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Abstract –  

The Dutch road construction industry is 

transitioning from hot mix asphalt (HMA) to more 

eco-friendly warm mix asphalt (WMA). While WMA 

offers clear environmental benefits, its distinct 

material properties, particularly the compactability, 

demand different construction practices. However, 

limited industry knowledge hinders WMA 

construction planning, driving the need for 

automated tools for more efficient WMA construction 

strategic planning. This research proposed a physics-

aware surrogate modelling framework to improve 

strategy evaluation and optimization, and enable the 

automative exploration of optimal construction 

strategies. A preliminary feasibility study 

demonstrated the possibility of developing a 

surrogate model using Random Forest to efficiently 

capture the temperature-dependent compactability of 

a WMA mixture. The industrial adoption and 

potential advancement of this tool, including the 

integration with other sensing technologies and 

automatic construction, to ensure high-quality 

pavement construction were also discussed. 
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1 Introduction 

In the Netherlands, in response to ever-growing 

environmental concerns about hot mix asphalt (HMA), 

the road construction industry is compelled to adopt more 

sustainable practices, e.g., exploring alternative materials. 

This created a strong ambition to transition from HMA to 

warm mix asphalt (WMA). For instance, the Dutch road 

construction industry is determined to complete this shift 

by January 2025. Compared to HMA, WMA is produced 

at lower temperatures (100–140 ℃) using synthetic or 

organic additives. It offers notable environmental 

benefits, including reduced emissions, lower fossil fuel 

consumption, and increased use of reclaimed asphalt 

pavement (RAP) without compromising mechanical 

performance [1]. Despite the change in the material, the 

contractors’ primary goal remains the same, i.e., ensuring 

the asphalt construction process quality to achieve the 

desirable product quality, such as optimal density. 

Specifically, the asphalt must be compacted within an 

ideal temperature window since compaction at high 

temperatures can cause permanent deformation and 

compaction at low temperatures can hinder the 

densification process. However, asphalt construction is 

widely recognised as a dynamic environment where 

uncertainties abound. These uncertainties, coupled with 

the time-sensitive nature of road construction, make 

achieving optimal compaction efficiency highly 

challenging. This often results in significant variability 

during construction, leading to substandard road quality.  

These challenges are not unique to HMA construction 

but are amplified in WMA due to the substantial 

difference in material characteristics (particularly the 

different compactability) and limited knowledge about its 

construction. This makes it more difficult to plan explicit 

operational strategies (e.g., required quantity of pavers 

and rollers, paving speed, compaction patterns and 

trajectories, etc. [2]). Addressing this issue is critical, as 

a key incentive for contractors to adopt WMA lies in 

building a solid knowledge base for a stable and 

sustainable construction process. This would help them 

meet quality requirements, avoid penalties under 

extended guarantee periods, and support the push for 

sustainable road construction. To stay competitive, 

contractors are motivated to adopt planning tools that can 

optimize WMA construction strategies by embedding a 

deeper understanding of WMA’s material behaviour into 

automation techniques, to enable efficient and reliable 

assessment and adjustments in the decision-making 

process of WMA construction strategies. 

On this premise, this paper presents a framework of a 

WMA construction planning tool that can provide 

contractors with an efficient and explicit assessment of 

pavement quality regarding different construction 

strategies, thus advancing automation in construction 

strategic planning. This study revolves around a central 

question of how a WMA construction planning tool can 

be developed with the embedment of WMA’s unique 

material features and its structural responses towards 

different construction strategies. A framework that 

applies physical modelling and physics-aware surrogate 

modelling was then proposed. Unlike conventional 
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models, it better captures WMA’s compaction behaviour 

for more precise decision-making. The results of a 

preliminary feasibility analysis are presented in this 

paper. 

The remainder of the paper is structured as follows. 

First, the research problem is investigated to derive the 

scope of this WMA construction planning tool. This is 

followed by a demonstration of the framework of 

developing such a planning tool, with a case study 

indicating the feasibility of the proposed framework. The 

paper ends with a conclusion. 

2 Problem Investigation 

Construction planning involves identifying explicit 

on-site activities and evaluating their implications [3]. 

Nonetheless, asphalt construction comprises a multitude 

of interconnected activities, resulting in considerable 

complexity for the effective planning of construction 

strategies.   

Previous studies explored the development of asphalt 

construction planning tools, with particular attention to 

using simulation techniques, as simulations effectively 

capture construction processes and test scenarios, 

enabling more efficient and informed decision-making 

[4,5]. For instance, Dalence et al. proposed a framework 

integrating temporal (e.g., equipment, speed, roller 

passes) and spatial (e.g., trajectory, asphalt cooling rate) 

characteristics, where data on key factors influencing 

asphalt compaction is collected to generate decision 

variables [4]. These variables are fed into simulation 

models, which provide outputs such as equipment 

behaviours and operational feedback, facilitating strategy 

assessment and improvement. 

Nevertheless, existing simulation-based asphalt 

construction planning tools predominantly rely on 

indirect assessment of the process quality (e.g., paver and 

roller output, compaction efficiency, and process 

consistency), where the actual structural response of 

asphalt mixture (which will be reflected in the pavement 

product quality, such as density) during the construction 

process are not explicitly considered. Although, 

intuitively, good construction process quality leads to 

good pavement product quality, not being able to 

precisely quantify the exact impact of construction 

strategies on the resultant structural responses of the 

pavement during the simulation can considerably affect 

the accuracy/reliability of simulation-based assessment 

of different construction strategies. 

Therefore, understanding the interplay between 

mechanical and thermal characteristics during asphalt 

compaction is vital for precise construction planning and 

decision-making. However, the current body of 

knowledge lacks a clear understanding of the quantifiable 

correlation between construction quality and pavement 

properties. In essence, this would make the planning of 

WMA construction performance-based, where the most 

suitable on-site operations will be selected based on the 

resultant pavement quality and performance in other 

indicators (e.g., cost and productivity). In other fields, the 

similarity can be found in strategic planning of earth 

moving activities. Traditional earthwork planning 

focused on minimizing material transport, relying 

heavily on workers' experience. However, construction 

automation has enhanced efficiency and productivity by 

reducing these constraints, by optimizing operations, 

particularly coordinating excavators and dump trucks to 

maximize efficiency [6,7]. 

To address this limitation, advanced physical 

modelling is needed to capture the structural and thermal 

behaviour of WMA during its interaction with equipment 

and the environment. Two widely applied approaches are 

Finite Element Method (FEM) [8] and Discrete Element 

Method (DEM) [9]. FEM can accurately model asphalt's 

structural response under dynamic loads but lacks 

granular-level accuracy. In contrast, DEM effectively 

simulates contacts within granular systems and micro-

mechanics. Nevertheless, DEM greatly increases the 

computational time. To address this, Komaragiri et al. 

[10], developed a simulation model using a physics 

engine (i.e., Bullet Physics [11]), which significantly 

improves computational efficiency without 

compromising performance. However, existing physics-

based simulation models calibrated for HMA are 

unsuitable for WMA due to differences in material 

characteristics. Thus, developing physics-based models 

tailored to WMA is crucial for capturing its unique 

behaviour during compaction. Additionally, the high 

computational cost of physics-based models limits their 

use in process simulation, where analysis of multiple 

simulation scenarios for optimised processes is always 

required. One potential solution is to use data-driven 

techniques, such as machine learning (ML), to quantify 

the correlation between asphalt construction process 

indicators and resultant product quality indicators. In the 

research of Shen [12], on-site data was collected, 

including real-time machinery movement and asphalt 

cooling patterns, to capture key asphalt construction 

process characteristics. The data was then paired with 

density measurements from pavement samples to 

develop a dataset for machine learning model training. 

However, this study also highlighted critical issues, such 

as limited and inconsistent data availability, ineffective 

data management practices, and variability in data 

collection methods, which greatly influenced the 

accuracy and generalizability of data-driven approaches. 

To tackle these difficulties, surrogate modelling 

offers a solution by approximating physics-based models 

with data-driven techniques, such as machine learning 

(ML), allowing for faster predictions without sacrificing 

accuracy [13]. By generating datasets from physics-
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based simulations under varying input conditions, ML-

based surrogate models can be developed to predict 

WMA’s structural responses efficiently, enabling the 

exploration of optimal construction strategies without 

excessive computational expense.  

3 Framework for Physics-aware WMA 

Construction Planning Tool 

3.1 The Scope of the WMA Construction 

Planning Tool 

To identify the scope of the WMA construction 

planning tool for this research context, a workshop was 

held with Dutch public clients and contractors in the 

asphalt construction sector. The workshop explored: (1) 

the impact of material transitions on WMA compaction, 

(2) factors influencing strategy formulation, and (3) the 

structure of the tool. The workshop identified the tool's 

primary functional requirement: to assess construction 

strategies accurately and to offer intuitive feedback on 

compaction quality (primarily density consistency) 

considering specific project characteristics.  

Specifically, the proposed planning tool should begin 

by extracting pre-construction information, such as 

design data, ambient conditions, and project constraints, 

to define the scope of construction strategy exploration. 

It must evaluate strategies by assessing the resultant 

pavement quality. This calls for the development and 

integration of physics-aware models to comprehensively 

explore the complex system's behaviour, characteristics, 

and dynamics in WMA construction. The tool’s output 

will focus on two aspects: resource allocation (e.g., 

equipment, materials, staffing, budgeting) and 

operational strategies (e.g., trajectory planning, 

sequencing, and equipment coordination), ensuring 

timely and cost-effective project execution. 

Therefore, the framework of the physics-aware WMA 

construction planning tool can be determined, as shown 

in Figure 1. The rest of this chapter will provide a detailed 

description of each component. 

  
Figure 1. The overview of the WMA construction 

planning tool 

3.2 Initialization 

The initialization of the planning tool gathers input 

parameters and decision variables. Input parameters, 

which reflect fixed project characteristics, include design 

and engineering details (e.g., road geometry, and asphalt 

mixture properties) and project-specific constraints (e.g., 

equipment configurations), as listed in Table 1. 

Identified decision variables, adjustable by decision-

makers, focus on resource allocation and operational 

strategies, with particular emphasis on the compaction 

strategy in asphalt construction planning, due to its vital 

role in meeting asphalt pavement's functional 

requirements. These decision variables allow the 

exploration of various WMA construction strategies, as 

demonstrated in Table 2. The compaction strategy 

involves defining each roller's trajectory, determined by 

the length and width of the compaction section, and the 

number of and distance between compaction lanes 

(Figure 2). Additionally, the mobility of rollers is also 

affected by the compaction patterns, which regulate the 

number of compaction corridors and other rules that each 

roller needs to follow during compaction, especially 

when multiple rollers are compacting simultaneously. 

These compaction patterns will be pre-defined by the 

decision-makers as the input to the planning tool.  

Table 1. Identified input parameters of the WMA 

construction planning tool framework 

Data category Data Unit 

Road geometry Road width m 

Asphalt 

 

Mixture design - 

Production temperature °C 

Initial density kg/m3 

Cooling rate °C/min 

Paver Screed width m 

Truck 
Truck capacity m3 

Dumping rate m3/min 

Roller 
Drum width m 
Wheel length m 

Compaction force kN 

 

Table 2. Identified decision variables of the WMA 

construction planning tool framework 

Data category Data Unit 

Resource 
allocation 

Paver quantity # 

Roller quantity # 

Truck quantity # 

Operational 

strategies 

Paver speed m/min 
Roller speed m/min 

Length of compaction section m 

Width of compaction section m 

Number of compaction lanes # 
Hauling duration hours 

Returning duration hours 

Compaction pattern - 
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Figure 1. Asphalt compaction strategy [2] 

3.3 Simulation 

The collected data from the previous layer will then 

be fed into a simulation model to assess the 

corresponding impact on the product quality. Specifically, 

the simulation model will be informed by the previous 

work of Dalence et al. [4], where an agent-based 

simulation (ABS) model was proposed to create a 

context-realistic simulation of the HMA construction 

process. It is worth noting that despite differences in 

material properties, WMA and HMA share similar 

construction logic and workflow, making the ABS 

simulation model's scope a valuable reference for the 

WMA. This simulation model aligns closely with the 

functional requirements of the planning tool and operates 

within the same contextual framework. Given its 

demonstrated applicability and relevance, re-developing 

a new simulation model is deemed unnecessary.  

 The simulation, using inputs from Tables 1 and 2, 

defines agents, interactions, and conditions. Figure 3 

shows key agents: trucks deliver asphalt, coordinating 

with the paver for continuous transfer. The paver 

operates at a set speed, signaling trucks as needed, while 

rollers compact within the optimal temperature window. 

Predefined compaction strategies are used to maintain 

continuity and efficiency. Furthermore, Asphalt cell 

agents will model asphalt’s structural and thermal 

behavior by dividing the asphalt layer into a grid (Figure 

4). Each cell cools at a set rate, while environmental 

conditions and contractor-provided road geometry (Table 

1) define the simulation space and agent interactions. 

 
Figure 4. The asphalt pavement cell grid [2] 

3.4 Modelling Physical Responses of WMA 

Next, the precise physical responses of WMA during 

the construction process will be obtained, following the 

workflow shown in Figure 5.  

Firstly, a generic physics-based model to accurately 

simulate the interaction between WMA and the 

compaction process will be developed. The quality of 

asphalt pavement is highly dependent on its bulk 

mechanical properties, which are determined by the 

contact state of the individual aggregates and the 

resulting skeleton structure formed between these 

particles [14]. During the construction process, the 

compaction force rearranges asphalt mixture aggregates, 

leading to the development of a denser skeleton structure. 

Meanwhile, due to the viscoelastic attributes of the 

asphalt binder, the mechanical properties of asphalt 

mixtures are also subject to change over different asphalt 

C1,iC1,2 C1,3 …C1,1 … … …

i

j

w

W

Figure 3. An overview of agents and their states [4] 
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temperatures. Therefore, this compaction model is 

expected to be able to capture the WMA’s behaviour at 

the microscopic scale with its granular structure and can 

be eventually upscaled to derive the macroscopic 

response of the entire road pavement during compaction. 

Overall, the modelling process scales from micro to 

macro levels. It begins with selecting a contact model to 

define microscopic interactions, followed by creating 

mesoscopic models based on WMA mixture designs, 

calibrated with lab tests at various temperatures. Finally, 

these models are upscaled to represent WMA pavement, 

with accuracy tested during field compaction. 

 
Figure 5. The overview of the WMA construction 

planning tool development framework 

3.5 Surrogate Modelling 

The physics-based compaction model will be 

replaced by a surrogate model to reduce computational 

costs in analyzing asphalt-compaction interactions.  To 

predict structural responses based on input data, 

including mixture design, temperature, thickness, density, 

and applied compaction force. 

The surrogate model development will be initiated 

with the data synthesis to generate a dataset, by 

performing simulations using the physics-based WMA 

compaction model under different compaction scenarios 

(considering different compaction forces from the roller 

drum and roller speed). In this step, a parametric model 

will be developed to streamline the data synthesis, and to 

rapidly construct different compaction scenarios 

covering the input. Next, based on the established dataset, 

ML models will be trained and tested, which will be used 

as the surrogate model to replace the original physics-

based compaction model once the former is validated.  

3.6 Integrating Surrogate Model into WMA 

Construction Process Simulation  

Lastly, the developed surrogate models for WMA-

roller and WMA-environment interactions will be 

integrated into the WMA construction process simulation 

model described in Chapter 3.3, to enable a more 

accurate evaluation of the resultant pavement product 

quality according to adopted construction strategies. The 

pavement’s mechanical properties can be updated after 

each roller pass, based on the information including the 

asphalt temperature and mechanical properties (e.g., 

density) before compaction, and received compaction 

energy from the roller.  

With the surrogate model, WMA construction 

simulation can enable automated planning using 

optimization algorithms like Particle Swarm 

Optimization (PSO) and Non-Dominated Sorting 

Genetic Algorithm II (NSGA-II) to generate, assess, and 

refine strategies for optimal density, productivity, and 

cost efficiency. 

A field test with contractors will validate the planning 

tool using pre-determined engineering details and 

weather conditions (Table 1). Optimal construction 

strategies will be generated where experts from 

contractors will decide the strategy they will adopt on-

site. Two test sections will be prepared: one following the 

selected optimal strategy and the other using 

conventional simulation-based planning tools that rely on 

indirect process quality assessment as a benchmark for 

quality and efficiency comparison. 

4 Preliminary Feasibility Analysis 

In this section, a preliminary feasibility study of 

developing such a planning tool for WMA construction 

following the framework proposed in Chapter 3 is 

conducted through a case study. It focuses on 

demonstrating the feasibility of developing a surrogate 

model, using the data generated from a physics-based 

simulation model (which simulates the WMA 

compaction process on the laboratory scale), to 

efficiently and accurately capture the temperature-

dependent compactability of the target WMA mixture, 

which is key to precisely map the impact of on-site 

construction strategies into the resultant pavement 

quality in the planning tool. Therefore, this preliminary 

feasibility study concentrates on validating the 

foundational aspects of the framework and setting stages 

for future development. 

Specifically, five gyratory compaction tests were 

performed on one type of WMA mixture at five different 

testing temperatures. Using the gyratory compaction 

process, the study evaluates the ability of the physics-

based model to replicate key structural and thermal 

responses during compaction. Additionally, it 

demonstrates the feasibility of calibrating the model 

using experimental data, ensuring its relevance for future 

applications. This controlled environment allows for 

precise analysis and eliminates external complexities, 

making it an ideal setting for validating the proposed 

framework's foundational components. 

4.1 Gyratory Compaction Test Scheme 

Gyratory compaction, a common lab method, 

simulates field compaction to produce asphalt specimens 

for mechanical testing. The stabilized mixture in a 

cylindrical mold undergoes constant vertical pressure 
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while rotating at a set speed and angle to apply shear 

forces. Table 3 details the test setup, where compaction 

stops after 60 gyrations.  

Table 3. Gyratory compaction test configurations 
Configuration Value 

The internal diameter of the mould 100 mm 

Minimum height of the compacted mixture 77 mm 
Compaction pressure 600 kPa 

Gyration angle 0.82° 

Gyration frequency 1/30 Hz 

Target number of gyrations 60 

The WMA mixture used in the tests was prepared 

using the design indicated in Table 4. Specifically, this 

WMA mixture uses a DAT-7 additive, a surface tension 

reducer, to decrease its production temperature. A total 

of 5 samples were made. Each sample had a different 

temperature for performing the compaction test, ranging 

from 120°C to 40°C with an interval of 20°C (120°C, 

100°C, 80°C, 60°C, 40°C).  

The testing output is the void ratio of the specimens. 

The output data was collected after each gyration, to 

represent the densification process.  

Table 4. Gradation of the WMA mixture 
Sieving size (mm) Mass percentage (%) 

16 - 11 23.09 

11 - 8 3.99 

8 - 4 27.33 

>2 34.04 
Filler 7.14 

Asphalt (PEN 40/60) 4.2 

Additive (DAT-7) 0.21 

4.2 Physics-based Gyratory Compaction 

Simulation 

Following the methodology of Komarairi et al. [10], 

the gyratory compaction process was simulated using 

Bullet Physics engine [11]. The engine can effectively 

detects collisions, calculates contact forces, and updates 

particle positions [10,11]. Unlike DEM, which simplifies 

aggregates as spheres, Bullet Physics models real 

aggregate shapes, improving accuracy while remaining 

computationally efficient. 

Based on the gradation in Table 4, a digital 

representation of the tested asphalt mixture was created 

using 10 3D aggregate models obtained via laser 

scanning (Figure 6). The number of aggregate particles 

was determined from the asphalt sample mass (1.4 kg) 

and aggregate density (2686 kg/m³). All particles were 

scaled to a unit size of 1 mm and adjusted according to 

gradation to closely match the actual specimen. For 

computational efficiency, fine aggregates (<2 mm), 

fillers, and binders were modelled as a mortar layer 

covering the coarse aggregates, whose thickness is 

calculated using Equation (1): 

𝑡 =
𝑉𝑚𝑜𝑡𝑎𝑟

∑ (𝑆𝐴)𝑖
𝑛
𝑖=1

 
(1) 

 

where 𝑡 stands for the thickness of the mortar layer, 

𝑉𝑚𝑜𝑟𝑡𝑎𝑟  refers to the total volume of the mortar, 𝑛 refers 

to the total number of coarse aggregates, and (𝑆𝐴)𝑖  refers 

to the surface area of each coarse aggregate.  

These mortar layers also provide viscoelastic contact 

forces, which are cohesive force in the normal direction 

between two contacted particles and viscous damping in 

the tangential direction. Equation (2) specifies the 

cohesive force: 

𝐹𝑐 = 𝑐𝛾√𝐴 (2) 

where 𝐹𝑐 is the cohesive force, 𝑐 is a proportionality 

constant, 𝛾 is the surface tension of the mortar layer, and 

𝐴  is the contact area between two colliding particles. 

Together, 𝑐𝛾 represents the linear stiffness between the 

two colliding aggregate particles, thus can be replaced by 

a new parameter 𝑘, referring to the contact stiffness. 

The viscous force will be simulated using linear and 

angular velocities [10], as specified in Equation (3) and 

(4) below: 

𝑣 = 𝑣0𝜂𝑙𝑖𝑛𝑒𝑎𝑟  (3) 

𝑤 = 𝑤0𝜂𝑎𝑛𝑔𝑢𝑙𝑎𝑟  (4) 

where 𝑣  and 𝑤  stand for the linear and angular 

velocities of the particle after contact, 𝑣0 and 𝑤0 are the 

linear and angular velocities of the particle before the 

contact, and 𝜂𝑙𝑖𝑛𝑒𝑎𝑟  and 𝜂𝑎𝑛𝑔𝑢𝑙𝑎𝑟  are linear and angular 

damping factors respectively. 

 
Figure 6. An example of the aggregates 

4.3  Calibration and Validation 

To test the capability of the physics-based gyratory 

compaction model in correctly simulating the 

temperature-dependant compactibility of the target 

WMA mixture, the compaction model was calibrated 

using laboratory testing data described in Chapter 4.1. 

The primary objective is to calibrate the models to 

determine the corresponding values of 𝑘 , 𝜂𝑙𝑖𝑛𝑒𝑎𝑟 , and 

𝜂𝑎𝑛𝑔𝑢𝑙𝑎𝑟  at various temperatures. Furthermore, this study 

assumes that these calibrated parameters will form three 

temperature-dependent functions for the target WMA 

mixture through curve fitting. These functions provide a 

continuous representation of the temperature dependency 

of each parameter, enabling the derivation of parameter 

values at any given temperature without the need for 

additional laboratory tests. Specifically, to validate this 

assumption, tests conducted at 120°C, 100°C, 60°C, and 

40°C were used to calibrate the models to derive 

corresponding values of 𝑘, 𝜂𝑙𝑖𝑛𝑒𝑎𝑟 , and 𝜂𝑎𝑛𝑔𝑢𝑙𝑎𝑟  and to 

form the temperature-dependency functions for these 

parameters. These functions were then used to predict 
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values at 80°C, where simulation outputs (i.e., the 

densification curve) were validated against laboratory 

data.  

Conventional calibration of physics-based 

simulations requires iterative parameter adjustments and 

repetitive fine-tunings, making it highly time-consuming 

and computationally expensive. To streamline 

calibration, the surrogate modelling technique was also 

applied, where an ML model was developed to replace 

the physics-based gyratory compaction model. A dataset 

of 96 instances with varying contact parameters was 

generated using a full factorial design (Table 5) and 

simulated to pair input parameters with densification 

curve outputs. The densification curves were transformed 

into logarithmic slopes and intercepts, forming inputs for 

two Random Forest (RF) models: RF-A for slopes and 

RF-B for intercepts. After training on 80% of the data 

and testing on the remaining 20%, RF-A achieved an R2 

of 0.9667 and RF-B an R2 of 0.9871. As for the 

computational time, using ML-based surrogate models to 

obtain the densification curve costs 0.003228 seconds, 

while running each physics-based simulation costs 

around 7 hours (25200 seconds). 

Table 5. Levels of parameters in data generation 
Parameter Levels 

Stiffness 
1, 100, 1000, 10000, 100000, 

1000000 

Linear damping factor 0.01, 0.1, 0.5, 0.99 

Angular damping factor 0.01, 0.1, 0.5, 0.99 

These models facilitated calibration by solving an 

optimization problem to maximize the R2 between 

reconstructed and actual densification curves, as defined 

by Equation (5): 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅2 = 1 −
∑(𝑦𝑖 − �̂�𝑖)

2

∑(𝑦𝑖 − �̅�)2
 

(5) 

where 𝑦𝑖  is the 𝑖th element from the actual curve, �̂�𝑖 

is the 𝑖th element from the reconstructed curve, and �̅� is 

the mean of the actual curve. 

RF-A and RF-B were used to predict the values of 

slope and intercept to reconstruct the (logarithmic) 

densification curve �̂�, as shown in Equation (6). 

�̂� = 𝑎 + 𝑏ln (𝑥) (6) 

where:  
𝑎 = 𝑓𝑅𝐹−𝐴(𝑘, 𝜂𝑙𝑖𝑛𝑒𝑎𝑟, 𝜂𝑎𝑛𝑔𝑢𝑙𝑎𝑟)  
𝑏 = 𝑓𝑅𝐹−𝐵(𝑘, 𝜂𝑙𝑖𝑛𝑒𝑎𝑟, 𝜂𝑎𝑛𝑔𝑢𝑙𝑎𝑟)  
𝑘 ≤ 1000000  
𝜂𝑙𝑖𝑛𝑒𝑎𝑟 ≤ 1  
𝜂𝑎𝑛𝑔𝑢𝑙𝑎𝑟 ≤ 1  
𝑘, 𝜂𝑙𝑖𝑛𝑒𝑎𝑟, 𝜂𝑎𝑛𝑔𝑢𝑙𝑎𝑟 ∈ 𝑍+  

Specifically, a and b are the predictions from RF-A 

and RF-B respectively based on the set of input 

parameters 𝑘, 𝜂𝑙𝑖𝑛𝑒𝑎𝑟 , 𝜂𝑎𝑛𝑔𝑢𝑙𝑎𝑟 , and the three input 

parameters are all positive integers, whose ranges are 

pre-defined.  

This optimization problem was solved by the Genetic 

Algorithm (GA), to automatically generate, evaluate, 

evolve, and select optimal sets of input parameters that 

can fit the actual densifications the best. Each iteration 

will start with 100 population, where the offsprings will 

be created with a crossover rate of 0.8 and a mutation rate 

of 0.2. The GA process will stop after 100 iterations. 

Based on the input parameters determined through 

calibration, three exponential decay functions were 

determined accordingly, as shown in Figure 7.  

 
Figure 7. Temperature-dependant decay functions 

through curve fitting 

Values of parameters at 80°C were then determined, 

resulting in a promising accuracy, with an R2 score of 

0.88 by comparing the obtained densification curve using 

RF models with the actual laboratory data at this 

temperature, as shown in Table 6 and Figure 8. 

Table 6. Results of the validation 
Temperature 

(°C) 

Stiffness 

(N/mm) 

Linear 

Damping 

Angular 

Damping 

R2 

80 5077.99 0.32 0.24 0.88 

 

Figure 8. Plots of the validation at 80°C  

5 Conclusion 

This study proposed a framework for WMA 

construction planning that incorporates precise physical 

responses of asphalt, integrating project-specific data 
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with physics-aware models and simulations. Furthermore, 

a case study demonstrated the feasibility of developing 

and calibrating a physics-based simulation model for 

WMA compaction at the laboratory scale. The model 

effectively replicated key structural and thermal 

responses during compaction, capturing granular 

interactions and material behaviour of the WMA mixture. 

Calibration using experimental data enabled the 

derivation of decay functions for contact parameters, 

which were used to interpolate values across different 

temperatures. This approach not only ensured a focused 

validation of the framework but also revealed the model's 

capability to capture the nuanced relationships between 

temperature, contact parameters, and compaction 

dynamics. These findings affirm the foundational 

premise of the framework, providing a strong basis for 

extending its application to larger-scale scenarios. 

However, to validate the surrogate model demonstrated 

in Chapter 4, only very limited laboratory data was used 

for the calibration and validation, where it will be more 

beneficial to include more data and more mixture types 

to enhance its generalizability. 

Additionally, while the integration of a surrogate 

model is part of the broader research plan, its validation 

is beyond the scope of this preliminary study and will be 

pursued in future work. Although real-world adoption of 

the tool remains challenging due to construction 

uncertainties and contractor risk aversion, the planning 

tool can still provide contractors with valuable early-

stage planning insights, where the on-site uncertainty can 

be further overcome by integrating the planning tool with 

real-time construction data (e.g., pavement temperature, 

weather conditions, machinery location, etc.), enabling 

automated adjustments to compaction strategies based on 

sensor feedback. Ultimately, this would support full 

automation in WMA construction, enhancing efficiency, 

consistency, and sustainability in road projects. 
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