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Abstract -
Modular Integrated Construction (MIC) currently de-

pends on manual assembly processes, which are not only
inefficient but also have safety risks. To address this issue,
we propose vision-based technologies for automatic segmen-
tation, measurement, and position estimation to aid in the
assembly process in construction. Specifically, we utilize the
Yolov8-seg model, which is an advanced instance segmenta-
tion tool, to segment the surfaces of the corners of the mod-
ules. These segmented surfaces are then fitted with quadri-
laterals to accurately localize the four corner points. The
3D coordinates of these corners are determined by using the
corresponding depth map, thus enabling precise measure-
ments. Additionally, using the 2D coordinates of the colour
map of the four corners and the actual 3D coordinates cre-
ated with the center of the quadrilateral as the origin, we
employ the Perspective-n-Point (PnP) algorithm for precise
position estimation. The experiments show the effectiveness
of the proposed methods. By integrating these vision-based
techniques with construction robotics, we can significantly
enhance the efficiency and safety of MiC assembly, paving
the way towards full construction automation.
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1 Introduction
Modular Integrated Construction (MIC) involves the de-

sign of standardized modules, which are pre-fabricated in
off-site manufacturing facilities and subsequently assem-
bled on-site [1]. This method simplified the building pro-
cess, saving project time and costs. However, the module
installation process remains arduous and time-consuming.
Lifting large modules requires cranes and hoists, and relies
heavily on worker experience to achieve precise lifting;
if workers are inexperienced, installation errors, delays,
and safety accidents may occur, affecting project time and
costs [2]. Due to the increasing demand for faster, safer
and more efficient installations [3], the integration of new

technologies such as computer vision is becoming im-
portant to improve accuracy, speed, and safety in module
assembly.

Vision-based techniques have great potential to solve
problems in the field of construction, offering a range
of advantages that improve the overall construction pro-
cess, including quality management, progress and sched-
ule monitoring, safety enhancement, and cost reduction
[4]. These vision-based methods involve advanced image
processing, deep learning, 3D reconstruction, and other
techniques to extract valuable visual perceptual informa-
tion. Furthermore, when integrated with construction
robots, these techniques—such as segmentation, measure-
ment, and pose estimation—can significantly improve the
robots’ perception, enabling more efficient and automated
construction.

Segmentation is extracting useful regions from an image
or video frame for analysis [5]. In recent years, deep learn-
ing applications such as convolutional neural networks
(CNN) have greatly improved the accuracy and efficiency
of image segmentation [6]. Generally, segmentation can
be divided into semantic segmentation and instance seg-
mentation, each provides solutions for different kinds of
tasks. Semantic segmentation is the categorisation of each
pixel into a specific class, without distinguishing between
specific objects in each class. One of the pioneering works
of semantic segmentation is Fully Convolutional Networks
(FCN) [7], which achieves end-to-end image segmentation
by grouping each pixel into specific classes using convo-
lutional layers rather than fully connected layers. U-Net
[8], on the other hand, uses an encoder-decoder structure
to be able to capture both local and global features and
skip connections to fuse deep and shallow information.
DeepLab [9] uses dilated convolution to increase the sen-
sory field, which facilitates the segmentation of objects at
different scales. Instance segmentation not only focuses
on which class each pixel belongs to but also focuses on
distinguishing different objects in the same class, which
is more challenging than semantic segmentation. Mask
R-CNN [10] is one of the most widely used instance seg-
mentation models, which improves on Faster R-CNN [11]
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by adding pixel-level segmentation to achieve detection
and segmentation at the same time. Leanne Attard et al.
[12] employed Mask R-CNN to detect and localize cracks
on concrete surfaces, thereby overcoming the limitations
of manual detection and significantly reducing both time
and cost.

Measurement technology plays a crucial role in Modu-
lar Integrated Construction (MIC), particularly for the pre-
cise measurement of prefabricated modules. Traditional
measurement methods, which rely on manual techniques,
are time-consuming, labour-intensive, and subjective [13].
In contrast, vision-based methods such as binocular vi-
sion, Time of Flight (ToF), and structured light offer more
accurate, objective, and reliable measurement solutions.
Binocular vision simulates the human eye by using two
cameras to take pictures of the same object at different
angles, and by calculating the disparity of the same ob-
ject in the pictures of the two cameras, thus achieving
the depth measurement of the object [14]. ToF obtains
depth information by measuring the time it takes for the
light signal to travel from the emitting source to the target
object and back to the sensor [15]. The structured light
system achieves 3d reconstruction of the object by project-
ing a known pattern onto the target object, and the camera
achieves this by capturing changes in the pattern [16]. Liu
[17] uses binocular vision to measure the size of cracks
in walls, preventing and treating wall defects in advance,
thus enabling structural and environmental monitoring of
buildings. Yu et al. [18] combined structured light with
an industrial robot to stitch together 3d data, simplifying
the calibration process and improving the measurement
accuracy, thus enabling accurate measurement of the 3D
shape of large objects.

Pose estimation is widely used in augmented reality,
construction robotics, and industrial automation to enable
three-dimensional reconstruction, robotic assembly, and
automated construction. Pose estimation aims at obtaining
the position and attitude of an object in 3D space, which is
crucial for the accurate placement and installation of MIC
modules. Attitude estimation methods are classified into
feature-based methods and deep learning-based methods
etc. Feature-based methods extract feature points such
as corner points, edges, key points, etc. from images or
video frames and use feature matching to estimate posi-
tion and orientation. For example, the Perspective-n-Point
(PnP) algorithm uses a projection model to estimate pose
by extracting feature points from 2d images and matching
them with actual 3D coordinates [19]. Mi et al. [20] used
the PnP algorithm for 3D position measurement of the
pit to achieve automated monitoring of pit displacement.
Deep learning-based algorithms use CNN to predict the
pose directly end to end. PoseNet [21] based on CNN di-
rectly estimates the position and orientation of the camera

in 3D space from a single image without feature match-
ing.OpenPose can extract the keypoints from a single im-
age and supports multi-person detection. Prabesh Paudel
et al. [22] used PoseNet to detect the worker’s position
and assess the risk based on the worker’s posture to en-
sure safety. Deep learning-based methods require a large
amount of training data to learn effective features with high
computational complexity, whereas feature-based pose es-
timation algorithms require less data, have low computa-
tional complexity and good real-time performance.

There are also several studies that apply computer vi-
sion techniques to MIC to address challenges in the man-
ual assembly process. For instance, Roshan Panahi et al.
[23] proposed an automated assembly progress monitor-
ing system for modular construction factories using com-
puter vision-based instance segmentation. Zhenjie Zheng
et al. [24] used Mask R-CNN in the construction process,
thus enabling accurate localisation and segmentation of
MIC modules, which is conducive to automated process
monitoring. However, while these studies focus on seg-
mentation and monitoring, there remains a gap in fully
automating not just the detection but also the precise mea-
surement and pose estimation of construction modules.

In this study, we aim to develop a computer vision-based
framework for automated segmentation, precise measure-
ment, and position estimation of construction components,
with a focus on MIC corner surfaces. The specific objec-
tives of this study are: (1) to achieve accurate instance
segmentation of MIC module corner surfaces using the
Yolov8-seg model, (2) to extract and fit segmented surfaces
into quadrilaterals for identifying precise corner points and
measuring the MIC corner, and (3) to implement the PnP
algorithm for pose estimation by using the relationship
between 2D and 3D corner coordinates.

The contributions of this study include: (1) the inte-
gration of state-of-the-art computer vision techniques to
automate traditionally manual tasks in the construction in-
dustry, (2) a novel application of instance segmentation
and 3D depth-based analysis to achieve precise segmenta-
tion and measurement MIC components, and (3) the pose
estimation of construction components through the com-
bined use of depth data and 2D-3D point correspondence.

The following sections of this paper is structured as
follows: Section 2 details the proposed methodology, in-
cluding segmentation, measurement, and the PnP-based
pose estimation process. Section 3 presents experimen-
tal results and evaluates the performance of the proposed
framework. Finally, Section 4 provides a conclusion, sum-
marizing the key findings.

2 Methodology
Figure 1 shows a typical MIC module. It is notable that

there is a distinctive rectangular fitting at each of the four
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corners of the module. This fitting has unique geometric
features and functions that not only provide additional
support for the module but also facilitate quick and precise
assembly. Therefore this fitting is an important feature of
the MIC module. By analyzing the corner features, we
can achieve the detection and positioning of the corners of
the MIC module, which enables the robot to automatically
identify and manipulate the MIC module and improves the
automation level of the construction.

Figure 1. Typical MIC module.

To further investigate the corner feature of the MIC
module, a 1:1 model of the corner shown in Figure 2 was
3D printed to investigate automated vision-based process-
ing methods, including segmentation, measurement, and
pose estimation. The model allows us to simulate and
evaluate the performance of the vision system accurately
under laboratory conditions.

Figure 2. 3D printed 1:1 model of the MIC module
corner.

2.1 Segmentation

Considering the trade-off between accuracy and pro-
cessing speed, we have selected the Yolov8-seg model for
image segmentation. Yolov8 introduces several enhance-
ments to optimize performance, including an anchor-free

detection method, the C2f module, a decoupled header,
and a modified loss function [25]. These improvements
collectively enhance the model’s speed, accuracy, and
generalization capabilities. Yolov8-seg, a variant derived
from Yolov8, is specifically engineered for segmentation
tasks. It inherits the high accuracy and speed of the YOLO
series and extends these capabilities to achieve pixel-level
segmentation. The architecture of Yolov8-seg is illustrated
in Figure 3.

Figure 3. The architecture of Yolov8-seg.

Accurate image segmentation is essential for precise
subsequent analysis. In our study, we employed the
Yolov8-seg model to segment the surface of the corner
model, which allows us to detect and localize the specific
positions of the corner model accurately. After segment-
ing the image, we fit it into a quadrilateral to extract the
four corner points. In this way, we can know the exact po-
sition of the four corner points in the 2D image and get the
2D coordinates of the four corner points. The segmented
image and the coordinates of the four corner points provide
a robust foundation for further geometric and dimensional
analyses. These will subsequently be utilized for in-depth
measurements and accurate pose estimation.

2.2 Measurement

The process of mapping points from a three-
dimensional coordinate system to a two-dimensional im-
age plane can be described using the pinhole camera
model, which is shown in Figure 4.
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Figure 4. Pinhole camera model.

According to the pinhole camera model, the projection
of a point (𝑋,𝑌, 𝑍) in three-dimensional space onto a point
(𝑢, 𝑣) on the two-dimensional image plane is described by
the following equations:

𝑢 = 𝑓𝑥
𝑋

𝑍
+ 𝑐𝑥 ,

𝑣 = 𝑓𝑦
𝑌

𝑍
+ 𝑐𝑦 ,

(1)

where 𝑓𝑥 and 𝑓𝑦 are the focal lengths along the x and y
axes, respectively, and 𝑐𝑥 and 𝑐𝑦 are the coordinates of the
principal point on the image plane.

This can be further expressed in matrix form:
𝑢

𝑣

1

 = 𝐾

𝑋
𝑍
𝑌
𝑍

1

 (2)

where 𝐾 is the camera’s intrinsic matrix and defined as:

𝐾 =


𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

 (3)

To accurately measure the size of the corner model,
we use a depth camera. The depth camera captures both a
colour map and a corresponding depth map, with the depth
map providing the depth value (i.e., the z-coordinate) for
the 3D points. Using the formula:

𝑋 = (𝑢 − 𝐶𝑥) ×
𝑍

𝑓𝑥

𝑌 =
(
𝑣 − 𝐶𝑦

)
× 𝑍

𝑓𝑦

𝑍 = depth value

(4)

we can accurately derive the 3D coordinates of any point
from its depth map. Using the 2d image coordinates of the
four corner points obtained from the segmentation result
in the previous step, combined with the depth map, the
3d coordinates of the four corner points can be obtained.

The actual length and width of the corner model can be
obtained by calculating the distance between two neigh-
bouring points from the 3d coordinates of the four corner
points.

2.3 Pose Estimation

Since we have previously determined the actual length
and width of the corner model, we can construct a 3D co-
ordinate system for the corner model based on the actual
length and width. By setting the center point of the model
as the coordinate origin, we can locate the four corners rel-
ative to this origin to obtain their actual 3D coordinates.
Given that we have both the actual 3D coordinates of the
four corner points and their corresponding 2D image co-
ordinates, we can employ the PnP algorithm to accurately
estimate the pose of the corner model.

The PnP algorithm is widely used in computer vision
to estimate the position and orientation of the camera rel-
ative to the object based on a set of 2D-3D points. PnP
is an optimization problem that aims to determine the op-
timal rotation and translation matrices that minimize the
reprojection error. This error is calculated by measuring
the difference between the predicted positions of the 3D
points when re-projected onto the image plane and their
actual positions. The reprojection error is mathematically
expressed as:

𝑒𝑖 = 𝑥𝑖 − 𝐾 [𝑅 | 𝑡]𝑋𝑖 (5)

where 𝑥𝑖 represents a 2D point on the image plane, 𝑋𝑖 is
the corresponding 3D point, 𝑅 and 𝑡 denote the camera’s
rotation matrix and translation vector, respectively, and 𝐾
is the camera’s intrinsic parameter matrix.

The goal of PnP algorithm is to minimize the reprojec-
tion error, that is:

min
𝑅,𝑡

∑︁
𝑖

∥𝑒𝑖 ∥2 (6)

This optimization problem can be solved by iterative meth-
ods, where 𝑅 and 𝑡 are adjusted step by step through several
iterations, so as to find the minimum value of the repro-
jection error and the optimal 𝑅 and 𝑡.

3 Experiments and Results
3.1 Dataset

We used the Intel RealSense D455 depth camera, com-
monly used in construction, to collect data. The D455
depth camera has two high-resolution colour and depth
sensors that capture depth information through the princi-
ple of stereo vision. The intrinsic parameters of the cam-
era are shown in Table 1 and Tabel 2 including the focal
lengths ( 𝑓𝑥 , 𝑓𝑦), the principal point coordinates (𝑐𝑥 , 𝑐𝑦),
and the distortion coefficients.
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Table 1. Parameters of the colour camera
Color camera Intrinsic parameters

𝑓𝑥 , 𝑓𝑦 391.942, 391.942
𝑐𝑥 , 𝑐𝑦 324.305, 239.027

Distortion [0, 0, 0, 0, 0]

Table 2. Parameters of the depth camera
Depth camera Intrinsic parameters

𝑓𝑥 , 𝑓𝑦 387.781, 387.351
𝑐𝑥 , 𝑐𝑦 325.001, 247.284

Distortion [-0.055, 0.066, -0.800, 8.003, -0.022]

The coordinate systems of the depth camera and the
colour camera are aligned through a transformation that
includes rotation and translation. This alignment ensures
that the data from both cameras are accurately matched.
This transformation is defined by the extrinsic parameters
of the cameras, represented by the rotation matrix 𝑅 and
the translation vector 𝑡, as follows:

𝑅 =


0.99998343 −0.00549165 −0.00175197
0.00548666 0.99998093 −0.00283836
0.00176752 0.00282870 0.99999446


𝑡 =


−0.05912773311138153
0.0003899137955158949

0.00034507890813983977


We captured a total of 1018 images under different il-

lumination conditions and camera heights, as shown in
Figure 5. These 1018 images were randomly shuffled and
split into two parts: 80% as the training set to train the
model and 20% as the test set to evaluate the model.

3.2 Segmentation

We used the Yolov8-seg model for image segmentation,
which enables instance segmentation by combining pre-
cise object detection and localization capabilities. The
experiments were carried out using the NVIDIA GeForce
RTX 4090 GPU. The input images were resized to a res-
olution of 640x640 pixels to standardize the input data
format. We set the training with a batch size of 6 and the
model was trained for 350 epochs.

To assess the effectiveness and accuracy of the model,
we use a comprehensive set of evaluation metrics on the
test set, including precision, recall, AP50 and AP50-95.
These metrics help evaluate the model’s ability to accu-
rately detect and segment objects, providing a detailed
analysis of its performance for segmentation.

After segmentation with Yolov8-seg, for each object, we
get two key outputs: a bounding box and a segmentation
mask. The bounding box marks the position of the object
in the image with a rectangular box, which allows us to
quickly detect the presence and approximate position of the
object in the image. The segmentation mask provides more

Figure 5. Image examples under different illumina-
tion conditions and camera heights.

fine-grained output, including pixel-level categorization,
indicating which pixels in the bounding box belong to the
object and delimiting the object’s boundaries.

Table 3 presents the results of the Yolov8-seg on the test
set, indicating robust performance in the corner segmenta-
tion task. Furthermore, Figure 6 displays the segmentation
result for the corner model using Yolov8-seg, clearly show-
ing that precise and accurate segmentation was achieved.

Table 3. Experimental results of Yolov8-seg.
Evaluation metrics Box Mask

Precision 1 1
Recall 1 1
AP50 0.995 0.995

AP50-95 0.993 0.97

3.3 Measurement

After segmenting the surface of the corner model using
the Yolov8-seg, we fit a quadrilateral to the segmented sur-
face. The four vertices of the quadrilateral represent the
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Figure 6. The segmentation result for the corner
model using Yolov8-seg.

corners. By mapping these vertices to the corresponding
depth map, we can obtain their actual three-dimensional
coordinates. This enables us to measure the actual dis-
tances between the corners, thus determining the length
and width of the corner model. Figure 7 shows the es-
timated dimensions of the corner model, with the length
measured at 11.8 cm and the width at 7.5 cm. These es-
timations are compared to the actual dimensions, which
are 12 cm in length and 8 cm in width. The test set,
consisting of 204 images, was used to further validate the
measurement accuracy, with the results showing that the
measurement error is within 9 mm.

The measurement error can be attributed to several fac-
tors. One factor is the low resolution of the colour im-
ages, which limits the precision of segmentation and cor-
ner detection. Additionally, inaccuracies in the depth map,
caused by sensor noise or resolution limitations, contribute
significantly to errors in calculating the 3D coordinates of
the corners. Segmentation errors from the Yolov8-seg
model also play a role, as minor deviations in boundary
detection can lead to slight inaccuracies in identifying the
exact corner points.

3.4 Pose estimation

Once we have determined the exact coordinates and
relative distances of the four corner points, we establish
a coordinate system with the origin situated at the center
of the quadrilateral formed by these points, which are at
the upper left, upper right, lower left, and lower right,
respectively. Following the segmentation process, we also
acquire the 2D coordinates of these corner points within
the colour map. Consequently, we can utilize the PnP
algorithm to estimate the camera’s position relative to the
corner model surface. This is achieved by aligning the
coordinate system of the corner model with the camera’s
coordinate system, allowing for precise calculation of the

Figure 7. The measurement result for the corner
model.

camera’s orientation and position in relation to the corner
model surface.

Figure 8 illustrates the results of estimating the pose
using the PnP algorithm. The position of the camera rel-
ative to the surface of the corner model is described by a
translation vector that quantifies the displacement of the
camera to the model. The orientation of the camera rela-
tive to the surface of the angular model is represented by
a quaternion. Quaternions provide a compact representa-
tion of orientations and do not suffer from the gimbal-lock
problem that may result from orientation representations
such as Euler angles.

To address occlusion, we consider introducing addi-
tional positioning tags, such as the Apriltag marker. When
the corner features are not occluded, we simultaneously es-
timate the poses of both the Apriltag marker and the corner
model, and calculate the relative pose deviation between
them. When the corner model is occluded, we detect
the pose of the Apriltag marker and use the previously ob-
tained relative pose deviation between the Apriltag marker
and the corner model to estimate the pose of the occluded
corner model. Figure 9 shows pose estimation results in
two scenarios. The upper image shows pose estimation
when the corner features are not occluded, while the lower
image shows pose estimation of occluded corner features
using the Apriltag marker.

4 Conclusion

In conclusion, this study applied computer vision tech-
nology to MIC to enhance the efficiency, accuracy, and
safety of the construction process. Unlike traditional con-
struction methods, which rely heavily on manual labour
and are susceptible to human error, our vision-based ap-
proach facilitates automated segmentation, measurement,
and pose estimation. Specifically, we first use the Yolov8-
seg model to segment the corner surfaces of modules. The
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Figure 8. The pose estimation result for the corner
model using PnP algorithm.

Figure 9. Pose estimation with the visible corner
model (upper) and the occluded corner model using
the Apriltag marker (lower).

segmented surfaces are fitted with quadrilaterals to posi-
tion the four corners. By integrating the corresponding
depth map, we accurately determine their 3D coordinates.
Furthermore, using the 2D coordinates from the colour
map and the 3D coordinates with the quadrilateral’s cen-
ter as the origin, we utilize the PnP algorithm for precise
pose estimation. However, the 9mm measurement error
is relatively high compared to the required precision in
MIC. Future work will focus on algorithm optimization,

addressing depth map resolution and sensor noise, and ex-
tending testing to real-world construction environments to
evaluate performance under complex conditions.
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