuracy for plastering. This suggests that 

the motion patterns within the former two actions are 

highly repeated, whereas, for the latter, a considerable 

difference occurs. 

In the sequence predictability, higher clip durations 

increase the predictability of the I3D and MViT models 

but reduce the MAE model. A slight gap or overlap in the 

durations improves the predictability. 

For most tasks, all the models predict less than actual 

sequence changes. Only for the plastering task, the 

models predict more than the actual. This might be a one-

off case and needs further investigation. The excavation 

and reinforcement tasks have higher evaluation durations 

than the average model performances. 

In the concreting activity videos, the actions are the 

concreting of a floor slab and a road. The most repetitive 

actions are dumping the concrete and evening 

(smoothing) the surface. The annotations given are 

‘unloading the truck’ and ‘sweeping the floor’, 

considering the closeness of these labels to the actions. 

However, most model detections classified the surface 

evening as ‘digging’. The motion patterns relevant to 

these two classes need to be differentiated. Similarly, 

most formwork tasks are annotated under ‘moving 

furniture’ since they involve moving and fixing the 

components. The best-performing model, MAE, detects 

some of these actions as ‘building shed’ and ‘bending 

metal’. 

There is no pre-training involved in the study, and the 

annotations are mapped to nearest action class of the 

Kinetics-400 dataset. Consequently, the accuracy results 

in task-wise results are not useful for concreting, 

formwork, scaffolding and reinforcement works. Since 

the focus of the current work is on temporal precision 

rather than frame level accuracies, some useful 

interpretations can be derived from the task-wise results 

of these actions also. The sequential predictability error 

identifies how well the model can detect the action 

switching from one to the next. Even in the mapped 

action classes, the actual action is irrelevant, and only the 

change of action is important. From the task-level results, 

a negative SPE is seen in most cases suggesting that the 

models predict less switches than that can be detected by 

the manual annotators.  Also, the normalized evaluation 

duration results hint at a possible correlation with the 

video clip lengths. The smallest video clip of excavation 

has only 450 frames and the results of excavation point 

to a very high duration for evaluation. However, this is 

contrary to the general expectation that a smaller clip can 

be evaluated faster. There is no relation found between 

the accuracy and duration because the accuracies are very 

less for the reinforcement work yet the action class took 

higher duration for evaluation. For the action classes 

existing in the dataset and are directly related to 

construction activities like masonry, plastering and 

excavation, results across all evaluations are useful. 

These observations lead to the development of a 

classification system for tasks and models. Excavation 

tasks can be predicted better with 5-second context 

windows but need too much time for prediction. 

Plastering tasks can be predicted best with 7-second 

context windows, but the number of switches detected 

can be far higher than actual. Masonry tasks can be 

predicted with 5-second context windows without any 

drawback. Overall, additional overlap or gap increases 

the prediction performance on speed and accuracy. 

However, models trained on video datasets directly 

perform the best. If the sequence changes are not a 

particular concern, then using the video data-trained 

models with the least clip durations will improve the 

model performance dramatically. However, if sequence 

predictability is the primary concern, the transformer-

based model trained on the image dataset will work best 

with a clip duration between 5 and 7 seconds. 

Overall, this work suggests that neither the 3-sec 

context window from the AVA dataset nor the 10-sec 

context window from the Kinetics-400 dataset is suitable 

for construction tasks. Instead, it is a variable that needs 

to be carefully evaluated and considered for better 

performance.  

The study offers useful insights for the construction 

organizations adopting automated visual surveillance for 

applications like fatigue and safety monitoring. One of 

the important components of such systems is the worker 

action recognition model. Action recognition is a 

resource-intensive task, requiring the model to classify a 

fixed set of frames from the input videos into relevant 

actions. Changing the fixed set of frames to a variable set 

according to the task is a valuable optimization. Consider 

an analogy: Suppose you watch a live stream of your 

favorite action-oriented sport. Usually, there is a 

minimum of 30-second delay in live streaming the sport, 

depending on the technology. Now, imagine a computer 

watching the live match at the location, informing you 

whether there is any useful action in progress. If it can 
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analyze the match faster and more accurately, your cost 

and time will also be saved. In the game, two people can 

be doing different actions simultaneously, one running 

towards the opponents and another standing in some 

corner for quite some time. We too, focus on the running 

person rather than the standing person. By enabling the 

computer to focus on the running person, we can save the 

cost and time of operating the computer while increasing 

accuracy. Our proposed approach is one such method to 

achieve this. By remembering how humans move for 

different tasks, the computers can speed up their 

performance, by using smaller clip lengths for important 

actions and vice versa. Using technical terminology, the 

proposed method improves the speed of action 

recognition by aligning the clip durations with task-

specific motion patterns. This strategic optimization 

reduces the data analysis costs while increasing the speed 

of evaluations for the organizations. Also, some action 

recognition models depend on upstream models like 

object detection. When these upstream models cause 

erroneous detections or missed predictions, our 

methodology can improve the action recognition as the 

systems can still make correct predictions due to the 

varying clip lengths according to the task. 

6 Limitations and Future Work 

Compared to other related works on action 

recognition for construction activities, this study stands 

out in its comprehensive evaluation of different models 

and clip durations. While most previous studies have 

focused on a single model or a fixed clip duration, this 

study provides a more nuanced understanding of how the 

model performance varies with the clip duration and task 

type.   

However, like all studies, this one also has its 

limitations. The study is based on a limited number of 

construction tasks and a specific dataset on which the 

selected models are pre-trained. The generalizability of 

the findings to other tasks or datasets remains to be tested. 

The reliance on YouTube videos for data collection may 

only partially capture the complexity and diversity of 

construction activities in real-world scenarios. Future 

studies could benefit from using a dataset collected 

directly from construction sites. The study does not 

discuss potential challenges such as sensitivity to noise, 

occlusion, camera motion, or lighting conditions, which 

are common in construction sites. It is expected that the 

videos collected from YouTube will include these issues 

in the dataset. 

The need for correct labels for all the tasks limits the 

applicability of the pre-trained models directly. Yet, the 

work proceeds to utilize the model, and as a result, the 

respective estimates for tasks like reinforcement could 

have yielded more useful clip duration estimates. 

However, these observations proved helpful in studying 

the model performance for these tasks. The higher 

evaluation time for reinforcement tasks and higher 

accuracy of the MViT model for concreting and 

scaffolding compared to the MAE model are useful 

predictions for further work. 

Lastly, the sequence predictability error metric 

measures the total number of predicted sequence changes. 

It does not capture the sensitivity of correctly identifying 

the change precisely at the annotated frame. This is an 

approximation, considering that the models might see the 

frames in videos differently than humans and capture 

more details for their analysis. Future studies can also 

modify the metric and measure the duration between 

annotated and predicted change for more sensitivity. 

There are several promising directions for extending 

this work. One possibility is to incorporate more 

construction tasks into the study to validate further and 

refine the findings. Another possibility is to create a 

dataset of the same set of actions with varying execution 

time and use the dataset for evaluation following the 

methodology discussed in the current work. If the 

performance of models depends on execution time also, 

then the context-awareness of models can add another 

dimension of variance. For example, a dataset of masonry 

work is created with action lengths between 3 and 9 

seconds. The context-aware systems can identify the 

mean and variance from this dataset. In a future 

application, the system can consider this variance while 

varying the clip lengths. Another direction is to develop 

a new dataset with more accurate and diverse annotations, 

which could help to improve the model’s performance 

and robustness. Fine-tuning or transferring the models to 

the construction domain could also be explored to exploit 

the domain-specific knowledge and data. Finally, other 

datasets (like AVA), modalities (using skeletal frame, 

optical flow), architectures for action recognition, and 

tasks (recognition, segmentation, localization) could be 

investigated. Evaluation for different mechanization 

levels (manual, tools, equipment, machinery) can be done 

for more detailed analysis. Additionally, the application 

of these models to other tasks, such as safety analysis or 

productivity assessment, could be explored. 

7 Conclusion 

This paper compares three action recognition models 

for construction activities: I3D, MViT, and VideoMAE. 

The models are evaluated on a YouTube video dataset 

covering seven standard construction processes. The 

paper analyzes the effect of clip length, overlap, and gap 

on the model performance, using frame-wise accuracy, 

sequence predictability error, and normalized evaluation 

duration as the criteria. The results show that the 

transformer-based models outperform the CNN-based 
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model in accuracy but have different sensitivity to the 

clip duration and motion patterns. The paper also 

suggests that the optimal clip length for construction 

action recognition is between 5 and 7 seconds, depending 

on the task and the model. The paper contributes to 

understanding the strengths and weaknesses of different 

action recognition models for construction scenarios. It 

provides insights for developing a dynamic and context-

aware selection system for clip durations. 
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Appendix 1: Sample Task Frames 
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