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Abstract  

 

Freeway work zones with lane closures can cause 

traffic disruption and congestion with increased 

travel time, safety risks, and emissions. Variable 

speed limit (VSL) control has been widely studied to 

mitigate the negative impacts of work zone lane 

closures. To ensure effective VSL control, accurate 

detection of traffic conditions is important. However, 

stationary sensors from distant upstream or merging 

areas of a work zone can only provide location-based 

detections, which may not be sufficient for effective 

VSL control. Therefore, this study proposes a VSL 

control system for a smart work zone with a weighted 

traffic density estimation algorithm using data from 

stationary sensors and connected vehicles (CV). With 

location-based traffic detections from distant 

upstream and merging areas of a smart work zone, 

data from CVs in locations between the stationary 

sensors are used to obtain the weighted density. This 

weighted density is then fed to a feedback VSL 

controller, which can dynamically define the 

appropriate speed limits to reduce the negative 

impacts of the work zone closures. The proposed VSL 

controller was implemented and evaluated under a 

calibrated freeway work zone environment using the 

traffic simulator SUMO. The results show that the 

system can provide accurate traffic density estimation 

and effectively improve traffic mobility, safety, and 

environmental sustainability near the work zone area. 
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1 Introduction 

Freeway work zones play an important role in 

maintaining and upgrading freeways. However, closing 

one or more lanes in a work zone area can cause 

bottlenecks and traffic disruption near work zone areas. 

This disruption can easily lead to congestion, increased 

travel time, safety risks to motorists and work zone 

workers, emissions, and fuel consumption. Therefore, 

developing an effective strategy and mitigating the 

negative impacts of work zones is essential. 

Variable Speed Limit (VSL) control is one of the 

Intelligent Transportation Systems that has been studied 

to improve traffic conditions near work zone areas. By 

generating dynamic speed limits, VSL control can 

regulate the travel speeds of vehicles approaching a work 

zone to alleviate the impacts of capacity loss due to lane 

closures. Different VSL controllers have been developed 

using control strategies such as rule-based [1], feedback-

based [2], and reinforcement learning [3] approaches. 

These VSL controllers rely on accurate traffic condition 

detections to ensure the control effectiveness. 

Stationary sensors can detect traffic conditions at 

fixed locations. Many VSL controllers have used traffic 

measurements by fixed sensors near work zone areas to 

achieve control objectives [4][5]. In practice, fixed 

sensors may be present at distant locations upstream of a 

work zone and may not provide accurate traffic 

measurements in work zone areas. However, sensors at a 

smart work zone's merging area can detect traffic 

conditions immediately upstream of a work zone. The 

density variations between locations of distant upstream 

and merging areas of a work zone can hardly be estimated 

using stationary sensors unless dense stationary sensors 

are installed, which is cost-prohibitive. 

Connected vehicles (CVs) can provide real-time 

traffic state observations along their travel path. When a 

CV travels through work zone areas, the vehicle can 

become a probe sensor, sending the location and travel 

speed to fill the gap between the stationary sensors. Many 

approaches have used massive data from connected 

vehicles to estimate traffic states [6] [7]. However, work 

zones particularly short-term work zones exist for a 

limited period of time, which makes it challenging to 

collect a large amount of historical CV data for traffic 

state estimation.  

This paper proposes a VSL control system with a 

weighted traffic density estimation algorithm for a smart 

work zone using stationary sensors and CV data. CV data 

is used to bridge the gap that exists between the data from 
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sensors located at distant upstream and the ones in 

merging areas of a smart work zone.  

The rest of this paper is organized as follows: studies 

on VSL control and density estimation are reviewed first. 

Then, the development of the weighted density approach 

and VSL controller are discussed in the Methodology 

section. Later, the system evaluation and results are 

discussed. Finally, the conclusion and future work are 

presented in the conclusion section. 

2 Background and Literature Review 

A hypothetical freeway smart work zone scenario in 

which one lane is closed is shown in Figure 1. Due to the 

capacity loss, traffic congestion occurs at the merging 

area of the work zone with a queue propagating upstream. 

The work zone is a smart zone with two sets of stationary 

sensors.  Traffic Sensor (TS) 1 is a stationary sensor that 

is present upstream of the work zone, and TS 2 is the 

smart work zone stationary sensor at the merging area of 

the work zone. CVs capable of transmitting speed and 

location, along with conventional vehicles with no 

connectivity travel through the work zone area from free 

flow to congested and then recover to free flow once they 

pass the bottleneck area.  

 

Figure 1. Layout of a Hypothetical Freeway Work 

Zone with Stationary Sensors and CVs 

 

The traffic queue forms first at the merging area and 

then propagates upstream. Since it takes time for the 

queue to reach the location of TS 1, the traffic states 

detected by TS 2 could be heavily congested, while the 

traffic states from TS 1 could be free flow. The 

discrepancies in traffic detections from stationary sensors 

due to different sensor locations could impact the 

effectiveness of VSL Control. 

VSL control has been studied to mitigate congestion 

near bottleneck areas with lane closures. The control 

strategies can be broadly categorized into rule-based [1], 

feedback-based [2], and reinforcement learning-based [3]  

controllers. Rule-based VSL controllers, such as the 

fuzzy-logic controller [8], post speed limits using pre-

defined rules and thresholds of traffic flow, density, and 

speed. The control objective, such as the critical traffic 

density [2], is used by feedback-based VSL controllers to 

obtain speed limits. Reinforcement learn-based VSL 

controllers leverage learning algorithms and traffic 

measurements to train a model and generate dynamic 

speed limits to reduce travel time [3]. All these VSL 

controllers require accurate traffic state measurements. 

However, the types of traffic sensors, e.g. stationary 

sensors and probe vehicles, and the locations of sensors 

are commonly not investigated in such studies. The 

sensor factors could impact the accuracy of traffic state 

estimation near work zone areas and, consequently, the 

effectiveness of VSL control.  

Dense stationary sensor installation could 

approximate the continuous measurements in space to 

provide higher accuracy in traffic state estimation. 

However, the high installation and maintenance costs are 

prohibitive for smart work zone systems. Instead of dense 

sensor installation, mathematical models, such as 

observers, are developed to provide traffic estimations 

using nearby sensors when sensor detections are missing 

[9][10]. For such models, the traffic fundamental 

diagram is calibrated to minimize the discrepancies 

between model-generated and real sensor data so that 

model-generated traffic state estimations can be used by 

applications such as VSL control [11]. However, traffic 

congestion can easily occur near work zone areas due to 

capacity loss, which leads to frequent traffic state 

transitions from free flow to congestion when a queue 

starts forming or from congestion to free flow when a 

queue starts resolving. This traffic state transition would 

make it difficult for mathematical approaches to estimate 

traffic state accurately between the locations of stationary 

sensors. 
CVs travelling through work zone areas can be 

considered as probe sensors to estimate traffic transition 

between the locations of stationary sensors. Relying on 

the conservation law of traffic flow, the traffic state is 

estimated using the spacing and speed of CVs [12]. A 

deep convolutional neural network approach is studied to 

estimate traffic speed and congestion qualitatively and 

quantitatively using a large amount of historical probe 

vehicle data from different congestion scenarios [13]. [7] 

proposes a macroscopic model to estimate the traffic 

states of that segment based on the CV market 

penetration rate. These approaches use probe vehicles 

with either advanced onboard sensors like radar to track 

the headway between vehicles or a large amount of 

historical CV data to estimate traffic states. However, 

advanced onboard sensors may not be always available 

on CVs and lack of a large amount of historical CV data 

could occur due to the limited time periods of works 

zones, which would make it challenging to apply these 

probe sensors approaches and accurately estimate traffic 

states near work zone areas.  

In this study, a VSL control system with a weighted 

density estimation algorithm was developed. 

Considering stationary sensors and CVs, weighted 

density is calculated and fed into a VSL controller. 

Emergency 
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Specifically, sensors from distant upstream and merging 

areas of a smart work zone are used to obtain location-

based traffic densities. Then, the weight of two location-

based densities is derived using CV vehicles between the 

two sensor locations based on kinematic wave theory. 

The system proposed in this study mainly offers the 

following contributions: 

• It investigates whether sensor locations have any 

impacts on VSL control. The effectiveness of VSL 

control is evaluated using fixed sensors at distant 

upstream and merging areas of a work zone. 

• It provides weighted traffic density estimations for 

VSL control. The weight is calculated using CVs 

based on kinematic wave theory. 

• It produces good VSL control performance, despite 

the impacts of stationary sensors locations at distant 

upstream and merging areas of a work zone. The 

system evaluation shows consistent improvement in 

mobility, safety, and sustainability. 

3 Methodology 

The effectiveness of VSL control relies on the 

accuracy of traffic state estimation using traffic sensors 

near work zone areas. A VSL control system with a 

weighted density algorithm is illustrated in Figure 2. The 

weighted traffic density is obtained using stationary 

sensors and CVs to approximate traffic density at a work 

zone area. By using this weighted density, a VSL 

controller is designed to regulate traffic speeds. The 

framework of the proposed system is discussed, followed 

by traffic density estimation and VSL control in the 

subsequent subsections.  

 

Figure 2. VSL Control System Framework 

A feedback-based VSL controller is developed with 

critical traffic density as the control objective. The VSL 

controller processes the critical density and weighted 

density error to calculate speed limit. These speed limits 

regulate vehicle travel speeds and influence traffic 

conditions in the vicinity of the work zone area. This 

study assumes a regulatory VSL system with the full 

driver compliance.  

The weighted density component of the framework 

effectively approximates the traffic density within the 

work zone area. The baseline traffic density is detected 

from sensors at the distant upstream and the merging area 

and then is adjusted by weights that are calculated using 

the speed and location of CVs.  The weighted density is 

obtained by applying the weight to traffic density from 

stationary sensors.  

Comparing the error between the critical density and 

weighted density, VSL control will generate dynamic 

speed limits to minimize the error. This proactive 

approach ensures that the traffic flow can sustain the 

maximum work zone capacity, thereby enhancing traffic 

conditions without inducing a capacity drop [14]. The 

capacity drop phenomenon occurs when a queue forms at 

the bottleneck area leading to increased capacity loss [15]. 

Details of the estimation of the weighted traffic density 

and VSL controller are presented in the subsequent 

sections. 

3.1 Traffic Density Estimation 

Traffic sensors at a work zone's distant upstream and 

merging area can detect location-based traffic density. 

However, the two sensor locations may have a density 

discrepancy, as illustrated in Figure 1. A weighted 

density is calculated using CVs based on kinematic wave 

theory to address this discrepancy.  

The traffic state transition is shown in the triangular 

fundamental diagram in Figure 3.  

 

Figure 3. Traffic States from Fundamental 

Diagram 

The triangular fundamental diagram has the free flow 

branch with densities smaller than the density 𝜌𝑟 and the 

congested branch with densities larger than the density 

𝜌𝑟 .States a, d, and c lie on the free flow branch while 

States b and 𝑏′  lie on the congested branch.  State a 

represents high traffic demand, which is higher than the 

work zone capacity 𝑏′ at the congested status. Because 

the demand is higher than the road capacity, congestion 

occurs at the merging area and leads to the capacity drop 

phenomenon. Traffic flow further drops to State b. State 

c represents low traffic demand, lower than the work 

zone capacity so that the queue forms due to congestion 

can be resolved. State d represents the same work zone 
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capacity at the free flow status. 𝑣𝑏 and 𝑣𝑓 represent travel 

speeds at the State b and a respectively. State d and c 

share the same free-flow speed 𝑣𝑓 with State a. Traffic 

density 𝜌𝑎 under free flow status and 𝜌𝑏 under congested 

status for State a and b are also illustrated in Figure 3. 

The VSL control objective is to maintain traffic flow at 

the work zone capacity State d without a capacity drop. 

The work zone critical density 𝜌𝑐𝑟  as the VSL control 

goal corresponding to State d is shown in the figure as 

well, which will be discussed in detail under the VSL 

Control section below. 

Figure 4 illustrates the traffic state transition from the 

space-time diagram under the kinematic wave. The 

bottleneck location is bold in blue. Two traffic sensors, 

as shown as grey blocks in Figure 4, are located in two 

areas, one close to the bottleneck at the merging area and 

the other at the distant upstream of the bottleneck. When 

the high traffic demand reaches the bottleneck, a queue 

forms at the bottleneck area and transfers the traffic state 

from a to b. This queue propagates upstream at the 

shockwave speed 𝜔𝑎𝑏 . When the low traffic demand c 

appears and meets at the queue, this queue starts 

resolving and propagating downstream towards the work 

zone at shock wave speed 𝜔𝑐𝑏 . Once the queue is 

resolved, the traffic state c will prevail along the work 

zone area. 

 

Figure 4. Traffic States from Space-time Diagram 

From Figure 4, traffic states at two traffic sensors are 

different until the queue propagates upstream and reaches 

the distance upstream of the work zone. Consequently, 

the traffic densities 𝜌𝑚𝑎(𝑘)  and 𝜌𝑚𝑏(𝑘)  from 

measurements of sensors located distant upstream and 

merging area of the work zone respectively, likely face 

discrepancies before the queue reaches the sensor 

location distant stream. Therefore, a weighted density 𝜌𝑤 

is calculated using Equation (1) below.   

 

𝜌𝑤(𝑘) = (1 −  𝛼(𝑘))𝜌𝑚𝑎(𝑘) + 𝛼(𝑘)𝜌𝑚𝑏(𝑘) (1) 

 

The discrete time step is represented by k. The weight 

𝛼(𝑘)  is applied to traffic density 𝜌𝑚𝑎(𝑘)  and 𝜌𝑚𝑏(𝑘) 

detected by traffic sensors at time step k to calculate the 

weighted density 𝜌𝑤(𝑘).  

To obtain the weight 𝛼(𝑘), the speed and location 

transmitted by CVs are utilized. In Figure 4, at time step 

k, the length of the queue from the bottleneck is 𝑙1 and 

the total distance between two traffic sensors is 𝑙2 . 

Because of the queue propagating upstream, at the 

congested area within the queue 𝑙1, vehicles travel at the 

speed 𝑣𝑏  while vehicles outside the queue but between 

two traffic sensors 𝑙2  travel at the speed 𝑣𝑓 . Therefore, 

the ratio of 𝑙1 and 𝑙2 is used to calculate the weight as 

 

𝛼(𝑘) = 0.5 + 0.5 𝑙1(𝑘)/𝑙2(𝑘) (2) 

 

From Equation (2), the weight 𝛼(𝑘) equals 0.5 when 

the queue length is 0, meaning the same weight is applied 

to traffic densities detected by sensors at distant upstream 

and merging areas of a work zone when there is no queue 

or congestion. Only traffic density from the merging area 

is used when the queue reaches the sensor located distant 

upstream. Therefore, more weights are assigned to the 

sensor at the merging area when the queue becomes 

longer.  

To determine the location of a queue 𝑙1(𝑘), the speed 

and location of CVs are used. We assume the speed of 

CVs is similar to conventional vehicles, as studied in [7]. 

Then the length 𝑙1(𝑘) can be approximated in Equation 

(3) as the distance between a CV, which is at the furthest 

upstream of the bottleneck travelling below a speed 

threshold 𝑣𝑡𝑟  , and the location of the bottleneck. 𝑙𝑖,𝐶𝑉  

represents the distance between a CV and the bottleneck. 

This CV satisfies the requirement in Equation (4) where 

the CV 𝑙𝑖,𝐶𝑉(𝑘) is not larger than 𝑙2 and speed 𝑣𝑖,𝐶𝑉(𝑘) is 

not higher than 𝑣𝑡𝑟 . 

 

{

𝑙1(𝑘) = max (𝑙𝑖,𝐶𝑉)

𝑙𝑖,𝐶𝑉(𝑘) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎 𝐶𝑉 𝑎𝑛𝑑 

𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘

 (3) 

 

{
𝑙𝑖,𝐶𝑉(𝑘)  ≤  𝑙2

𝑣𝑖,𝐶𝑉  ≤  𝑣𝑡𝑟
 (4) 

 

The speed threshold 𝑣𝑡𝑟  is obtained using Equation 

(5). 

𝑣𝑡𝑟 =
𝑣𝑓 + 𝑣𝑏

2
 (5) 

 

The free flow speed 𝑣𝑓  and speed 𝑣𝑏 at state b can be 

obtained from the fundamental diagram in Figure 3. It 

should be noted that there may be cases where no CVs 

travel below the speed threshold 𝑣𝑡𝑟  or no CVs are 

available between the two traffic sensors located at 

distant upstream and merging areas due to a low market 

penetration rate. In those cases, the same weights are 
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assigned to traffic densities detected by the two stationary 

sensors at different locations. 

3.2 Variable Speed Limit Control 

3.2.1 Controller 

A feedback VSL controller [16] can generate 

dynamic speed limits by controlling traffic density at a 

work zone area towards the control objective, which is 

the critical density 𝜌𝑐𝑟 as shown in Figure 3. When the 

traffic state can be maintained at State d in Figure 3, the 

flow rate can be preserved at the maximum work zone 

capacity without causing a capacity drop.  

The VSLs can be calculated using Equations (6) and 

(7) below. 

 

𝛽(𝑘) = 𝛽(𝑘 − 1) + 𝐾(𝜌𝑐𝑟 − 𝜌𝑤(𝑘)) (6) 

 

𝑣𝑣𝑠𝑙(𝑘) = 𝛽(𝑘)𝑣𝑣𝑠𝑙(𝑘 − 1) (7) 

 

The factor 𝛽(𝑘) is calculated using the factor 𝛽(𝑘 −
1)  from the last time step and the error between the 

weighted density 𝜌𝑤(𝑘) and the critical density 𝜌𝑐𝑟. The 

parameter K is the gain applied to the density error. By 

applying the factor 𝛽(𝑘) to the speed limit 𝑣𝑣𝑠𝑙(𝑘 − 1) 

from the last time step, the current speed limit is obtained. 

The setup of this feedback VSL control system 

consists of a VSL control zone, acceleration zone and 

work zone. VSLs are posted at the VSL control zone to 

regulate traffic speed while vehicles passing the VSL 

control zone into the acceleration zone can accelerate to 

free flow speed before entering the work zone. Readers 

can refer to [13] for more details of this VSL control zone 

and accelerate zone setup. 

3.2.2 Speed Limit Constraints  

Constraints are considered when VSLs are applied in 

practice. The following constraints are included in the 

VSL control system: 

• Speed limits are within the range of the minimum 

𝑣𝑚𝑖𝑛  and the maximum 𝑣𝑚𝑎𝑥 Speed limit. 

• Speed limits are discrete values rounded to the close 

integer speed limits at the incremental speed ∆𝑣. 

• Speed limits between two consecutive time steps 

are within the maximum incremental speed. ∆𝑣𝑚𝑎𝑥 . 

• Speed limits control time interval is ∆𝑡, so frequent 

speed limit changes can be avoided. 

4 Experiment and Results 

4.1 Experimental Setup 

The proposed system was evaluated using a calibrated 

freeway work zone segment on SR99 northbound in 

California. The freeway segment has a maximum speed 

limit of 105 km/h (65 mi/h). A work zone with a closure 

of one of the three lanes was observed starting from State 

Postmile (PM) 19.7 on May 3, 2018, as shown in green 

in Figure 5. Traffic congestion occurred in the presence 

of the work zone. A 2.2 km freeway segment upstream of 

the work zone and a 650 m two-lane work zone was built 

in the simulation environment under the traffic simulator 

SUMO. The traffic network was calibrated using travel 

speed and flow from loop detectors in California Freeway 

Database at work zone areas under the static speed limit 

[17].    

Two loop detectors were added in the simulated 

freeway segment to study the impacts of stationary 

sensors and CVs. One set is located 500 m upstream of 

the work zone [18] and acts as the stationary sensor at a 

distant upstream of the work zone. The other set was 

added 50 m upstream of the work zone and acted as the 

stationary sensor at the merging area. Both loop detectors 

can detect traffic density at respective locations every 15 

s. The market penetration rate of CVs was set as 10% to 

transmit speeds and locations as probe sensors. The 

length of the VSL control zone and acceleration zone 

were set as 850 m and 550 m, respectively. The lengths 

of the VSL control zone and acceleration zone could 

range from 500 m to 1 km, as studied in [14]. Further 

studies on more selections of sensor locations near work 

zones could be assessed in future work. 

 

Figure 5. Freeway Work Zone on SR99 

Northbound in California 

The fundamental diagram was calibrated with free 

flow speed 𝑣𝑓 , critical density 𝜌𝑐𝑟 , the threshold speed 

𝑣𝑡𝑟,  as 105 km/h (65 mi/h), 50 veh/km, and 65 km/h. The 

gain K was selected as 0.01 via extensive tests. The 

maximum speed limit 𝑣𝑚𝑎𝑥 , minimum speed limit 𝑣𝑚𝑖𝑛 , 

incremental speed ∆𝑣 , and the maximum incremental 

speed ∆𝑣𝑚𝑎𝑥  and control time interval ∆𝑡 were selected 

as 105 km/h (65 mi/h), 24 km/h (15 m/h), 8 km/h (5 mi/h), 

8 km/h (5 mi/h) and 60 s.  

4.2 Results Analysis 

To demonstrate the effectiveness of the proposed 
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VSL control system, four scenarios are considered in the 

simulation: 1) no VSL control, in which the traffic 

conditions were collected as the baseline; 2) VSL control 

with only the stationary sensor at distant upstream of the 

work zone; 3) VSL control with only stationary sensors 

at the merging area of the work zone and 4) VSL control 

with stationary sensors at distant upstream and merging 

area of the work zone and CVs. The calibrated freeway 

work zone segment was first built using the traffic 

simulator SUMO. An interface TraCI was used to 

communicate with SUMO to retrieve simulated vehicle 

and network data and update speed limits [19]. Traffic 

demand for the simulation was generated as follows. The 

simulation was run for 600 s as the warm-up period. 

Simulation data from this warm-up period was discarded. 

Then, the simulation was run for 5400 s. The low traffic 

demand of 3000 veh/h was generated for the first 1200 s, 

and gradually increased to 3700 veh/h at 1800 s and 

maintained at this high demand for 1500 s. Following the 

high demand, traffic demand gradually reduced to 2500 

veh/h at 3900 s and dropped to 2000 veh/h until the end 

of the simulation. 

The traffic density within the acceleration zone 

upstream of the work zone under the four scenarios can 

be found in Figure 6.  

The black dash line refers to the traffic density 

collected using the traffic simulator, which is used as the 

density reference. The detected density refers to the 

density outputs from the stationary sensors while the 

weighted density is derived from outputs of stationary 

sensors using Equation (1).  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Traffic Density Comparison under (a) no 

control (b) VSL control with stationary sensors at 

distant upstream (c) VSL control with stationary 

sensors at merging area (d) VSL control with both 

stationary sensors and CVs 

 

Figure 6 shows that the density under no control 

increases to around 150 veh/km when traffic demand is 

high and reduces to around 20 veh/km when the low 

traffic demand appears at the end of the simulation. 

Despite VSL control being in effect under scenarios 

(b) and (c), traffic density has reached above the critical 

density and caused some control failure when traffic 

demand is high. This control failure is mainly due to 

impacts of sensor locations. Under scenario (b), because 

stationary sensors are located at distant upstream of the 

work zone, sensors cannot detect congestion in a timely 

manner before 1800 s when a queue has already formed 

at the work zone at around 1500 s. This congestion 

detection delay causes a delay for VSL control, and 

consequently, the queue is not effectively resolved. 

Under scenario (c), although traffic congestion is 

detected once the queue forms at the work zone area, it 

overestimates traffic density between 1500 s and 2200 s, 

which shows that the detected density is significantly 

higher than the density reference. This overestimation 

restricts traffic heavily and causes more traffic to enter 

the work zone, and congestion cannot be effectively 

resolved.  Under scenario (d), the weighted density can 
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provide relatively more accurate density estimation for 

VSL control. Accordingly, VSL control is more effective 

under scenario (d) with density remains around the 

critical density. 

The density estimation error analysis of scenarios (b), 

(c), and (d) can also be found in Table 1. RMSE of Traffic 

Density. The results show that scenario (d) has the lowest 

RMSE (root mean square error) of density. 

Table 1. RMSE of Traffic Density 

Scenario  Density (veh/km) 

(b) 23.1 

(c) 15.0 

(d) 8.2 

The speed profile upstream of the work zone, the 

work zone, and downstream of the work zone under all 

four scenarios can be found in Figure 7. The time-space 

diagram of Figure 7 is color-coded by travel speeds. The 

speed color-coded bars on the right of the sub-figures use 

different colors representing different travel speeds from 

0 (dark red) to 110 km/h (dark blue). Different vehicle 

travel speeds are shown on the time-space diagram of 

Figure 7. Traffic congestion occurs under no control 

scenario and the queue propagates towards upstream first. 

Then, when the traffic demand reduces, the queue 

propagates downstream until it is fully resolved. Under 

scenario (b), the queue forms only at the beginning of the 

congestion around 1800 s due to the delay of traffic 

density, while under scenario (c), the queue forms when 

higher traffic demand reaches the work zone due to 

traffic density overestimation. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Speed Profile under (a) no control (b) 

VSL control with stationary sensors at distant 

upstream (c) VSL control with stationary sensors 

at merging area (d) VSL control with both 

stationary sensors and CVs 

Scenario (d) shows limited congestion occurs in the work 

zone area, and vehicles can remain at high travel speed 

once passing the control zone. 

The performance of the VSL control system in terms 

of travel time, NOx, CO2 emissions, fuel consumption 

and time-to-collision risks is also assessed for the four 

scenarios as shown in Table 2.The travel time, NOx, CO2 

emissions, and fuel consumption were obtained using the 

built-in libraries with default models [19]. The time-to-

collision risks were calculated using the minimum 1.5 s 

as the safe distance [13]. 

Table 2. VSL Control Performance 

Scenario 

Travel 

Time 

(min) 

NOx 

(kg) 

CO2 

(t) 

Fuel 

(l) 

Time-to-

Collision 

(%) 

(a) 3.0 1.0 2.6 882.8 11.5 

(b) 2.7 0.9 2.4 775.8 2.5 

(c) 3.2 1.0 2.6 821.1 2.5 

(d) 2.6 0.9 2.4 767.6 0.7 

 

Scenario (d) shows the consistent improvement in 

travel time, NOx, CO2 emissions, fuel consumption and 

time-to-collision risks. However, scenario (c) causes 

longer travel time compared to the no-control scenario, 
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while the lower fuel consumption and time-to-collision 

risks than no control scenario are shown. Scenario (b) 

also demonstrates consistent improvements, which are 

not as significant as the scenario (d). 

5 Conclusions  

A VSL control system for a smart work zone with 

CVs is proposed in this study to address the discrepancies 

in traffic detections from different stationary sensors. 

Traffic densities from stationary sensors at the distant 

upstream and merging area of the work zone are 

weighted by applying kinematic wave theory and using 

speed and location transmitted from CVs.  The weighted 

density approximates traffic density at work zone areas 

with lower estimation error. While the discrepancies 

caused by the locations of stationary sensors negatively 

impact the VSL control performance, the weighted 

density ensures the effectiveness of VSL control. The 

results show the proposed VSL control system can 

consistently improve traffic mobility, safety, and 

sustainability near work zone areas. 
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